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Abstract Synthesis of program fragments from specifica-
tions can make programs easier to write and easier to reason
about. To integrate synthesis into programming languages,
synthesis algorithms should behave in a predictable way—
they should succeed for a well-defined class of specifica-
tions. To guarantee correctness and applicability to software
(and not just hardware), these algorithms should also sup-
port unbounded data types, such as numbers and data struc-
tures. To obtain appropriate synthesis algorithms, we propose
to generalize decision procedures into predictable and com-
plete synthesis procedures. Such procedures are guaranteed
to find the code that satisfies the specification if such code
exists. Moreover, we identify conditions under which synthe-
sis will statically decide whether the solution is guaranteed to
exist and whether it is unique. We demonstrate our approach
by starting from a quantifier elimination decision procedure
for Boolean algebra of set with Presburger arithmetic and
transforming it into a synthesis procedure. Our procedure
also works in the presence of parametric coefficients. We
establish results on the size and the efficiency of the syn-
thesized code. We show that such procedures are useful as
a language extension with implicit value definitions, and we
show how to extend a compiler to support such definitions.
Our constructs provide the benefits of synthesis to program-
mers, without requiring them to learn new concepts, give up
a deterministic execution model, or provide code skeletons.
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1 Introduction

Synthesis of software from specifications [42,43] promises
to make programmers more productive. Despite substantial
recent progress [55,58,59,62], synthesis is limited to small
pieces of code. We expect that this will continue to be the
case for some time in the future for two reasons: (1) synthe-
sis is algorithmically a difficult problem, and (2) synthesis
requires detailed specifications, which for large programs
become difficult to write.

We therefore expect that practical applications of synthe-
sis lie in its integration into the compilers of general-purpose
programming languages. To make this integration feasible,
we aim to identify well-defined classes of expressions and
synthesis algorithms guaranteed to succeed for these classes
of expressions, just like a compilation attempt succeeds for
any well-formed program. Our starting point for such syn-
thesis algorithms are decision procedures.

A decision procedure for satisfiability of a class of for-
mulas accepts a formula in its class and checks whether the
formula has a solution. On top of this basic functionality,
many decision procedure implementations provide the addi-
tional feature of generating a satisfying assignment (a model)
whenever the given formula is satisfiable. Such a model-
generation functionality has many uses, including better error
reporting in verification [41] and test-case generation [1]. An
important insight is that model generation facility of deci-
sion procedure could also be used as an advanced compu-
tation mechanism. Given a set of values for some of the
variables, a constraint solver can at run-time find the values
of the remaining variables such that a given constraint holds.
Two recent examples of integrating such a mechanism into
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a programming language are the quotations of the F# lan-
guage [54] and a Scala library [30], both interfacing to the
Z3 satisfiability modulo theories (SMT) solver [10]. Such
mechanisms promise to bring the algorithmic improvements
of SMT solvers to declarative paradigms such as constraint
logic programming [29]. However, they involve a possibly
unpredictable search at run-time and require the deployment
of the entire decision procedure as a component of the run-
time system.

Our goal is to provide the benefits of the declarative
approach in a more controlled way: we aim to run a deci-
sion procedure at compile time and use it to generate code.
The generated code then computes the desired values of vari-
ables at run-time. Such code is thus specific to the desired
constraint and can be more efficient. It does not require the
decision procedure to be present at run-time and gives the
developer static feedback by checking the conditions under
which the generated solution will exist and be unique. We use
the term synthesis for our approach because it starts from an
implicit specification and involves compile-time precompu-
tation. Because it computes a function that satisfies a given
input/output relation, we call our synthesis functional, in
contrast to reactive synthesis approaches [50] (another term
for the general direction of our approach is AE-paradigm or
Skolem paradigm). Finally, we call our approach complete
because it is guaranteed to work for all specification expres-
sions from a well-specified class.

We demonstrate our approach by describing synthesis
algorithms for the domains of linear arithmetic and collec-
tions of objects. We have implemented these synthesis algo-
rithms and deployed them as a compiler extension of the
Scala programming language [46]. We have found that using
such constraints we were able to express a number of program
fragments in a more natural way, stating the invariants that
the program should satisfy as opposed to the computation
details of establishing these invariants.

In the area of integer arithmetic, we obtain a language
extension that can implicitly define integer variables to sat-
isfy given constraints. The applications of integer arithme-
tic synthesis include conversions of quantities expressed in
terms of multiple units of measure, coordinate transforma-
tions, as well as a substantially more general notion of pattern
matching on integers, going well beyond matching on con-
stants or (n + k)-patterns of the Haskell programming lan-
guage [26].

In the area of data structures, we describe a synthesis pro-
cedure that can compute sets of elements subject to con-
straints expressed in terms of basic set operations (union,
intersection, set difference, subset, equality) as well as linear
constraints on sizes of sets. We have found these constraints
to be useful for manipulating sets of objects in high-level
descriptions of algorithms, from simple operations such as
choosing an element from a set or a fresh element, or split-

ting sets subject to size constraints. Such constructs arise in
pseudo-code notations, and they provide a useful addition
to the transformations previously developed for the SETL
programming language [11,56]. Regarding data structures
this paper focuses on sets, but the approach applies to other
constraints for which decision procedures are available [35],
including multisets [47,48,66] and algebraic data types [53].

Contributions This paper makes the following contribu-
tions:

1. We describe an approach for deploying algorithms for
synthesis within programming languages. Our approach
introduces a higher-order library function choose of
type (α ⇒ bool) ⇒ α, which takes as an argument a
specification, given as an expression λx .F of type α ⇒
bool. Our compiler extension rewrites calls to choose
into efficient code that finds a value x of type α such that
F is true. The generated code computes x as a function
of the free variables (parameters) of the expression F .
This deployment is easy to understand by program-
mers because it has the same semantics as invoking
a constraint solver at run-time. It does not impact the
semantics or efficiency of existing programming lan-
guage constructs, because the execution outside choose
remains unchanged.

2. Building on the choose primitive, we show how to sup-
port pattern matching expressions that are substantially
more expressive than the existing ones, using the full
expressive power of the term language of a decidable
theory.

3. We describe a methodology to convert decision proce-
dures for a class of formulas into synthesis procedures
that can rewrite the corresponding class of expressions
into efficient executable code. Most existing procedures
based on quantifier elimination are directly amenable to
our approach.

4. As a first illustrative example, we describe synthesis pro-
cedures for propositional logic and rational arithmetic.
We show that, compared with invocations of constraint
solvers at run-time, the synthesized code can have better
worst-case complexity in the number of variables. This
is because our synthesis procedure converts (at com-
pile time) a given constraint into a solved form that can
be executed, avoiding most of the run-time search. The
synthesized code is guaranteed to be correct by con-
struction.

5. As our core implemented example, we present synthe-
sis for linear arithmetic over unbounded integers. Given
an integer linear arithmetic formula and a separation of
variables into output variables and parameters, our pro-
cedure constructs (1) a program that computes the values
of outputs given the values of inputs and (2) the weak-
est among the conditions on inputs that guarantees the
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existence of outputs (the domain of the relation between
inputs and outputs).

6. We show that the synthesis for integer arithmetic can be
extended to the non-linear case where coefficients multi-
plying output variables are expressions over parameters
that are known only at run-time. We have implemented
this extension and have found that it increases the range
of supported specifications. It shows that we can have
complete functional synthesis at compile-time for spec-
ifications for which the satisfiability over the space of
all parameters is undecidable, as long as the problem
becomes decidable when the parameters are fixed at run-
time.

7. We also present an implemented synthesis procedure
for Boolean algebra with Presburger arithmetic (BAPA),
a logic of constraints on sets and their sizes. This
algorithm illustrates that complete functional synthesis
applies not only to numerical computations, but also to
the very important domain of data structure manipula-
tions. This result also illustrates the idea of the compo-
sition of synthesis procedures. While the implementa-
tions of BAPA decision procedures work by reduction
to integer arithmetic decision procedures [33,36], we
here show how to build a synthesis procedure for BAPA
on top of our synthesis procedure for integer linear arith-
metic.

8. We describe our experience in using synthesis as a plu-
gin for the Scala compiler. Our implementation is pub-
licly available at http://lara.epfl.ch/dokuwiki/comfusy
and can be used as a starting point for the development
of further synthesis approaches.

2 Example

We first illustrate the use of a synthesis procedure for integer
linear arithmetic. Consider the following example to break
down a given number of seconds (stored in the variable tot-
sec) into hours, minutes, and leftover seconds:

val (hrs, mns, scs) = choose((h: Int, m: Int, s: Int) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤m && m ≤60 &&

0 ≤s && s ≤60)

Our synthesizer succeeds, because the constraint is in inte-
ger linear arithmetic. However, the synthesizer emits the fol-
lowing warning:

Synthesis predicate has multiple solutions
for variable assignment: totsec = 0
Solution 1: h = 0, m = 0, s = 0
Solution 2: h = -1, m = 59, s = 60

The reason for this warning is that the bounds on m and s
are not strict. After correcting the error in the specification,

replacing m ≤ 60 with m < 60 and s ≤ 60 with s < 60,
the synthesizer emits no warnings and generates code corre-
sponding to the following:

val (hrs, mns, scs) = {

val loc1 = totsec div 3600

val num2 = totsec + ((−3600) ∗ loc1)

val loc2 = min(num2 div 60, 59)

val loc3 = totsec + ((−3600) ∗ loc1) + (−60 ∗ loc2)

(loc1, loc2, loc3)

}

The absence of warnings guarantees that the solution always
exists and that it is unique. By writing the code in this
style, the developer directly ensures that the condition
h ∗ 3600 + m ∗ 60 + s == totsec will be satisfied, mak-
ing the program easily understood. Note that, if the developer
imposes the constraint

val (hrs, mns, scs) = choose((h: Int, m: Int, s: Int) ⇒
h ∗ 3600 + m ∗ 60 + s == totsec &&

0 ≤h < 24 &&

0 ≤m && m < 60 &&

0 ≤s && s < 60)

our system emits the following warning:

Synthesis predicate is not satisfiable
for variable assignment: totsec = 86400

pointing to the fact that the constraint has no solutions when
the totsec parameter is too large.

In addition to the choose function, programmers can use
synthesis for more flexible pattern matching on integers. In
existing deterministic programming languages, matching on
integers either tests on constant types, or, in the case of Hask-
ell’s (n +k) patterns, on some very special forms of patterns.
Our approach supports a much richer set of patterns, as illus-
trated by the following fast exponentiation code that does
case analysis on whether the argument is even or odd:

def pow(base : Int, p : Int) = {

def fp(m : Int, b : Int, i : Int) = i match {

case 0 ⇒m

case 2∗j ⇒fp(m, b∗b, j)

case 2∗j+1 ⇒fp(m∗b, b∗b, j)

}

fp(1,base,p)

}

The correctness of the function follows from the observa-
tion that fp(m, b, i) = mbi , which we can prove by induc-
tion. Indeed, if we consider the case 2 ∗ j + 1, we observe:

fp(m, b, i) = fp(m, b, 2 j + 1) = fp(mb, b2, j)

(by induct. hypothesis) = mb(b2) j = mb2 j+1 = mbi

Note how the pattern matching on integer arithmetic expres-
sions exposes the equations that make the inductive proof
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clearer. The pattern matching compiler generates the code
that decomposes i into the appropriate new exponent j. More-
over, it checks that the pattern matching is exhaustive. The
construct supports arbitrary expressions of linear integer
arithmetic and can prove, for example, that the set of pat-
terns 2 ∗ k, 3 ∗ k, 6 ∗ k − 1, 6 ∗ k + 1 is exhaustive. The
system also accepts implicit definitions, such as

val 42 ∗ x + 5 ∗ y = z

The system ensures that the above definition matches
every integer z, and emits the code to compute x and y from
z.

Our approach and implementation also work for param-
eterized integer arithmetic formulas, which become linear
only once the parameters are known. For example, our syn-
thesizer accepts the following specification that decomposes
an offset of a linear representation of a three-dimensional
array with statically unknown dimensions into indices for
each coordinate:

val (x1, y1, z1) = choose((x: Int, y: Int, z: Int) ⇒
offset == x + dimX ∗ y + dimX ∗ dimY ∗ z &&

0 ≤x && x < dimX &&

0 ≤y && y < dimY &&

0 ≤z && z < dimZ)

Here dimX, dimY, dimZ are variables whose value is
unknown until runtime. Note that the satisfiability of con-
straints that contain multiplications of variables is in general
undecidable. In such parameterized case our synthesizer is
complete in the sense that it generates code that (1) always
terminates, (2) detects at run-time whether a solution exists
for current parameter values, and (3) computes one solution
whenever a solution exists.

In addition to integer arithmetic, other theories are ame-
nable to synthesis and provide similar benefits. Consider the
problem of splitting a set collection in a balanced way. The
following code attempts to do that:

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size == a2.size)

It turns out that for the above code our synthesizer emits a
warning indicating that there are cases where the constraint
has no solutions. Indeed, there are no solutions when the set
s is of odd size. If we weaken the specification to

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇒
a1 union a2 == s && a1 intersect a2 == empty &&

a1.size − a2.size ≤1 &&

a2.size − a1.size ≤1)

Then our synthesizer can prove that the code has a solu-
tion for all possible input sets s. The synthesizer emits code
that, for each input, computes one such solution. The nature
of constraints on sets is that if there is one solution, then there
are many solutions. Our synthesizer resolves these choices at

compile time, which means that the generated code is deter-
ministic.

3 From decision to synthesis procedures

We next define precisely the notion of a synthesis procedure
and describe a methodology for deriving synthesis proce-
dures from decision procedures.

Preliminaries Each of our algorithms works with a set
of formulas, Formulas, defined in terms of terms, Terms.
Formulas denote truth values, whereas terms and variables
denote values from the domain (e.g. integers). We denote
the set of variables by Vars. FV(q) denotes the set of free
variables in a formula or a term q. If x = (x1, . . . , xn)

then xs denotes the set of variables {x1, . . . , xn}. If q is a
term or formula, x = (x1, . . . , xn) a vector of variables
and t = (t1, . . . , tn) a vector of terms, then q[x := t]
denotes the result of substituting in q the free variables
x1, . . . , xn with terms t1, . . . , tn , respectively. Given a sub-
stitution σ : FV(F) → Terms, we write Fσ for the result
of substituting each x ∈ FV(F) with σ(x). Formulas are
interpreted over elements of a first-order structure D with a
countable domain D. We assume that for each e ∈ D there
exists a ground term ce whose interpretation in D is e; let
C = {ce | e ∈ D}. We further assume that if F ∈ Formulas
then also F[x := ce] ∈ Formulas (the class of formulas is
closed under partial grounding with constants).

The choose programming language construct We inte-
grate into a programming language a construct of the form

r = choose(x ⇒ F) (1)

Here, F is a formula (typically represented as a boolean-
valued programming language expressions) and x ⇒ F
denotes an anonymous function from x to the value of F (that
is, λx.F). Two kinds of variables can appear within F : output
variables x and parameters a. The parameters a are program
variables that are in scope at the point where choose occurs;
their values will be known when the statement is executed.
Output variables x denote values that need to be computed
so that F becomes true, and they will be assigned to r as a
result of the invocation of choose.

We can translate the above choose construct into the fol-
lowing sequence of commands in a guarded command lan-
guage [12]:

assert(∃x.F);

havoc (r);

assume (F[x := r]);
The simplicity of the above translation indicates that it

is natural to represent choose within existing verification
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systems (e.g. [16,69]) The use of choose can help verifi-
cation because the desired property F is explicitly assumed
and can aid in proving the subsequent program assertions.

Model-generating decision procedures As a starting
point for our synthesis algorithms for choose invocations
we consider a model-generating decision procedure. Given
F ∈ Formulas we expect this decision procedure to produce
either

(a) a substitution σ : FV(F) → C such that Fσ is a true, or
(b) a special value unsat indicating that the formula is unsat-

isfiable.

We assume that the decision procedure is deterministic and
behaves as a function. We write Z(F)=σ or Z(F)=unsat
to denote the result of applying the decision procedure to F .

Baseline: invoking a decision procedure at run-time Just
like an interpreter can be considered as a baseline implemen-
tation for a compiler, deploying a decision procedure at run-
time can be considered as a baseline for our approach. In this
scenario, we replace the statement (1) with the code

F = makeFormulaTree(makeVars(x), makeGroundTerms(a));

r= (Z(F)match {

case σ⇒(σ(x1), . . . , σ (xn))

case unsat ⇒throw new Exception(‘‘No solution exists’’)

})

Such dynamic invocation approach is flexible and useful.
However, there are important performance and predictabil-
ity advantages of an alternative compilation approach.

Synthesis based on decision procedures Our goal is
therefore to explore a compilation approach where a mod-
ified decision procedure is invoked at compile time, convert-
ing the formula into a solved form.

Definition 1 (Synthesis procedure) We denote an invocation
of a synthesis procedure by �x, F� = (pre,�). A synthesis
procedure takes as input a formula F and a vector of variables
x and outputs a pair of

1. a precondition formula pre with FV(pre) ⊆ FV(F) \ xs

2. a tuple of terms � with FV(�) ⊆ FV(F) \ xs

such that the following two implications are valid:

(∃x.F) → pre
pre → F[x := �]
Observation 2 Because another implication always holds:

F[x := �] → ∃x.F

the above definition implies that the three formulas are all
equivalent: (∃x.F), pre, F[x := �]. Consequently, if we can

define a function witn where for witn(x, F) = � we have
FV(�) ⊆ FV(F)\xs and ∃x.F implies F[x := �], then we
can define a synthesis procedure by

�x, F� = (F[x := witn(x, F)], witn(x, F))

The reason we use the translation that computes pre in addi-
tion to witn(x, F) is that the synthesizer performs simplifi-
cations when generating pre, which can produce a formula
faster to evaluate than F[x := witn(x, F)].

The synthesizer emits the terms � in compiler intermedi-
ate representation; the standard compiler then processes them
along with the rest of the code. We identify the syntax tree
of � with its meaning as a function from the parameters a to
the output variables x. The overall compile-time processing
of the choose statement (1) involves the following:

1. emit a non-feasibility warning if the formula ¬pre is
satisfiable, reporting the counterexample for which the
synthesis problem has no solutions;

2. emit a non-uniqueness warning if the formula

F ∧ F[x := y] ∧ x 
= y

is satisfiable, reporting the values of all free variables
as a counterexample showing that there are at least two
solutions;

3. as the compiled code, emit the code that behaves as
assert(pre); r = �

The existence of a model-generating decision procedure
implies the existence of a ‘trivial’ synthesis procedure, which
satisfies Definition 1 but simply invokes the decision proce-
dure at run-time. (In the realm of conventional programming
languages, this would be analogous to ‘compiling’ the code
by shipping its source code bundled with an interpreter.) The
usefulness of the notion of synthesis procedure, therefore,
comes from the fact that we can often create compiled code
that avoids this trivial solution. Among the potential advan-
tages of the compilation approach are

– improved run-time efficiency, because part of the reason-
ing is done at compile-time;

– improved error reporting: the existence and uniqueness
of solutions can be checked at compile time;

– simpler deployment: the emitted code can be compiled to
any of the targets of the compiler, and requires no addi-
tional run-time support.

This paper therefore pursues the compilation approach. As
for the processing of more traditional programming language
constructs, we do believe that there is space in the future for
mixed approaches, such as ‘just-in-time synthesis’ and ‘pro-
filing-guided synthesis’.
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Efficiency of synthesis We introduce the following mea-
sures to quantify the behavior of synthesis procedures as a
function of the specification expression F :

– time to synthesize the code, as a function of F ;
– size of the synthesized code, as a function of F ;
– running time of the synthesized code as a function of F

and a measure of the run-time values for the parameters a.

When using F as the argument of the above measures, we
often consider not only the size of F as a syntactic object, but
also the dimension of the variable vector x and the parameter
vector a of F .

From quantifier elimination to synthesis The precondi-
tion pre can be viewed as a result of applying quantifier
elimination (see, e.g. [23, Page 67], [44]) to remove x from
F , with the following differences.

1. Synthesis procedures strengthen quantifier elimination
procedures by identifying not only pre but also emitting
the code � that efficiently computes a witness for x.

2. Quantifier elimination is typically applied to arbitrary
quantified formulas of first-order logic and aims to suc-
cessively eliminate all variables. To enable recursive
application of variable elimination, pre must be in the
same language of formulas as F . This condition is not
required in the final step of synthesis procedure, because
no further elimination is applied to the final precondi-
tion. Therefore, if the final precondition becomes a run-
time check, it can contain arbitrary executable code. If
the final precondition becomes a compile-time satisfi-
ability check for the totality of the relation, then it suf-
fices for it to be in any decidable logic.

3. Worst-case bounds on quantifier elimination algorithms
measure the size of the generated formula and the time
needed to generate it, but not the size of � or the time
to evaluate �. For some domains, it can be computa-
tionally more difficult to compute (or even ‘print’) the
solution than to simply check the existence of a solution.

Despite the differences, we have found that we can natu-
rally extend existing quantifier elimination procedures with
explicit computation of witnesses that constitute the program
�.

4 Selected generic techniques

We next describe some basic observations and techniques for
synthesis that are independent of a particular theory.

4.1 Synthesis for multiple variables

Suppose that we have a function witn(x, F) that corresponds
to constructive quantifier elimination step for one variable
and produces a term � such that F[x := �] holds iff ∃x .F
holds. We can then lift witn(x, F) to synthesis for any number
of variables, using the (non-tail recursive) translation scheme
in Fig. 1. This translation includes the base case in which
there are no variables to eliminate, so F becomes the precon-
dition, and the recursive case that applies the witn function.

In implementation we can use local variable definitions
instead of substitutions. Given (1), we generate as � a Scala
code block

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

val x1 = �1

. . .

val xn−1 = �n−1

val xn = �n

x

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where the variables in �n directly refer to variables computed
in �1, . . . , �n−1 and where FV(�i ) ⊆ FV(F)\{xi , . . . , xn}.
A consequence of this recursive translation pattern is that
the synthesized code computes values in reverse order com-
pared with the steps of a quantifier elimination procedure.
This observation can be helpful in understanding the output
of our synthesis procedures.

4.2 One-point rule synthesis

If x /∈ FV(t) we can define

witn(x, x = t ∧ F) = t

If the formula does not have the form x = t ∧ F , we can
often rewrite it into this form using theory-specific transfor-
mations.

Fig. 1 Successive elimination of variables for synthesis
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4.3 Output-independent preconditions

Whenever FV(F1) ∩ xs = ∅, we can apply the following
synthesis rule:

�x, F1 ∧ F2� = let (pre,�) = �x, F2� in
(pre ∧ F1,�)

which moves a ‘constant’ conjunct of the specification into
the precondition. We assume that this rule is applied when-
ever possible and do not explicitly mention it in the sequel.

4.4 Propositional connectives in first-order theories

Consider a quantifier-free formula in some first-order the-
ory. Consider the tasks of checking formula satisfiability or
applying elimination of a variable. For both tasks, we can
first rewrite the formula into disjunctive normal form and
then process each disjunct independently. This allows us to
focus on handling conjunctions of literals as opposed to arbi-
trary propositional combination.

We next show that we can similarly use disjunctive nor-
mal form in synthesis. Consider a formula D1 ∨ · · · ∨ Dn in
disjunctive normal form. We can apply synthesis to each Di

yielding a precondition prei and the solved form � i . We can
then synthesize code with conditionals that select the first � i

that applies:

�x, D1 ∨ · · · ∨ Dn� =
let (pre1,�1) = �x, D1�

. . .

(pren,�n) = �x, Dn�
in

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∨n
i=1 prei ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if (pre1) �1

else if (pre2) �2

. . .

else if (pren) �n

else
throw new Exception(“No solution”)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Although the disjunctive normal form can be exponen-
tially larger than the original formula, the transformation
to disjunctive normal form is used in practice [51] and has
advantages in terms of the quality of synthesized code gen-
erated for individual disjuncts. What further justifies this
approach is that we expect a small number of disjuncts in
our specifications and may need different synthesized values
for variables in different disjuncts.

Other methods can have better worst-case quantifier elimi-
nation complexity [9,17,44,63] than disjunctive normal form
approaches. We discuss these alternative approaches in the
sequel as well, but it is the above disjunctive normal form
approach that we currently use in our implementation.

4.5 Synthesis for propositional logic

Our paper focuses on synthesis for formulas over unbounded
domains. Nonetheless, to illustrate the potential asymptotic
gain of precomputation in synthesis, we illustrate synthesis
for the case when F is a propositional formula (see, e.g. [38]
for a more sophisticated approach to this problem). Suppose
that x are output variables and a are the remaining proposi-
tional variables (parameters) in F .

To synthesize a function from a to x, build an ordered
binary decision diagram (OBDD) [6] for F , treating both
a and x as variables for OBDD construction, and using a
variable ordering that puts all parameters a before all output
variables x. Then split the OBDD graph at the point where all
the decisions on a have been made. That is, consider the set
of nodes that terminate on some paths on which all decisions
on a have been made and no decisions on x have been made.
For each of these OBDD nodes, we precompute whether this
node reaches the true sink node. As the result of synthesis,
we emit the code that consists of nested if-then-else tests
encoding the decisions on a, followed by the code that, for
each non-false node those values of x that trace one path to
the true sink node.

Consider the code generated using the method above. Note
that, although the size of the code is bounded by a single expo-
nential, the code executes in time close to linear in the total
number of variables a and x. This is in contrast to NP-hard-
ness of finding a satisfying assignment for a propositional
formula F , which would occur in the baseline approach of
invoking a SAT solver at run-time. In summary, for prop-
ositional logic synthesis (and, more generally, for NP-hard
constraints over bounded domains) we can precompute solu-
tions and generate code that computes the desired values
in deterministic polynomial time in the size of inputs and
outputs.

In the next several sections, we describe synthesis proce-
dures for several useful decidable logics over infinite domains
(numbers and data structures) and discuss the efficiency
improvements due to synthesis.

5 Synthesis for linear rational arithmetic

We next consider synthesis for quantifier-free formulas of
linear arithmetic over rationals. In this theory, variables
range over rational numbers, terms are linear expressions
c0 + c1x1 + · · · + cn xn , and the relations in the language
are < and =. Synthesis for this theory can be used to syn-
thesize exact fractional arithmetic computations (or floating-
point computations if we are willing to ignore the rounding
errors). It also serves as an introduction to the more complex
problem of integer arithmetic synthesis that we describe in
the following sections.
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Given a quantifier-free formula, we can efficiently trans-
form it to negation-normal form. Furthermore, we observe
that ¬(t1 < t2) is equivalent to (t2 < t1) ∨ (t1 = t2) and that
¬(t1 = t2) is equivalent to (t1 < t2) ∨ (t2 < t1). Therefore,
there is no need to consider negations in the formula. We
can also normalize the equalities to the form t = 0 and the
inequalities to the form 0 < t .

5.1 Solving conjunctions of literals

Given the observations in Sect. 4.4, we consider conjunctions
of literals. The method follows Fourier–Motzkin elimination
[52]. Consider the elimination of a variable x .

Equalities If x occurs in an equality constraint t = 0,
then solve the constraint for x and rewrite it as x = t ′, where
t ′ does not contain x . Then simply apply the one-point rule
synthesis (Sect. 4.2). This step amounts to Gaussian elim-
ination. We follow this step whenever possible, so we first
eliminate those variables that occur in some equalities and
only then proceed to inequalities.

Inequalities Next, suppose that x occurs only in strict
inequalities 0 < t . Depending on the sign of x in t , we can
rewrite these inequalities into ap < x or x < bq for some
terms ap, bq . Consider the more general case when there is
both at least one lower bound ap and at least one upper bound
bq . We can then define:

witn(x, F) = (max
p

{ap} + min
q

{bq})/2

As one would expect from quantifier elimination, the pre
corresponding to this case results from F by replacing the
conjunction of all inequalities containing x with the conjunc-
tion
∧

p,q

ap < bq

In case there are no lower bounds ap , we define witn(x, F)

= minq{bq} − 1; if there are no upper bounds bq , we define
witn(x, F) = maxp{ap} + 1.

Complexity of synthesis for conjunctions We next exam-
ine the size of the generated code for linear rational arith-
metic. The elimination of input variables using equalities
is a polynomial-time transformation. Suppose that after this
elimination we are left with N inequalities and V remaining
input variables. The above inequality elimination step for
one variable replaces N inequalities with (N/2)2 inequali-
ties in the worst case. After eliminating all output variables,
an upper bound on the formula increase is (N/2)2V

. There-
fore, the generated formula can be in the worst case doubly
exponential in the number of output variables V . However,

for a fixed V , the generated code size is a (possibly high-
degree) polynomial of the size of the input formula. Also, if
there are four or fewer inequalities in the original formula,
the final size is polynomial, regardless of V . Finally, note
that the synthesis time and the execution time of synthesized
code are polynomial in the size of the generated formula.

5.2 Disjunctions for linear rational arithmetic

We next consider linear arithmetic constraints with disjunc-
tions, which are constraints for which the satisfiability is NP-
complete. One way to lift synthesis for rational arithmetic
from conjunctions of literals to arbitrary propositional com-
binations is to apply the disjunctive normal form method of
Sect. 4.4. We then obtain a complexity that is one exponential
higher in formula size than the complexity of synthesis for
conjunctions.

In the rest of this section we consider an alternative to
disjunctive normal form. This alternative synthesizes code
that can execute exponentially faster (even though it is
not smaller) compared with the disjunctive normal form
approach of Sect. 4.4.

The starting point of this method are quantifier elimina-
tion techniques that avoid disjunctive normal form transfor-
mation, e.g. [17,44], [5, Section 7.3]. To remove a variable
from negation normal form, this method finds relevant lower
bounds ap and upper bounds bq in the formula, then computes
the values m pq = (ap +bq)/2 and replaces a variable xi with
the values from the set {m pq}p,q extended with “sufficiently
small” and “sufficiently large” values [44]. This quantifier
elimination method gives us a way to compute pre.

We next present how to extend this quantifier elimina-
tion method to synthesis, namely to the computation of
witn(x, F). Consider a substitution in quantifier elimination
step that replaces variable xi with the term m. We then extend
this step to also attach to each literal a special substitution
syntactic form (xi �→ m). When using this process to elim-
inate one variable, the size of the formula can increase qua-
dratically. After eliminating all output variables, we obtain
a formula pre with additional annotations; the size of this
formula is bounded by n2O(V )

where n is the original formula
size. (Again, although it is doubly exponential in V , it is not
exponential in n.)

We can therefore build a decision tree that evaluates the
values of all n2O(V )

literals in pre. On each complete path
of this tree, we can, at synthesis time, determine whether
the truth values of literals imply that pre is true. Indeed,
such computation reduces to evaluating the truth value of a
propositional formula in a given assignment to all variables.
In the cases when the literals imply that pre holds, we use
the attached substitution (xi �→ m) in true literals to recover
the synthesized values of variables xi . Such decision tree has
the depth n2O(V )

, because it tests the values of all literals
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in the result of quantifier elimination. For a constant num-
ber of variables V , this tree represents a synthesized program
whose running time is polynomial in n. Thus, we have shown
that using basic methods of quantifier elimination (without
relying on detailed geometric facts about the theory of linear
rational arithmetic) we can synthesize for each specification
formula a polynomial-time function that maps the parameters
to the desired values of output variables.

6 Synthesis for linear integer arithmetic

We next describe our main algorithm, which performs syn-
thesis for quantifier-free formulas of Presburger arithmetic
(integer linear arithmetic). In this theory variables range over
integers. Terms are linear expressions of the form c0+c1x1+
· · · + cn xn, n ≥ 0, ci is an integer constant and xi is an
integer variable. Atoms are built using the relations ≥, =
and |. The atom c|t is interpreted as true iff the integer con-
stant c divides term t . We use a < b as a shorthand for
a ≤ b ∧ ¬(a = b). We describe a synthesis algorithm that
works for conjunction of literals.

Pre-processing We first apply the following pre-process-
ing steps to eliminate negations and divisibility constraints.
We remove negations by transforming a formula into its nega-
tion-normal form and translating negative literals into equiv-
alent positive ones: ¬(t1 ≥ t2) is equivalent to t2 ≥ t1+1 and
¬(t1 = t2) is equivalent to (t1 ≥ t2 + 1) ∨ (t2 ≥ t1 + 1). We
also normalize equalities into the form t = 0 and inequalities
into the form t ≥ 0.

We transform divisibility constraints of a form c|t into
equalities by adding a fresh variable q. The value obtained
for the fresh variable q is ignored in the final synthesized
program:

�x, (c|t) ∧ F� =
let (pre, (�, �n+1)) = �(x, q), t = c q ∧ F�

in (pre,�)

The negation of divisibility ¬(c|t) can be handled in a similar
way by introducing two fresh variables q and r :

�x,¬(c|t) ∧ F� =
let F ′ ≡ t + r = c q ∧ 1 ≤ r ≤ c − 1 ∧ F

(pre, (�, �n+1, �n+2)) = �(x, q, r), F ′�
in (pre,�)

In the rest of this section we assume the input formula F to
have no negation or divisibility constraints (these constructs
can, however, appear in the generated code and precondition).

6.1 Solving equality constraints for synthesis

Because equality constraints are suitable for deterministic
elimination of output variables, our procedure groups all

equalities from a conjunction and solves them first, one by
one. Let E be one such equation, so the entire formula is of
the form E ∧F . Let y be the output variables that appear in E .

Given an output variable y1 and E of the form cy1 + t = 0
for c 
= 0, a simple way to solve it would be to impose
the precondition c|t , use the witness y1 = −t/c in synthe-
sized code, and substitute −t/c instead of y1 in the remaining
formula. However, to keep the equations within linear inte-
ger arithmetic, this would require multiplying the remaining
equations and disequations in F by c, potentially increasing
the sizes of coefficients substantially.

We instead perform synthesis based on one of the
improved algorithms for solving integer equations. This algo-
rithm avoids the multiplication of the remaining constraints
by simultaneously replacing all n output variables y in E
with n − 1 fresh output variables λ. Using this algorithm
we obtain the synthesis procedure in Fig. 2. An invoca-
tion of eqSyn(y, F) is similar to �y, F� but returns a triple
(pre,�,λ), which in addition to the precondition pre and
the witness term tuple � also has the fresh variables λ.

6.1.1 The eqSyn synthesis algorithm

Consider the application of eqSyn in Fig. 2 to the equation
�m

i=1βi bi + �n
j=1γ j y j = 0. If there is only one output vari-

able, y1, we directly eliminate it from the equation. Assume
therefore n > 1. Let d = gcd(β1, . . . , βm, γ1, . . . , γn). If
d > 1 we can divide all coefficients by d, so assume d = 1.

Fig. 2 Algorithm for synthesis based on integer equations
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Our goal is to derive an alternative definition of the set
K = {y | �m

i=1βi bi + �n
j=1γ j y j = 0} which will allow a

simple and effective computation of elements in K . Note that
the set K describes the set of all solutions of a Presburger
arithmetic formula.

Recall that a semilinear set [20] is a finite union of linear
sets. Given an integer vector b and a finite set of integer vec-
tors S, a linear set is a set {x | x = b + s1 + · · · + sn; si ∈
S; n ≥ 0}. Ginsburg and Spanier [20,21] showed that the set
of all solutions of a Presburger arithmetic formula is always
a semilinear set, which implies that K is semilinear. How-
ever, we cannot apply this result directly because the values
of parameter variables are not known until run-time. Instead,
we proceed in the following steps, as shown in Fig. 2:

1. obtain a linear set representation of the set

SH =
⎧
⎨

⎩
y |

n∑

j=1

γ j y j = 0

⎫
⎬

⎭

of solutions for the homogeneous part using the func-
tion linearSet (defined in Sect. 6.1.2 to compute
s1, . . . , sn−1 such that

SH =
{

y | ∃λ1, . . . , λn−1 ∈ Z. y =
n−1∑

i=1

λi si

}

2. find one particular solution, that is, use the function
partSol (defined in Sect. 6.1.3) to find a vector of
terms w (containing the parameters bi ) such that t +
∑n

j=1 γ jw j = 0 for all values of parameters bi .

3. return as the solution w + ∑n−1
i=1 λi si

To see that the algorithm is correct, fix the values of param-
eters and let γ = (γ1, . . . , γn). From linearity we have t +
γ · (w + ∑

j λ j s j ) = t − t + 0 = 0, which means that
each w + ∑

j λ j s j is a solution. Conversely, if y is a solu-
tion of the equation then γ (y − w) = 0, so y − w ∈ SH ,
which means y − w = ∑n

i=1 λi si for some λi . Therefore,
the set of all solutions of t + ∑n

j=1 γ jw j = 0 is the set

{w + ∑n−1
i=1 λi si | λi ∈ Z}. It remains to define linearSet to

find si and partSol to find w.

6.1.2 Computing a linear set for a homogeneous equation

This section describes our version of the algorithm
linearSet(γ1, . . . , γn) that computes the set of solutions of
an equation �n

i=1γi yi = 0. A related algorithm is a compo-
nent of the Omega test [51]. We define

linearSet(γ1, . . . , γn) = (s1, . . . , sn−1)

where s j = (K1 j , . . . , Knj ) and the integers Ki j are com-
puted as follows:

– if i < j, Ki j = 0 (the matrix K is lower triangular)

– K j j = gcd((γk )k≥ j+1)

gcd((γk )k≥ j )

– for each index j, 1 ≤ j ≤ n − 1, we compute Ki j as
follows. Consider the equation

γ j K j j +
n∑

i= j+1

γi ui j = 0

and find any solution. That is, compute

K( j+1) j , . . . , Knj ) = partSol(−γ j K j j , γ j+1, . . . , γn)

where partSol is given in Sect. 6.1.3.

Let SH = {y | �n
i=1γi yi = 0} and let Let SH = {y |

�n
i=1γi yi = 0} and let

SL = {λ1s1 + · · · + λnsn | λ1, . . . , λn ∈ Z}

=

⎧
⎪⎨

⎪⎩
λ1

⎛

⎜
⎝

K11
...

Kn1

⎞

⎟
⎠ + · · · + λn−1

⎛

⎜
⎝

K1(n−1)

...

Kn(n−1)

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

λi ∈ Z

⎫
⎪⎬

⎪⎭

We claim SH = SL .
First we show that each vector s j belongs to SH . Indeed,

by definition of Ki j we have γ j K j j + ∑n
i= j+1 γi Ki j = 0.

This means precisely that s j ∈ SH , by definition of s j and
SH . Next, observe that SH is closed under linear combina-
tions. Because SL is the set of linear combinations of vectors
s j , we have SL ⊆ SH .

To prove that the converse also holds, let y ∈ SH . We will
show that the triangular system of equations

∑n−1
i=1 λi si = y

has some solution λ1, . . . , λn−1. We start by showing that we
can find λ1. Let G1 = gcd((γk)k≥1). From y ∈ SH we have
�n

i=1γi yi = 0, that is, G1(�
n
i=1βi yi ) = 0 for βi = γi/G1.

This implies β1 y1 + �n
i=2βi yi = 0 and gcd((βk)k≥1) = 1.

Let G2 = gcd((βk)k≥2). From β1 y1+�n
i=2βi yi = 0 we then

obtain β1 y1 + G2(�
n
i=2β

′
i yi ) = 0 for β ′

i = βi/G2. There-

fore, y1 = −G2(�
n
i=2β

′
i yi )/β1. Because gcd(β1, G2) = 1

we have β1|�n
i=2β

′
i yi , so we can define the integer λ1 =

−�n
i=2β

′
i yi/β1 and we have y1 = λ1G2. Moreover, note

that

G2 = gcd((βk)k≥2) = gcd((γk)k≥2)/G1 = K11

Therefore, y1 = λ1 K11, which ensures that the first equation
is satisfied.

Consider now a new vector z = y−λ1s1. Because y ∈ SH

and and s1 ∈ SH also z ∈ SH . Moreover, note that the first
component of z is 0. We repeat the described procedure on z
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and s2. This way we derive the value for an integer α2 and a
new vector that has 0 as the first two components.

We continue with the described procedure until we obtain
a vector u ∈ SH that has all components set to 0 except
for the last two. From u ∈ SH we have γn−1un−1 +
γnun = 0. Letting βn−1 = γn−1/ gcd(γn−1, γn) and βn =
γn/ gcd(γn−1, γn) we conclude that βn−1un−1 + βnun = 0,
so un−1/βn is an integer and we letλn−1 = un−1/βn . By defi-
nitions ofβi it followsλn−1 = un−1·gcd(γn−1, γn)/γn . Next,
observe that sn−1 has the form (0, . . . , 0, γn/ gcd(γn−1, γn),

− γn−1/ gcd(γn−1, γn)). It is then easy to verify that u =
λn−1sn−1.

This procedure shows that every element of SH can be rep-
resented as a linear combination of vectors s j , which shows
SH ⊆ SL and concludes the proof.

6.1.3 Finding a particular solution of an equation

We finally describe the partSol function to find a solution (as
a vector of terms) for an equation t + �n

i=1γi ui = 0. We use
the extended Euclidean algorithm [8, Figure 31.1] that, given
the integers a1 and a2, finds their greatest common divisor
d and two integers w1 and w2 such that a1w1 + a2w2 = d.
Our algorithm generalizes the extended Euclidean algorithm
to arbitrary number of variables and uses it to find a solution
of an equation with parameters. We chose the algorithm pre-
sented here because of its simplicity. Other algorithms for
finding a solution of an equation t + �n

i=1γi ui = 0 can be
found in [3,15]. They also run in polynomial time. [3] addi-
tionally allows bounded inequality constraints, whereas [15]
guarantees that the returned numbers are no larger than the
largest of the input coefficients divided by 2.

The equation t + �n
i=1γi ui = 0 has a solution iff

gcd((γk)k≥1)|t , and the result of partSol is guaranteed to be
correct under this condition. Our synthesis procedure ensures
that when the results of this algorithm are used, the condition
gcd((γk)k≥1)|t is satisfied.

We start with the base case where there are only two vari-
ables, t + γ1u1 + γ2u2 = 0. By the extended Euclidean
algorithm let v1 and v2 be integers such that γ1v1 + γ2v2 =
gcd(γ1, γ2). If d = gcd(γ1, γ2) and r = t/d one solution is
the pair of terms (−v1r,−v2r):

partSol(t, γ1, γ2) =
let (d, v1, v2) = ExtendedEuclid(γ1, γ2)

r = t/d
in (−v1r,−v2r)

If there are more than two variables, we observe that
�n

i=2γi ui is a multiple of gcd((γk)k≥2). We introduce the
new variable u′ and find a solution of the equation t +γ1u1 +
gcd((γk)k≥2)·u′ = 0 as described above. This way we obtain
terms (w1, w

′) for (u1, w
′). To derive values of u2, . . . , un

we solve the equation �n
i=2γi ui = gcd((γk)k≥2) · w′. Given

that the initial equation was assumed to have a solution, the
new equation can also be showed to have a solution. More-
over, it has one variable less, so we can solve it recursively:

partSol(t, γ1, . . . , γn) =
let
(w1, w

′) = partSol(t, γ1, gcd((γk)k≥2))

(w2, . . . , wn) = partSol(− gcd((γk)k≥2)w
′, γ2, . . . , γn)

in (w1, . . . , wn)

Example We demonstrate the process of eliminating
equations on an example. Consider the translation

�(x, y, z), 2a − b + 3x + 4y + 8z =0 ∧ 5x + 4z ≤2y − b�

To eliminate an equation from the formula and to reduce a
number of output variables, we first invoke eqSyn((x, y, z),
2a − b + 3x + 4y + 8z = 0). It works in two phases. In
the first phase, it computes the linear set describing a set of
solutions of the homogeneous equality 3x + 4y + 8z = 0.
Using the algorithm described in Sect. 6.1.2, it returns:

SL =
⎧
⎨

⎩
λ1

⎛

⎝
4

−3
0

⎞

⎠ + λ2

⎛

⎝
0
2

−1

⎞

⎠

∣
∣
∣
∣
∣
∣
λ1, λ2 ∈ Z

⎫
⎬

⎭

The second phase computes a witness vector w and a pre-
condition formula. Applying the procedure described in
Sect. 6.1.1 results in the vector w = (2a − b, b − 2a, 0)

and the formula 1|2a − b. Finally, we compute the output of
eqSyn applied to 2a − b + 3x + 4y + 8z = 0: it is a triple
consisting of

1. a precondition 1|2a − b
2. a list of terms denoting witnesses for (x, y, z):

�1 = 2a − b + 4λ1

�2 = b − 2a − 3λ1 + 2λ2

�3 = −λ2

3. a list of fresh variables (λ1, λ2).

We then replace each occurrence of x, y and z by the corre-
sponding terms in the rest of the formula. This results in a
new formula 7a − 3b + 13λ1 ≤ 4λ2. It has the same input
variables, but the output variables are now λ1 and λ2. To find
a solution for the initial problem, we let

(preX , (	1,	2)) = �(λ1, λ2), 7a − 3b + 13λ1 ≤ 4λ2�

Since 1|2a −b is a valid formula, we do not add it to the final
precondition. Therefore, the final result has the form

(preX , (2a − b + 4	1, b − 2a − 3	1 + 2	2,−	2))
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6.2 Solving inequality constraints for synthesis

In the following, we assume that all equalities are already
processed and that a formula is a conjunction of inequalities.
Dealing with inequalities in the integer case is similar to the
case of rational arithmetic: we process variables one by one
and proceed further with the resulting formula.

Let x be an output variable that we are processing. Every
conjunct can be rewritten in one of the two following forms:

[Lower Bound] Ai ≤ αi x
[Upper Bound] β j x ≤ B j

As for rational arithmetic, x should be a value which is greater
than all lower bounds and smaller than all upper bounds.
However, this time we also need to enforce that x must be an
integer. Let a = maxi�Ai/αi� and b = min j�B j/β j�. If b
is defined (i.e. at least one upper bound exists), we use b as
the witness for x , otherwise we use a.

The corresponding formula with which we proceed is a
conjunction stating that each lower bound is smaller than
every upper bound:
∧

i, j

�Ai/αi� ≤ �B j/β j� (2)

Because of the division, floor, and ceiling operators, the
above formula is not in integer linear arithmetic. However, in
the absence of output variables, it can be evaluated using stan-
dard programming language constructs. On the other hand, if
the terms Ai and B j contain output variables, we convert the
formula into an equivalent linear integer arithmetic formula
as follows.

With lcm we denote the least common multiple. Let L =
lcmi, j (αi , β j ). We introduce new integer linear arithmetic
terms A′

i = L
αi

Ai and B ′
j = L

β j
B j . Using these terms we

derive an equivalent integer linear arithmetic formula:

�Ai/αi� ≤ �B j/β j� ⇔ �A′
i/L� ≤ �B ′

j/L� ⇔
A′

i

L
≤ B ′

j − B ′
j mod L

L
⇔ B ′

j mod L ≤ B ′
j − A′

i

⇔ B ′
j = L · l j + k j ∧ k j ≤ B ′

j − A′
i

Formula (2) is then equivalent to
∧

j

(B ′
j = L · l j + k j ∧

∧

i

(k j ≤ B ′
j − A′

i ))

We still cannot simply apply the synthesizer on that formula.
Let {1, . . . , J } be a range of j indices. The newly derived
formula contains J equalities and 2 · J new variables. The
process of eliminating equalities as described in Sect. 6.1
will at the end result in a new formula which contains J new
output variables and this way we cannot assure termination.
Therefore, this is not a suitable approach.

However, we observe that the value of k j is always
bounded: k j ∈ {0, . . . , L − 1}. Thus, if the value of k j were
known, we would have a formula with only J new variables
and J additional equations. The equation elimination proce-
dure described before would then result in a formula that has
one variable less than the original starting formula, and that
would guarantee termination of the approach.

Since the value of each k j variable is always bounded,
there are finitely many (J · L) possible instantiations of k j

variables. Therefore, we need to check for each instantiation
of all k j variables whether it leads to a solution. As soon as
a solution is found, we stop and proceed with the obtained
values of output variables. If no solution is found, we raise an
exception, because the original formula has no integer solu-
tion. This leads to a translation schema that contains J · L
conditional expression. In our implementation we generate
this code as a loop with constant bounds.

We finish the description of the synthesizer with an exam-
ple that illustrates the above algorithm.

Example Consider the formula 2y −b ≤ 3x +a ∧2x −
a ≤ 4y+b where x and y are output variables and a and b are
input variables. If the resulting formula �2y − b − a/3� ≤
�4y + a + b/2� has a solution, then the synthesizer emits
the value of x to be �4y + a + b/2�. This newly derived
formula has only one output variable y, but it is not an inte-
ger linear arithmetic formula. It is converted to an equiva-
lent integer linear arithmetic formula (4y + a + b) · 3 =
6l + k ∧ k ≤ 8y + 5a + 5b, which has three variables: y, k
and l. The value of k is bounded: 0 ≤ k ≤ 5, so we treat it
as a parameter. We start with elimination of the equality: it
results in the precondition 6|3a + 3b − k, the list of terms
l = (3a + 3b − k)/6 + 2α, y = α and a new variable:
α. Using this, the inequality becomes k − 5a − 5b ≤ 8α.
Because α is the only output variable, we can compute it
as �(k − 5a − 5b)/8�. The synthesizer finally outputs the
following code, which computes values of the initial output
variables x and y:

val kFound = false
for k = 0 to 5 do {

val v1 = 3 ∗ a + 3 ∗ b − k

if (v1 mod 6 == 0) {

val alpha = ((k − 5 ∗ a − 5 ∗ b)/8).ceiling

val l = (v1 / 6) + 2 ∗ alpha

val y = alpha

val kFound = true
break } }

if (kFound)

val x = ((4 ∗ y + a + b)/2).floor

else
throw new Excep\−tion(‘‘No solution exists’’)

123



Functional synthesis for linear arithmetic and sets 467

The precondition formula is ∃k. 0 ≤ k ≤ 5∧ 6|3a+3b−k,
which our synthesizer emits as a loop that checks 6|3a+3b−k
for k ∈ {0, . . . , 5} and throws an exception if the precondition
is false.

6.3 Disjunctions in Presburger arithmetic

We can again lift synthesis for conjunctions to synthesis for
arbitrary propositional combinations by applying the method
of Sect. 4.4. We also obtain a complexity that is one exponen-
tial higher than the complexity of synthesis from the previous
section. Approaches that avoid disjunctive normal form can
be used in this case as well [17,44,63].

6.4 Optimizations used in the implementation

In this section we describe some optimizations and heuristics
that we use in our implementation. Using some of them, we
obtained a speedup of several orders of magnitude.

Merging inequalities Whenever two inequalities t1 ≤ t2
and t2 ≤ t1 appear in a conjunction, we substitute them with
an equality t1 = t2. This makes the process of variable elim-
ination more efficient.

Heuristic for choosing the right equality for elimination
When there are several equalities in a formula, we choose to
eliminate an equality for which the least common multiple
of all the coefficients is the smallest. We observed that this
reduces the number of integers to iterate over.

Some optimizations on modulo operations When process-
ing inequalities, as described in Sect. 6.2, as soon as we
introduce the modulo operator, we face a potentially longer
processing time. This is because finding the suitable value
of the remainder in equation B ′

j mod L ≤ B ′
j − A′

i requires
invoking a loop. While searching for a witness, we might
need to test all possible L values. Therefore, we try not to
introduce the modulo operator in the first place. This is pos-
sible in several cases. One of them is when either αi = 1 or
b j = 1. In that case, if for example αi = 1, an equivalent
integer arithmetic formula is easily derived:

�Ai/αi� ≤ �B j/β j� ⇔ Ai ≤ �B j/β j� ⇔ β j Ai ≤ B j

Another example where we do not introduce the modulo
operator is when A′

i − B ′
j evaluates to a number N such

that N > L . In that case, it is clear that B ′
j mod L ≤ B ′

j − A′
i

is a valid formula and thus the returned formula is true.
Finally, we describe an optimization that leads to a reduc-

tion in the number of loop executions. This is possible when
there exists an integer N such that B ′

j = N · Tj and L =
N ·L1. (Unless L = β j , this is almost always the case.) In the

case where N exists, then k j also has to be a multiple of N .
Putting this together, an equivalent formula of B ′

j mod L ≤
B ′

j −A′
i is the formula Tj mod L1 = k j ∧ N · k j ≤ B ′

j − A′
i .

This reduces the number of loop iterations by at least a factor
of N .

7 Synthesis algorithm for parameterized Presburger
arithmetic

In addition to handling the case when the specification for-
mula is an integer linear arithmetic formula of both parame-
ters and output variables, we have generalized our synthesizer
to the case when the coefficients of the output variables are
not only integers, but can be any arithmetic expression over
the input variables. This extension allows us to write, e.g. the
offset decomposition program from Sect. 2 with statically
unknown dimensions dimX, dimY, dimZ. As a slightly sim-
pler example, consider the following invocation:

val (valueX, valueY) = choose((x: Int, y: Int) ⇒
(offset == x + dim ∗ y && 0 ≤x && x <dim ))

Here offset and dim are input variables, whereas x and y are
output variables. Note that dim∗y is not a linear term. How-
ever, at run-time we know the exact value of dim, so the term
will become linear. Our synthesizer can handle such cases as
well through a generalization of the algorithm in Sect. 6.

Given the problem above, we first eliminate the equality
offset = x +dim∗ y and we obtain the new problem consist-
ing of two inequalities: dim∗t ≤ offset∧offset−dim+1 ≤
dim ∗ t . The variable t is a freshly introduced integer vari-
able and it is also the only output variable. At this point, the
synthesizer needs to divide a term by the variable dim. In
general it thus needs to generate code that distinguishes the
cases when dim is positive, negative, or zero. In this particular
example, due to the constraint 0 ≤ x < dim, only one case
applies. The synthesizer returns the following precondition:

pre ≡ �(offset − dim + 1)/dim� ≤ �offset/dim�
It can easily be verified that this is a valid formula for all
positive values of dim. The synthesizer also returns the code
that computes the values for x and y:

val t = (offset/dim).floor

val valueY = t

val valueX = offset − dim ∗ t

Our general algorithm for handling parametrized Pres-
burger arithmetic follows the algorithm described in Sect. 6.
The main difference is that instead of manipulating known
integer coefficients, it manipulates arbitrary arithmetic expres-
sions as coefficients. It therefore needs to postpone to run-
time certain decisions that involve coefficients. The key
observation that makes this algorithm possible is that many
compile-time decisions depend not on the particular values

123



468 V. Kuncak et al.

of the coefficients, but only on their sign (positive, negative,
or zero). In the presence of a coefficient that depends on
a parameter, the synthesizer therefore generates code with
multiple branches that cover the different cases of the sign.

As an illustration, consider using synthesis to compute,
when it exists, the positive integer ratio x between two inte-
gers a and b:

val x = choose((x: Int) ⇒a ∗ x == b && x ≥0)

In this example, the synthesizer needs to distinguish
between the cases where a, which is used as a coefficient, is
zero, negative, and positive: when a is zero, it computes as a
precondition

pre0 ≡ b = 0

when a is negative, the precondition is

pre� ≡ −b ≥ 0 ∧ a|b
and similarly, when a is positive

pre⊕ ≡ b ≥ 0 ∧ a|b
In fact, when the positive and negative cases differ only by a
sign, our synthesized factors this out by using the expression
a
|a| for the sign of a (note that since the case where a is zero
is treated before, there is no risk of a division by zero). The
generated code for computing x is

if (a == 0 && b == 0) {

0

} else if(−(a/Math.abs(a)) ∗ b ≥0 && b % a == 0) {

b / a

} else {

throw new Exception(‘‘No solution exists’’)

}

(Note that when both a and b are zero, any value for x is
valid, 0 is just the option picked by the synthesizer.)

The coefficients of the invocation of the extended Euclid-
ean algorithm generally also become known only at run-time,
so the generated code invokes this algorithm as a library func-
tion. The situation is analogous for the gcd function. The
following example illustrates this situation:

choose((x: Int) ⇒6∗x + a∗y = b

On this example, our synthesizer produces the following
code:

if (b % {\ul gcd}(6,a) == 0) {

val t1 = gcd(6,a)

val t2 = −b / t1

val (t3, t4) = coeffs(1, 6/t1, a/t1)

(t2 ∗ t3, t2 ∗ t4)

} else {

throw new Exception(‘‘No solution exists’’)

}

In this code, gcd computes the greatest common divisor,
and (a,b) = coeffs(1,c,d) computes a and b such that a*c +
b*d + 1 == 0 holds. Note that there are no tests on the signs
of a and b, because the precondition and the code are the
same in all cases (we define gcd(x,0) to be x).

Finally, note that the running time of the programs in this
case is not uniform with respect to the values of all param-
eters. In particular, the upper bounds of the generated for
loops in Sect. 6.2 can now be a function of parameters. Nev-
ertheless, for each value of the parameter, the generated code
terminates.

8 Synthesis for sets with size constraints

In this section we define a logic of sets with cardinality con-
straints and describe a synthesis procedure for it. The logic we
consider is BAPA. It supports the standard operators union,
intersection, complement, subset, and equality. In addition,
it supports the size operator on sets, as well as integer linear
arithmetic constraints over these sizes. Its syntax is shown
in Fig. 3. Decision procedures for BAPA were considered in
a number of scenarios [18,33,36,67,68]. As in the previous
sections, we consider the problem (1)

r = choose(x ⇒ F(x, a))

where the components of vectors a, x, r are either set or inte-
ger variables and F is a BAPA formula.

Figure 4 describes our BAPA synthesis procedure that
returns a precondition predicate pre(a) and a solved form
�. The procedure is based on the quantifier elimination algo-
rithm presented in [33], which reduces a BAPA formula to
an equisatisfiable integer linear arithmetic formula. The algo-
rithm eliminates set variables in two phases. In the first phase
all set expressions are rewritten as unions of disjoint Venn
regions. The second phase introduces a fresh integer variable
for the cardinality of each Venn region. It thus reduces the
entire formula to an integer linear arithmetic formula. The
input variables in this integer arithmetic formula are the inte-
ger input variables from the original formula, as well as fresh
integer variables denoting cardinalities of Venn regions of the
input set variables. Note that all values of those input vari-
ables are known from the program. The output variables are
the original integer output variables and freshly introduced
integer variables denoting cardinalities of Venn regions that
are contained in the output set variables.

Fig. 3 A logic of sets and size constraints (BAPA)
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Fig. 4 Algorithm for synthesizing a function � such that F[x :=
�(a)] holds, where F has the syntax of Fig. 3

We can, therefore, build a synthesizer for BAPA on top
of the synthesizer for integer linear arithmetic described in
Sect. 6. The integer arithmetic synthesizer outputs the pre-

condition predicate pre and emits the code for computing
values of the new output variables. The generated code can
use the returned integer values to reconstruct a model for the
original formula. Notice that the precondition predicate pre
will be a Presburger arithmetic formula with the terms built
using the original integer input variables and the cardinali-
ties of Venn regions of the original input set variables. As
an example, if i is an integer input variable and a and b are
set input variables then the precondition predicate might be
the following formula: pre(i, a, b) = |a ∩ b| < i ∧ |a| ≤
|b|.

In the last step of the BAPA synthesis algorithm, when
outputting code, we use functions fresh and take. The
function take takes as arguments an integer k and a set S,
and returns a subset of S of size k. The function fresh(k) is
invoked when k fresh elements need to be generated. These
functions are used only in the code that computes output val-
ues of set variables (the linear integer arithmetic synthesizer
already produces the code to compute the values of integer
output variables). The set-valued output variables are com-
puted one by one. Given an output set variable Yi , the code
that effectively computes the value of Yi is emitted in sev-
eral steps. With Si we denote a set containing set variables
occurring in the original formula whose values are already
known. Initially, Si contains only the input set variables. Our
goal is to describe the construction of Yi in terms of sets that
are already in Si . We start by computing the Venn regions
for Yi and all the sets in Si in order to define Yi as a union
of those Venn regions. Therefore, we are interested only in
those Venn regions that are subset of Yi . Let Tj be one such
a Venn region. It can be represented as Tj = Yi ∩ U j where
U j has a form U j = ∩S∈Si S(c) and S(c) denotes either S or
Sc. On the other hand, Tj can also be represented as a dis-
joint union of the original Ru Venn regions. Those Ru are
Venn regions that were constructed in the beginning of the
algorithm for all input and output set variables. As the linear
integer arithmetic synthesizer outputs the code that computes
the values hu , where hu = |Ru |, we can effectively compute
the size of each Tj . If Tj = Ru1 ∪ . . . ∪ Ruk , then the size of
Tj is |Tj | = d j = ∑k

l=1 hul . Note that d j is easily computed
from the linear integer arithmetic synthesizer and based on
the value of d j we define a set K j as K j = take(d j , U j ).
Finally, we emit the code that defines Yi as a finite union of
K j ’s: Yi = ∪ j K j .

Based of the values of d j , we can introduce further sim-
plifications. If d j = 0, none of elements of U j contributes to
Yi and thus K j = ∅. On the other hand, if d j = |U j |, apply-
ing a simple rule S = take(|S|, S) results in K j = U j . It
is a special case when U j = ∩S∈Si Sc. If in this case it also
holds that d j > 0, we need to take d j elements that are not
contained in any of the already known sets, i.e. we need to
generate fresh d j elements. For this purpose we invoke the
command fresh.
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Partitioning a set We illustrate the BAPA synthesis algo-
rithm through an example. Consider the following invoca-
tion of the choose function that generalizes the example in
Sect. 2.

val (setA, setB) = choose((a: Set[O], b: Set[O]) ⇒
(−maxDiff ≤a.size − b.size && a.size − b.size ≤maxDiff

&& a union b == big\−Set && a intersect b == empty

))

This example combines integer and set variables. Given a
set bigSet, the goal is to divide it into two partitions. The
previously defined integer variable maxDiff specifies the
maximum amount by which the sizes of the two partitions
may differ. We apply the algorithm from Fig. 4 step-by-step
to illustrate how it works. After completing Step 3, we obtain
the formula

F1(hu) ≡ h100 = h110 = h010 = h001 = h111 = 0

∧-maxDiff ≤ h101 − h011 ∧ h101 − h011 ≤ maxDiff

We simplify the formula obtained in Step 4 using the con-
straints from Step 3 and obtain the formula

F2(hu) ≡ |bigSet| = h101 + h011 ∧ |bigSetc| = h000

Now we call the linear arithmetic synthesizer on the formula
F1(hu) ∧ F2(hu). The only two variables whose values we
need to find are h101 and h011. The synthesizer first elimi-
nates the equation |bigSet| = h101 + h011: a fresh new inte-
ger variable k is introduced such that h101 = k and h011 =
|bigSet| − k. This way there is only one output variable: k.
Variable k has to be a solution of the following two inequal-
ities: |bigSet| − maxDiff ≤ 2k ∧ 2k ≤ |bigSet| + maxDiff.
This results in the precondition

pre ≡
⌈ |bigSet| − maxDiff

2

⌉

≤
⌊ |bigSet| + maxDiff

2

⌋

Note that pre is defined entirely in terms of the input vari-
ables and can be easily checked at run-time. The synthesizer
outputs the following code, which computes values for the
output variables:

val k = ((bigSet.size + maxDiff)/2).floor

val h101 = k

val h011 = bigSet.size − k

val setA = take(h101, bigSet)

val setB = take(h011, bigSet −− setA)

In the code above, ‘––’ denotes the set difference operator.
The synthesized code first computes the size k of one of the
partitions, as approximately one half of the size of bigSet.
It then selects k elements from bigSet to form setA, and
selects bigSet.size − k of the remaining elements for
setB.

9 Implementation and experience

Comfusy tool We have implemented our synthesis
procedures as a Scala compiler extension, which we call
Comfusy.1 We chose Scala because it supports higher-order
functions that make the concept of a choose function natu-
ral, and extensible pattern matching in the form of extractors
[13]. Moreover, the compiler supports plugins that work as
additional compilation phases, so our extension is seamlessly
integrated into compilation process (see Fig. 5). We used an
off-the-shelf decision procedure [10] to handle the compile-
time checks (we could, in principle, also use our synthesis
procedure for compile-time checks because synthesis sub-
sumes satisfiability checking).

Our plugin supports the synthesis of integer values through
the choose function constrained by linear arithmetic predi-
cates (including predicates in parameterized linear arithme-
tic), as well as the synthesis of set values constrained by
predicates of the logic described in Sect. 8. Additionally,
it can synthesize code for pattern-matching expressions on
integers such as the ones presented in Sect. 2.

Compilation times Table 1 shows the compile times for
a set of benchmarks, with and without our plugin. Without
the plugin, the code is of no use (the choose function, when
not rewritten, just throws an exception), but the difference
between the timings indicates how much time is spent gen-
erating the synthesized code. We also measure how much
time is used for the compile-time checks for satisfiability
and uniqueness. The examples SecondsToTime, FastExpon-
entiation, SplitBalanced and Coordinates were presented in
Sect. 2. ScaleWeights computes solutions to a puzzle, Prime-
Heuristic contains a long pattern-matching expression where
every pattern is checked for reachability, and SetConstraints
is a variant of SplitBalanced. There is no measurement for
Coordinates with compile-time checks, because the formu-
las to check are in an undecidable fragment, as the original
formula is in parameterized linear arithmetic. We also mea-
sured the times with all benchmarks placed in a single file as
an attempt to balance out the time taken by the Scala com-
piler to start up. Our numbers show that the additional time
required for the code synthesis is minimal. Moreover, note
that the code we tested contained almost exclusively calls to
the synthesizer. The increase in compilation time in practice
would thus be lower for code that mixes standard Scala with
selected choose construct invocations.

Execution times of generated code In our experience, the
execution time of the synthesized code is similar to equiva-
lent hand-written code. Our experience so far was restricted

1 Our implementation source code and binaries are available from
http://lara.epfl.ch/w/comfusy.
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Fig. 5 Interaction of Comfusy
with scalac, the Scala
compiler. Comfusy takes as an
input the abstract syntax tree of
a Scala program and rewrites
calls to choose to syntax trees
representing the synthesized
function

Table 1 Measurement of compile times: without applying synthesis
(scalac), with synthesis but with no call to Z3 (w/plugin) and with
both synthesis and compile-time checks activated (w/ checks)

scalac w/plugin w/checks

SecondsToTime 3.05 3.2 3.25

FastExponentiation 3.1 3.15 3.25

ScaleWeights 3.1 3.4 3.5

PrimeHeuristic 3.1 3.1 3.1

SetConstraints 3.3 3.5 3.5

SplitBalanced 3.3 3.9 4.0

Coordinates 3.2 4.2 –

All 5.75 6.35 6.75

All times are in seconds

to small examples, not because of performance problems but
rather because this is the intended way of using the tool: to
synthesize code blocks as opposed to entire procedures or
algorithms.

Code size An older version of Comfusy generated if-
then-else statements that correspond to large disjunctions that
appear in quantifier elimination algorithms. In certain cases,
this led to formulas of large size. We have improved this by
generating code that executes about as fast but uses a “for”
loop instead of disjunctions. This eliminated the problems
with code size and enabled synthesis for parametric coeffi-
cients, discussed above.

10 Related work

Early work on synthesis [42,43] focused on synthesis using
expressive and undecidable logics, such as first-order logic
and logic containing the induction principle. Consequently,
while it can synthesize interesting programs containing
recursion, it cannot provide completeness and termination
guarantees as synthesis based on decision procedures.

Recent work on synthesis [55] resolves some of these
difficulties by decoupling the problem of inferring program
control structure and the problem of synthesizing the compu-
tation along the control edges. Furthermore, the work lever-
ages verification techniques that use both approximation and
lattice theoretic search along with decision procedures. As
such, it is more ambitious and aims to synthesize entire algo-

rithms. By nature, it cannot be both terminating and com-
plete over the space of all programs that satisfy an input/out-
put specification (thus the approach of specifying program
resource bounds). In contrast, we focus on synthesis of pro-
gram fragments with very specific control structure dictated
by the nature of the decidable logical fragment.

Our work further differs from the past ones in (1) using
decision procedures to guarantee the computation of synthe-
sized functions whenever a synthesized function exists, (2)
bounds on the running times of the synthesis algorithm and
the synthesized code size and running time, and (3) deploy-
ment of synthesis in well-delimited pieces of code of a gen-
eral-purpose programming language.

Program sketching has demonstrated the practicality of
program synthesis by focusing its use on particular domains
[57–59]. The algorithms employed in sketching are typically
focused on appropriately guided search over the syntax tree
of the synthesized program. Search techniques have also been
applied to automatically derived concurrent garbage collec-
tion algorithms [61]. In contrast, our synthesis uses the math-
ematical structure of a decidable theory to explore the space
of all functions that satisfy the specification. This enables
our approach to achieve completeness without putting any
a priori bound on the syntax tree size. Indeed, some of the
algorithms we describe can generate fairly large yet efficient
programs. We expect that our techniques could be fruitfully
integrated into search-based frameworks.

Synthesis of reactive systems generates programs that run
forever and interact with the environment. However, known
complete algorithms for reactive synthesis work with finite-
state systems [50] or timed systems [2]. Such techniques have
applications to control the behavior of hardware and embed-
ded systems or concurrent programs [62]. These techniques
usually take specifications in a fragment of temporal logic
[49] and have resulted in tools that can synthesize useful hard-
ware components [25,28]. Our work examines non-reactive
programs, but supports infinite data without any approxima-
tion, and incorporates the algorithms into a compiler for a
general-purpose programming language.

Computing optimal bounds on the size and running time
of the synthesized code for Presburger arithmetic is beyond
the scope of this paper. Relevant results in the area of decision
procedures are automata-based decision procedures [4,31],
the bounds on quantifier elimination [63] and results on inte-
ger programming in fixed dimensions [14].
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Automata-based decision procedures, such as those imple-
mented in the MONA tool [32] could be used to synthesize
efficient (even if large) code from expressive specifications.
The work on graph types [37] proposes to synthesize fields
given by definitions in monadic second-order logic. Auto-
mata have also been applied to the synthesis of efficient code
for pattern-matching expressions [60].

Synthesis of constraints for rational arithmetic has been
previously applied to automatically construct abstract trans-
fer functions in abstract interpretation of linear constraints
over rationals [40]. Our results apply this technique to inte-
ger linear arithmetic and constraints on sets. More generally,
we observe that such synthesis is useful as a general-purpose
programming construct.

Our approach can be viewed as sharing some of the
goals of partial evaluation [27]. However, we do not need to
employ general-purpose partial evaluation techniques (which
typically provide linear speedup), because we have the
knowledge of a particular decision procedure. We use this
knowledge to devise a synthesis algorithm that, given formula
F , generates the code corresponding to the invocation of this
particular decision procedure. This synthesis process checks
the uniqueness and the existence of the solutions, emitting
appropriate warnings. Moreover, the synthesized code can
have reduced complexity compared with invoking the deci-
sion procedure at run time, especially when the number of
variables to synthesize is bounded.

11 Conclusions

We have presented the general idea of turning decision proce-
dures into synthesis procedures. We have explored in greater
detail how to do this transformation for theories admitting
quantifier elimination, in particular linear arithmetic. Impor-
tant complexity questions arise in synthesis, such as the best
possible size of synthesized code, time to perform synthesis,
and the worst-case running time of the synthesized code over
all inputs. We have also illustrated that synthesis procedures
can be built even for cases for which the underlying parame-
terized satisfiability problem is undecidable (such as integer
multiplication), as long as the problem becomes decidable by
the time the parameters are fixed. We have also transformed
a BAPA decision procedure into a synthesis procedure, illus-
trating in the process how to layer multiple synthesis proce-
dures one on top of the other.

We believe that integer arithmetic and constraints on sets
already make our approach interesting to programmers. The
usefulness of the proposed approach can be further supported
in at least two ways:

1. By developing synthesis procedures for modular (bit-
vector) arithmetic, which faithfully models the machine

representation of integers commonly found in program-
ming languages. Bit-vector arithmetic by virtue of its
reducibility to boolean satisfiability admits quantifier-
elimination, but it is likely such a direct approach would
not be the most productive one. Rather, one should look
into adapting recent automata-theoretic approaches [22]
or techniques for solving quantified bit-vectors formulas
[64].

2. By incorporating synthesis procedures based on addi-
tional decidable constraints over data structures. For
example, more control over the desired solutions for sets
could be provided using decision procedures for ordered
collections that we have recently identified [34]. In the
example of partitioning a set, such support would allow
us to specify that all elements of one partition are smaller
than all elements of the second partition.

Another useful class of data structures are algebraic data
types; synthesis based on algebraic data generalizes pattern
matching on algebraic data types with equality and inequal-
ity constraints. The starting point for such extensions are
decision procedures for algebraic data types and their exten-
sions [7,45,53]. Our approach can also be applied to impera-
tive data structures [37]. This idea would benefit from recent
advances from more efficient decision procedures based on
local theory extensions [24], including [39,65].

Given the range of logics for which we can obtain syn-
thesis procedures, it is important to realize that we can also
combine synthesis procedures similarly to the way in which
we can combine decision procedures. We gave one example
of such combination in this paper, by describing our BAPA
synthesis procedure built on top of a synthesis procedure for
integer arithmetic. Other combination approaches are pos-
sible building on the body of work in decision procedure
combinations [19,65].

We have pointed out that synthesis can be viewed as a pow-
erful programming language extension. Such an extension
can be seamlessly introduced into popular programming lan-
guages as a new kind of expression and a new pattern match-
ing construct. It is our hope that the availability of synthesis
constructs will shift the way we think about program develop-
ment. Program properties and assertions can stop being part
of the dreaded “annotation overhead”, but rather become a
cost-effective way to build programs with the desired func-
tionality.
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