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Abstract It is known that the number of limiting
nutrients may affect the species richness of plant
communities, but it is unclear whether the type of
nutrient limitation is also important. I place the results
from a study in Patagonia (elsewhere in this issue) in the
context of the number and types of nutrients that are
limiting. I present four mechanisms through which N or
P limitation may potentially influence species richness.
These mechanisms are related to: (i) the number of
forms in which P or N are present in soil and the plant
traits needed to acquire them, (ii) the mechanisms and
traits that control species competition and coexistence
under N or P limitation, (iii) the regional species pools
of plants capable of growing under N- and P-limited
conditions, and (iv) the interaction between the type of
nutrient limitation and community productivity. It
appears likely that P limitation can favour a higher
species richness than N limitation, in at least in a variety
of low productive plant communities, but evidence to
support this conclusion is so far lacking. The four
mechanisms proposed here offer a framework for
exploring whether the type of nutrient limitation per
se, or an interaction with productivity, is a potential
driver for variation in species diversity.
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Species richness of plant communities under N
or P limitation

The species composition of plant communities when
nitrogen (N) is the limiting nutrient is very different
from that when phosphorus (P) is the limiting nutrient,
even when the total productivity of the vegetation is
identical. These different species compositions became
very obvious in long-term fertilization experiments such
as Park Grass (Tilman 1982), Rengen (Chytry et al.
2009), or Černíkovice (Honsova et al. 2007), where
different grass species were found to dominate under N
and P limitation, and legumes were more abundant
under N limitation. From a biodiversity point of view,
it is an interesting question whether the type of
limitation also influences how many species may
coexist and, if so, through what mechanisms? In
fertilization experiments, both the addition of N and
P can reduce species richness (Gough et al. 2000), but
this is predominantly due to negative effects of higher
biomass and more intense competition for light (Aerts
et al. 2003; Beltman et al. 2007; Goldberg and Miller
1990). To evaluate whether the type of nutrient
limitation influences species richness of plant commu-
nities, species richness in the field has been correlated
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with some measure of the relative availabilities of N
and P. One of the measures commonly used in these
studies has been the ratio of N:P in the aboveground
vegetation. When experimentally calibrated for the
type of vegetation, this ratio can be used as an
estimator of the type of nutrient limitation (Güsewell
2004; Koerselman and Meuleman 1996; Olde Venterink
et al. 2003; Cech et al. 2008).

In this issue of Plant and Soil, Blanck et al. (2011)
show that total plant species richness in matorral
shrub-lands in Patagonia, Argentina, decreases with
increasing P availability, as indicated not only by
concentrations of P in the soil but also by N:P ratios
and P concentrations in the leaves of the common
shrub Berberis buxifolia. These correlations with
species richness are consistent with data from other
studies. Thus, negative relationships with soil P
have been reported from ecosystems in Australia
(Lambers et al. 2010), Costa Rica (Huston 1980),
Brazilian Cerrado (L. Lannes, unpublished data), and
European grasslands (Janssens et al. 1998; Olde
Venterink et al. 2001b), while positive correlations
have been found with N:P in the vegetation for the
Brazilian Cerrado (L. Lannes, unpublished data).
However, other studies—mainly in grassland and
wetland vegetation in Europe and North America—
have shown a unimodal relationships, with species
richness peaking at intermediate N:P ratios, and
negative relationships have also been reported
(Güsewell et al. 2005; Roem and Berendse 2000;
Wassen et al. 2005). A meta-analysis would be very
useful to evaluate whether differences in the ranges
in N:P ratio and/or species richness of the different
studies match each other (see below), or whether
there is a general difference in species richness-N:P
ratio patterns between old weathered soils and
younger soils (Hopper 2009).

The unimodal relationship between species diver-
sity and N:P ratios reported in some studies is
consistent with the resource balance hypothesis,
which predicts that species diversity will be highest
at intermediate N:P ratios (Braakhekke and Hooftman
1999; Daufresne and Hedin 2005; Cardinale et al.
2009). The rationale for this hypothesis is that if
community biomass production is limited by several
resources, growth of individual species may be
limited by different resources, and the species will
therefore not exclude each other (Tilman 1982). This
mechanism is likely to be more relevant for aquatic

ecosystems, where nutrients are well mixed, than for
plants growing in soil, where nutrients are distributed
heterogeneously (Huston and DeAngelis 1994);
however, there is some evidence that it does apply
also in terrestrial ecosystems (Harpole and Tilman
2007; Roem et al. 2002). In their study, Blanck et al.
(2011) found that the N:P ratio in leaves of the shrub
Berberis buxifolia ranged between 4–25 on molar
base which corresponds to c. 2–12 on mass base.
Despite this wide range in N:P ratios, they conclude
that all their plots were probably N-limited. Although
one should be careful to translate N:P ratios of a
single species to that of the entire vegetation
(Güsewell and Koerselman 2002), these low N:P
ratios suggest to me that the pattern of increasing
species richness with increasing N:P ratios, in fact,
reflects a gradient from severe N-limitation towards
N-P co-limitation (Güsewell 2004; Koerselman and
Meuleman 1996; Olde Venterink et al. 2003; Cech et
al. 2008), and hence would be consistent with the
resource-balance hypothesis. However, the observed
difference in species richness (c. 7 species) appears
rather high if it is due only to the transition from one
limiting nutrient to two limiting nutrients (Harpole
and Tilman 2007).

Species richness patterns in relation to the type of
nutrient limitation can be studied at different spatial
scales and in different types of landscapes. The papers
cited above, including (Blanck et al. 2011), are
examples of studies performed at a local or regional
scale. Furthermore, the study site of Blanck et al. in
Patagonia is an example of a relatively young, often
disturbed, fertile landscape (YODFEL; Hopper 2009).
On a global scale, however, the most species-rich
biomes—classified as ‘biodiversity hotspots’ and
typically with many endemic species—occur mainly
in old, climatically buffered, infertile landscapes
(OCBILs) such as south-western Australia (Fig. 1a),
the Cape Province in South Africa, and parts of
tropical South America (Fig. 1b) (Hopper 2009;
Myers et al. 2000). Lambers et al. (2010; 2008)
suggested that in these old landscapes the vegetation
is more likely to be P-limited, which could partly
explain their high species richness (see below). If so—
and more fertilization experiments are still needed to
demonstrate this—conservation managers should
assess not only the threat to these communities posed
by N enrichment, as done by Phoenix et al. (2006), but
also that posed by P enrichment.
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How to explain differences in species richness
under N or P limitation?

Below, I describe four mechanisms by which the
identity of the limiting nutrient(s) could affect species
richness. These mechanisms are related to: (i) the
number of forms in which P or N are present in soil
and the number of plant traits to acquire them, (ii) the
mechanisms and traits that control species competi-
tion and coexistence under N or P limitation, (iii) the
sizes of regional species pools for N- or P-limited
conditions, and (iv) the interaction between the type
of nutrient limitation and community productivity.
One or more of these might potentially explain why in
particular P-limited conditions enable more species to
co-exist than N-limited conditions, or vice versa. I

present these mechanisms to stimulate research to
gain evidence for one or more of these mechanisms to
support a higher species richness under either P or N
limitation, and under which environmental conditions
this may occur. These mechanisms are related to each
other, either directly or through evolution, as illus-
trated in Fig. 2. Evolutionary relationships occur
when related species possess plant traits enabling
them to utilise particular forms of N and P, and may
lead to regional pools of species with adaptations to N
or P limitation.

(i) Numbers of forms of N and P in the soil and
variation in plant traits to acquire them.
McKane et al. (2002) showed that different plant
species in the arctic Tundra use different forms of
N, and that the most abundant species also use
the most abundant N forms. Such niche differ-
entiation of species with respect to N forms was
also demonstrated for some grasslands (Kahmen
et al. 2006; Weigelt et al. 2005). Likewise,
Turner (2008) hypothesized that different forms
of P in soil also facilitate niche differentiation
and coexistence of different species. It is only a
small step further to suggest that the nutrient that
has the highest variety of forms also facilitates
the highest number of coexisting species. Both N
and P can occur in a variety of inorganic and
organic forms in soil. At any particular site, the
number of forms is likely to depend upon rock
type, history, and environmental conditions. I
expect that in many environments the number of
P forms will exceed the number of N forms,
because of the large potential variety of chemical
P complexes with, e.g., Ca, Mg, Fe, and Al
compounds, as well as organic compounds as P-
monoesters, P-diesters, phosphonates, and poly-
phosphates (cf. Turner 2008). However, this
assumption remains to be rigorously tested.

Exploiting the different forms of N and P in
the soil requires different plant traits, including
root morphological traits and physiological traits
such as exudation of various organic acids and
enzymes (see review of Richardson et al.
(2009)). Lambers et al. (2008) showed that plant
traits and strategies to acquire N and P change
with soil age, with fast-growing nonmycorrhizal
plants and plants with arbuscular mycorrhizal
associations at the youngest soils to plants with

Fig. 1 Two examples of exceptionally species rich plant
communities: a Kwongan vegetation in South West Australia
(photograph Etienne Laliberté) and b Cerrado vegetation in
Central Brazil (photograph Luciola Lannes). Both plant
communities occur on old, climatically buffered, infertile
landscapes under presumably P limited conditions
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cluster roots on the oldest soils. Just as for the
number of forms in which N or P occurs in
soil, it is unlikely that the numbers of traits to
acquire N or P are identical. Instead, more
traits and strategies have probably evolved for
the nutrient that occurs in the largest variety of
forms, especially if most forms are not readily
available to most plants (cf. Turner 2008).
From this, I would predict a greater diversity of
uptake mechanisms for P than for N, though this
assumption requires to be confirmed with data.

(ii) Traits influencing competition and coexistence.
An important process in plant competition is
resource pre-emption. In the case of competition
for nutrients, the superior competitor will acquire
a resource from the rhizosphere more rapidly than
its competing neighbours, and the total root
length of the competing plants is the decisive
trait to enable this (Craine et al. 2005). Indeed,
Olde Venterink and Güsewell (2010) recently
demonstrated that this pre-emption competition
mechanism was supported for two competing
grass species under N limitation, but not under P
limitation. Under P-limitation, traits other than
root length, such as root phosphatase activity
and root mortality appeared to be more important
for the outcome of competition for these two

grasses. These results fit well with other studies
indicating that N limitation favours plants with a
high biomass investment in roots and root length,
and a high photosynthetic activity, growth rate and
nitrogen productivity, in contrast, to P limitation
where investments in P acquisition and storage, a
long leaf life span, defences against herbivores,
reduction of nutrient losses, and high nutrient-
resorption efficiency are more decisive (Güsewell
2005a, b; Güsewell et al. 2003; Harrington et al.
2001; Lambers et al. 2010; Lambers et al. 2008;
Treseder and Vitousek 2001). These different sets
of traits favoured under N or P limitation could
imply that belowground competition for nutrient
acquisition may be less important under P limita-
tion than under N limitation. The variety of
mechanisms to avoid P losses or otherwise
enhance P-use-efficiency may potentially act as
fitness equalizing processes that might enhance the
number of species that can potentially co-exist.
Further research is needed to improve our under-
standing of the importance of plant traits for
species competition under P and N limitation,
and how these influence species richness.

(iii) Species-pool effects. The size of the regional
species pool is a measure for comparing species
richness among regions at a global scale, and

Fig. 2 Conceptual representation of how the type of limiting
nutrient (e.g. N or P) can influence species richness on a
regional scale (species pools) and local species richness.
Dashed lines indicate evolutionary influences and solid lines
direct influences in e.g. a local plant community; see text for

explanation. The basic concept how environmental conditions
(such as the type of nutrient limitation) influence local species
richness through their effect on the species pool and through
community biomass production follows Gough et al. (1994)
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also an important control upon species richness
at a local scale (Pärtel et al. 1996; Huston 1999).
The size of the species pool is thought to be
affected by the historical opportunities for speci-
ation, with higher species numbers under con-
ditions that were formerly widespread (Zobel
1992). If N limitation was common in the
relatively young, often disturbed, fertile land-
scapes (YODFELs) that are widespread in, but
not restricted to, the Northern hemisphere, we
would expect this to be reflected in a large pool
of species adapted to these conditions. In
contrast, if P limitation is associated with old,
climatically buffered, infertile landscapes
(OCBILs) (Hopper 2009; Lambers et al. 2008;
Reich and Oleksyn 2004; Vitousek and Howarth
1991), we would expect the largest regional
species pool under P limitation in the OCBILs.
Güsewell et al. (2005) found that the regional
species pool of European wetlands—i.e., an

example of YODFELs—was indeed higher
under N limitation than under P limitation. Such
species pool effects could potentially explain the
decreasing or unimodal relationships between
local species richness and vegetation N:P ratio in
YODFELs, and increasing relationships in
OCBILs (see above). The results from the
Patagonian site (a YODFEL) of Blanck et al.
(2011) would fit as part of the upward slope of a
unimodal pattern between richness and N:P ratio,
which corresponds with the very low range of N:
P ratios they observed (2–12 on mass base).

(iv) Interactions with vegetation productivity. Produc-
tivity is an important controlling factor for species
richness, and the type of nutrient limitation and
the N:P ratio in the vegetation correlate with the
biomass production of the vegetation (see Fig. 3).
According to the concept presented in Fig. 3c,
diversity-productivity curves might differ under N
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Fig. 3 Conceptual representation of how species richness-
productivity patterns can be differentiated for plant communi-
ties that are growth limited by different nutrients (L1, L2).
Panel B shows the hump shaped relationship observed in
comprehensive field studies in wetlands in Canada, Europe and
Siberia, which indicated that the line should be considered as
the envelope enfolding a cloud of points (Grace 1999; Moore
and Keddy 1989; Olde Venterink et al. 2003; Vasander 1982;
Wassen et al. 2005; Wheeler and Shaw 1991). Hence maximum
richness, and maximum variation in richness, are found at
intermediate productivity. Panel C shows a possible differenti-
ation because of variation in productivity levels ranges between

communities growth-limited by different nutrients, supported
with data (Olde Venterink et al. 2003; Wassen et al. 2005) (see
text). Panel D shows a possible differentiation because of
maximum species richness ranges, as a consequence of
variation in regional species pool sizes under growth limitation
by different nutrients (following Huston (1999)). 1=relation-
ship between productivity and species richness, 2=effect of the
kind of nutrient limitation on productivity, 3=effect of kind of
nutrient limitation on species richness. The dashed arrows
indicate possible effects of a shift from one limiting nutrient to
another (Figure adjusted from Olde Venterink (2000))
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and P limitation because of differences in produc-
tivity (i.e. variation on the x-axis). This postulate
is supported by data from wetlands in Europe and
Siberia, where maximum aboveground biomass
(c. 1000 g m2) under P limitation (vegetation N:P
ratio >16) was much lower than maximum
aboveground biomass (c. 2800 g m2) under N
limitation (vegetation N:P ratio <13.5) (Wassen
et al. 2005). Although there is a pattern of
decreasing N:P ratio with increasing productivity
(Güsewell 2004, Wassen et al. 2005), which is
consistent with the growth rate hypothesis (Elser
et al. 2003), calibrations with fertilization experi-
ments show that the N:P ratio can be used to
predict the type of nutrient limitation up to an
aboveground biomass of 1500 g m2 (Olde
Venterink et al. 2001a, b; 2003); hence a biomass
clearly higher than the maximum biomass ob-
served under P limitation by Wassen et al. (2005).
Moreover, regression analysis using data for
European and Siberian wetlands suggests that
the diversity-productivity curve under P limitation
is much narrower under P limitation than under N
limitation (Wassen et al. 2005), just as hypothe-
sized in Fig. 3c. This indicates (for these Eurasian
wetlands, at least) that under intermediate to high
productivity a higher species richness can be
achieved under N limitation than under P-
limitation (see dashed arrow in Fig. 3c). Further
research is needed to investigate whether this
pattern (Fig. 3c) also occurs in other areas and
biomes, and about the mechanism(s) that might be
responsible. The negative slope of Fig. 3b is
usually explained through competitive exclusion
for light (Grime 1979; Huston 1999; Hautier et al.
2009; but see also Dickson and Foster 2011). If
this explanation is also valid for the two negative
slopes in Fig. 3c - with the slope for P being much
steeper than that for N (L2 vs. L1, respectively)—
then we might conclude that species competition
for light occurs across a narrower biomass range
but is more intense under P than under N
limitation. This hypothesis based upon Fig. 3c
would be worth testing experimentally.

Furthermore, Huston (1999) predicted that the
influence of regional species pool sizes on local
species richness is related to productivity and
disturbance; applying this idea to different growth
limiting nutrients yields the patterns visualized in

Fig. 3d. Environmental factors as acidity, salinity
of flooding can influence species richness—
productivity patterns as illustrated in Fig. 3d
(Grime 1979; Gough et al. 1994; Grace 1999),
whether the type of nutrient limitation has a
similar effect depends partly on whether regional
species pool sizes differ between limiting
nutrients (mechanism iii).

The patterns in Fig. 3c and d clearly illustrate
that if a diversity-productivity pattern as illus-
trated in Fig. 3b hides different relationships for
N or P limited conditions, a shift from one
limiting nutrient to another can have severe
effects on local species richness (Huston 1999;
Olde Venterink et al. 2003).

Does P-limitation promote a higher species
richness than N-limitation?

It is not unlikely that mechanisms i and ii might
promote a higher species richness under P limitation
than under N limitation, but the evidence for this still
has to be provided (see above). However, interactions
with productivity (mechanism iv), and evolutionary
aspects (mechanism iii), suggest that if P limitation
promotes a higher species richness it will be restricted
to plant communities of low productivity, and more
likely to occur in landscapes with ancient soils
(OCBILs) than in those with young soils (YODFILs).
Nevertheless, even in biomes where maximum spe-
cies richness is the same under N or P limitation,
endangered species may persist better under P-limited
conditions, as was demonstrated for European mead-
ows and fens (Olde Venterink et al. 2003; Wassen et
al. 2005). This observation, as well as the supposed
higher species richness under NP co-limitation than
under conditions where just one nutrient is limiting
(resource balance hypothesis; Braakhekke & Hooftman
1999; Harpole and Tilman 2007), provokes the
question of whether it might be possible to promote
species richness in N-limited sites by fertilizing them
with N to produce conditions of P limitation or NP co-
limitation (see Aerts et al. 2003; Güsewell et al. 2005).
However, this idea is to be rejected; many studies show
that species richness declines after N enrichment—
whether from fertilizer or atmospheric deposition—and
rare species tend to be replaced by common ones (Bai
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et al. 2010; Bobbink et al. 2010; Clark et al. 2007;
Stevens et al. 2010; Suding et al. 2005). By far the best
way to conserve species in plant communities under P
limitation is to prevent enrichment of both N and P. But
this requires an understanding of the major biogeo-
chemical processes affecting the availabilities and
stoichiometry of these nutrients, and also of the
influence of management (Cech et al. 2008; Olde
Venterink et al. 2006; 2009). For instance, re-wetting
of drained wetlands in order to reduce N mineralization
rates and N availability may cause a strong P release
and a strong negative effect on species diversity (Olde
Venterink et al. 2002; Smolders et al. 2008; Van Dijk et
al. 2007; Zak and Gelbrecht 2007).

Despite a long tradition of research on plant
species richness in relation to nutrient availability
and productivity, this commentary illustrates that
much about these relationships is still unclear,
particularly when comparing N-limited with P-
limited conditions. The four mechanisms presented
above, by which the identity of the limiting nutrient
(N or P) can potentially affect species richness, are
intended as challenges for future research. More
information is required about the forms of N and P
under different conditions, as well as about the plant
traits and mechanisms needed to acquire these
nutrients. We also need a better understanding of
the mechanism of species competition under P
limitation: which plant traits are decisive, and do
these traits enable a greater species diversity than
the set of decisive traits under N-limitation?
Furthermore, hardly any data are available on
regional species pool sizes of species adapted to
N-limited or P limited condition in biomes with
different geological and evolutionary histories.
Finally, we need to understand better how the type of
nutrient limitation might interact with species richness–
productivity patterns, and the mechanisms behind these
patterns. To start with, more studies like that of Blanck
et al. (2011) are needed to provide the material for
future meta-analyses.
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