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Abstract In this paper we deal with a probabilistic extension of the minimum power
multicast (MPM) problem for wireless networks. The deterministic MPM problem
consists in assigning transmission powers to the nodes, so that a multihop connection
can be established between a source and a given set of destination nodes and the total
power required is minimized. We present an extension to the basic problem, where
node failure probabilities for the transmission are explicitly considered. This model
reflects the necessity of taking uncertainty into account in the availability of the hosts.
The novelty of the probabilistic minimum power multicast (PMPM) problem treated
in this paper consists in the minimization of the assigned transmission powers, im-
posing at the same time a global reliability level to the solution network. An integer
linear programming formulation for the PMPM problem is presented. Furthermore,
an exact algorithm based on an iterative row and column generation procedure, as
well as a heuristic method are proposed. Computational experiments are finally pre-
sented.

Keywords Minimum power multicasting · Probabilistic mathematical models ·
Multihop networks

1 Introduction

A multihop wireless network is a collection of wireless devices that communicate
without using any wired infrastructure. Even though each device has a limited trans-
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mission range, global connectivity may be ensured by using multihop wireless links.
Originally, the multihop networks were proposed for military applications in the bat-
tlefield. However, their employment has been extended to cover many fields such
as emergency operations, healthcare, large events organization (sporting or confer-
ences), city logistics, etc. The size of the adopted wireless networks depends mainly
on the kind of the applications. It can reach hundreds of nodes, but currently it varies
typically between about ten and fifty nodes (see also [20]). Because of these and
other potential applications, the interest in multihop wireless networks has recently
increased, generating several research challenges (see for example [1, 14]). Since
the devices are usually characterized by limited resources (batteries), energy-aware
communication becomes of crucial importance for the network functionality.

In this paper we focus on the problem of minimizing the power required to connect
a source device to a set of hosts. This optimization problem, which is at present an
intensive topic of study, is known as the minimum power multicast (MPM) problem.
Indeed, significant effort is being done for modeling and solving the MPM and, even
more intensively, its particular variant the minimum power broadcast (MPB) problem
(see [6, 8, 16, 18]). A detailed review on exact and heuristic methods to solve both
problems can be found in the recent surveys [10, 14].

All the above works assume a deterministic behavior of the transmitting devices.
In reality it has to be expected that the terminals can be affected by temporary dam-
age or permanent failure. Therefore it is reasonable to extend the deterministic case
to a probabilistic formulation that takes into account the uncertain nature of node
availability. It will be soon clear that this extension introduces an extra layer of com-
plexity to the problem. However, the advances in heuristic and exact algorithms for
the MPM, lead, in our opinion, to the opportunity of studying more realistic, although
more complex, models of the problem, as the one we propose in this paper.

The novelty of our contribution consists in dealing with a probabilistic version of
the MPM (PMPM) by explicitly considering a probabilistic availability of the hosts.
We suppose that each device has a given probability of failure, due to temporary
damage or battery depletion, and we impose that connectivity should be guaranteed
with a given level of reliability. The resulting mathematical formulation lies into the
class of probabilistic integer programming model for which we propose an original
specialized exact solution approach.

It is trivial to see that PMPM is an NP-hard problem: the deterministic MPM prob-
lem, which is known to be NP-complete (see [4, 13]), is a special case of problem
PMPM. More precisely, a PMPM instance reduces to an MPM problem if the proba-
bility of failure related to each node is set to zero (see also [3, 7, 21]).

The sequel of the paper is organized as follows. This Introduction will include
the literature review. In Sect. 2 we give the problem definition. In Sect. 3 our proba-
bilistic mathematical model for the PMPM is illustrated. In Sect. 4 our exact solution
approach is described. Section 5 is dedicated to the discussion of the computational
results, and finally in Sect. 6 our heuristic method is presented.

1.1 Related works

To the best of our knowledge in the literature there is no work that proposes mathe-
matical formulations or exact methods to solve the PMPM problem. Moreover, even
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its deterministic variant, i.e. MPM, has received less attention than what one may ex-
pect. Indeed, while many heuristic and approximation algorithms are so far available
to solve the MPM (see the surveys of [10, 15] and the references therein), we are
aware of only few contributions dealing with its exact solution. The first is [12], due
to Leino, who proposed an integer formulation and sketched a general scheme based
on a cutting plane algorithm for its solution. The second formulation, proposed by
Guo and Yang in [9], is a flow-based mixed integer model. The most recent work is
[11], due to Leggieri et al., who proposed a set covering-based formulation for the
MPM problem, and presented two specialized algorithms for its solution.

In addition to these original MPM formulations some new models could be ob-
tained, according to [10], by modifying existent formulations that were proposed
for the MPB problem. Among the contributions available in this context we cite the
multi-commodity flow model proposed by Yuan in [23].

Considering the probabilistic aspect of the PMPM problem, we can claim with cer-
tainty that the literature is extremely poor in the case of broadcasting and inexistent in
the case of multicasting. Specifically, the only work dealing with power management
in random settings is [19], due to Montemanni et al., and proposes three novel mixed
integer formulations for a version of the MPB problem where a failure probability
is associated with each node, but the objective is different from the one considered
in the present work: it is to find a broadcasting structure such that each node is con-
nected to the root and on each of the paths in the solution the reliability level is higher
than a given threshold.

For the sake of completeness we shall note that there are other aspects of random-
ness that have been studied in the context of mobile networks but that do not fall
into the framework of topology optimization. Examples of these aspects include the
randomness related to the links failure due to mobility [5] and a statistical analysis
for the broadcast problem under Byzantine failures [2].

2 Problem definition

A network of wireless devices can be modeled mathematically as a directed complete
graph G = (V ,A), where the elements of the set V are the devices and those of A are
all the possible connections between pairs of devices. We denote by n the cardinality
of the set V and we suppose that n ≥ 3. We select a node s to be the source of the
communication and a subset R of V that contains all nodes that are supposed to be
reached by the signal generated in s. Let r be the cardinality of set R.

Each node i ∈ V can receive data from other nodes of the network and send data
to any node in its transmission range. With each arc (i, j) ∈ A we associate the min-
imum amount pij of power that must be assigned to node i in order to establish a
direct communication with node j .

The MPM problem consists in defining the so called range assignment function
ρ, which assigns to each node i ∈ V a transmitting power ρ(i)

ρ : V → R
+, i �→ ρ(i)
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minimizing the sum:
∑

i∈V

ρ(i),

so that it is ensured a connection between s and each destination d ∈ R. In estab-
lishing such a connection one can exploit the so-called wireless multicast advantage
(WMA), a fundamental property of the wireless networks (see [22]). The WMA prop-
erty simply consists in the following: since the devices are equipped with omnidirec-
tional antennas, all the nodes that are within the transmission range of a transmitting
node receive the signal. Therefore several nodes can be covered and reached at the
same time using a single transmission.

The probabilistic aspect of our problem lies in the fact that each node i ∈ V is
available with a given probability qi . We assume that the probabilities qi are inde-
pendent from each other and that for each node i ∈ R ∪ {s} it holds qi = 1. Typically
the value of qi will depend on the characteristics of both the node and the area where
it is deployed. For example a node i positioned in a dangerous region or in an imper-
vious territory will be assigned a small value of qi .

Whenever a node i with qi �= 1 is involved in the routing of a message between
the source s and a destination, the correct reception of the communication depends
on the availability of node i at the moment of the transmission. In order to ensure a
certain quality of service, we impose in the model that the message is received by all
the destinations with a given reliability.

As a consequence, the PMPM problem consists in defining a range assignment
function in such a way that s is connected with all the destinations in R with a prob-
ability greater than a given reliability threshold α ∈ ]0,1[. The objective function to
be minimized is still

∑
i∈V ρ(i), that is the total assigned transmission power, but in

addition a reliability constraint is also imposed.

3 Mathematical formulation

Our approach consists in formulating the PMPM problem as an integer linear pro-
gramming (ILP) model.

The powers pij (with (i, j) ∈ A) can be used to order the arcs outgoing from each
node. Indeed, for each node i ∈ V , we sort all arcs (i, j) ∈ A outgoing from i in a
non-decreasing order with respect to the pij values. For each subset K of the set
of nodes V , we denote by b(i,K) the first arc of the ordering relative to i that is
incoming in a node of K , so that we can introduce the subset B of A as follows:

B := {b(i,V ) ∈ A : i ∈ V }.

B contains the arcs connecting each node with its closest neighbor. Furthermore, for
every arc (i, j) ∈ A \ B we denote by a(i, j) the ancestor of arc (i, j), that is the arc
that immediately precedes (i, j) in the ordering with respect to i.
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Using the above notation, the incremental cost cij associated with each arc
(i, j) ∈ A is defined in the following way:

cij :=
{

pij if (i, j) ∈ B,
pij − pa(i,j) otherwise.

In order to formulate the PMPM problem, it is convenient to introduce binary
variables yij associated with the arcs. In particular, for each arc (i, j) ∈ A the variable
yij has the following interpretation:

yij :=
{

1 if pij ≤ ρ(i),
0 otherwise

that is, yij = 1 if the node i is assigned enough power to reach at least node j . In this
case we say that the arc (i, j) is active.

Since we want to minimize the power to be assigned to the nodes of the network
in order to connect the source to the destinations, we notice that the range assignment
function evaluated in each node i shall assume a value of either zero or exactly pij

for some j ∈ V . Therefore, it is easy to verify that

min
∑

(i,j)∈A

cij yij = min
∑

i∈V

ρ(i).

In the sequel, we will formulate the objective function of the PMPM problem by
means of the y variables and we will refer to the subgraph induced by the arcs (i, j)

such that yij = 1 as a solution y.
In view of the WMA property, if an arc (i, j) ∈ A \ B is active in the communi-

cation then its ancestor a(i, j) is active too and this property can be modeled by the
constraint:

yij ≤ ya(i,j) ∀(i, j) ∈ A \ B.

Denoting by δ+(S) the set of arcs (i, j) ∈ A with i ∈ S and j ∈ V \S, it is possible
to formulate the deterministic MPM problem with a directed cut based formulation
as follows (see [18]):

F min
∑

(i,j)∈A

cij yij

s.t. yij ≤ ya(i,j) ∀(i, j) ∈ A \ B, (1)
∑

(i,j)∈δ+(S)

yij ≥ 1 ∀S ⊆ V : s ∈ S, (V \ S) ∩ R �= ∅, (2)

yij ∈ {0,1} ∀(i, j) ∈ A. (3)

Constraints (1) guarantee the fulfillment of the WMA property while con-
straints (2) guarantee that there exists a path from s to any destination in any feasible
solution.
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Because of the WMA property, it is possible to substitute constraints (2) with
constraints

∑

i∈S

yb(i,V \S) ≥ 1 ∀S ⊆ V : s ∈ S, (V \ S) ∩ R �= ∅. (4)

Indeed, it is easy to observe that if variable yik = 1 for a given i ∈ S and k ∈ V \ S,
then, by constraints (3), for any other node j ∈ V \ S such that pij ≤ pik it holds
that yij = 1 and in particular yb(i,V \S) = 1. In other words, for any node i ∈ S it
suffices to consider only the arcs b(i,V \ S) in order to express the connectivity
requirement. On one side, substituting constraints (2) with constraints (4) does not
modify the set of the integer feasible solutions of the problem, on the other if we
consider the linear programming (LP) relaxations, using constraints (4) strengthens
the LP relaxation of F . Indeed, if we suppose that ȳ is a feasible solution of the
LP relaxation of F with constraints (4) instead of constraints (2), then ȳ fulfills the
inequalities

∑
(i,j)∈δ+(S) ȳij ≥ ∑

i∈S ȳb(i,V \S) ≥ 1 for all the subsets S of V such that
s ∈ S and (V \ S) ∩ R �= ∅.

In order to take into account the probabilistic nature of the problem PMPM we
need to introduce additional notation to the formulation F of the deterministic prob-
lem MPM. Due to the fact that each node i /∈ R ∪ {s} has a probability qi of being
available, in any realization (network scenario) only a given subset Cl of the devices
can be considered to work. Since we assume that qi = 1 for each i ∈ R, it follows
that for each subset Cl it holds that R ⊆ Cl . We enumerate the family of all such
subsets as the collection {Cl}l∈{1,...,N}, where N := 2n−r−1. In the remainder of the
paper we will refer to any of the N possible network scenarios as a configuration,
denoted either by Cl or simply by its corresponding index l. It is easy to see that the
probability of realization of a given configuration l is expressed as:

Ql :=
∏

i∈Cl

qi ·
∏

i /∈Cl

(1 − qi). (5)

Configurations are at the basis of the model we propose to calculate the probability
associated with a given topology. In order to calculate the reliability of a solution y its
connectivity state on each configuration l has to be assessed. We say that solution y is
connective on configuration l, if the active arcs outgoing from the nodes of Cl contain
an arborescence rooted at s and spanning all the destinations d ∈ R. To express this
feature we associate with each configuration l ∈ {1, . . . ,N} a binary variable vl with
the following meaning:

vl :=
{

0 if solution y is connective on configuration l,
1 otherwise.

(6)

For a given configuration l and for each set S ⊆ Cl containing the source s and
such that Cl \ S contains at least one destination, we must have that either solution y

is not connective on configuration l (i.e. vl = 1) or the cut constraint associated with
S is satisfied by y. In other words, solution y should satisfy:

∑

i∈S

yb(i,Cl\S) + vl ≥ 1.
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Hence, taking into account all the configurations and all subsets S, the PMPM model
should require the fulfillment of the following connectivity constraints:

∑

i∈S

yb(i,Cl\S) + vl ≥ 1 ∀l ∈ {1, . . . ,N}, ∀S ⊆ Cl : s ∈ S, (Cl \ S) ∩ R �= ∅.

The number of connectivity constraints is very large. It can be verified that their
number increases exponentially with n and amounts to:

L = 3n−1 · 2r − 1

3r
.

However, it is interesting to observe that for a given n, as the number of destinations
grows, L decreases exponentially from a maximum of 3n−2 (in the unicast case r = 1)
to a minimum of 2n−1 − 1 (in the broadcast case r = n − 1). The reason is that the
number of configurations depends on the number of transition nodes (belonging to
V \ (R ∪ {s})) and it decreases when the set of destinations R is large.

The PMPM problem requires a solution with a reliability greater than or equal
to a given threshold α. The reliability of a solution y can be defined as the value∑

l∈J Ql where J is the set of all the configurations on which y is connective. In
order to fulfill the reliability constraint, we should either require that

∑
l∈J Ql > α or,

considering the probability of the complementary event (the probability of realization
of configurations on which y is not connective), we impose the constraint

N∑

l=1

Qlvl ≤ 1 − α. (7)

We remind that a variable vl has to assume value 1 if configuration l is not connective.
Summarizing, we can formulate the PMPM problem as an integer linear program-

ming problem as follows:

P min
∑

(i,j)∈A

cij yij

s.t. yij ≤ ya(i,j) ∀(i, j) ∈ A \ B, (8)
∑

i∈S

yb(i,Cl\S) + vl ≥ 1 ∀l ∈ {1, . . . ,N},

∀S ⊆ Cl : s ∈ S, (Cl \ S) ∩ R �= ∅, (9)

N∑

l=1

Qlvl ≤ 1 − α, (10)

yij ∈ {0,1} ∀(i, j) ∈ A, (11)

vl ∈ {0,1} ∀l ∈ {1, . . . ,N}. (12)

The combination of constraints (9) and constraint (10) guarantees the existence of
a connection from s to all the destinations with at least reliability α.
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Fig. 1 Example

Since the transmission range of the devices has no upper limit, formulation (8)–
(12) admits always a feasible solution (e.g. the source transmits with a power suffi-
cient to reach in a single hop all the destinations in R). Moreover, it is easy to notice
that the optimal solution of the multicast problem in deterministic settings is a lower
bound for our problem. We also notice that in each integer feasible solution of the
problem, in view of the WMA, it holds that the variable yb(s,V ) relative to the first arc
outgoing from s assumes always value 1 and hence, we add to the formulation the
constraint

yb(s,V ) = 1 (13)

in order to strengthen the linear relaxation of our formulation.
Finally, we present an example for better clarifying the differences between for-

mulations F and P .

Example 1 Consider the graph in Fig. 1, suppose that R = {4} and that q1 = 0.89,
q2 = 0.40, q3 = 0.89. Set the reliability threshold to α = 0.9. The solution ys1 =
ys3 = y12 = y14 = 1 with all the other variables equal to zero is optimal for the MPM
problem and it has cost 8. All the possible configurations with their probability of
realization are displayed in the following table:

l 1 2 3 4 5 6 7 8

Cl {s,1,2,3,4} {s,1,2,4} {s,1,3,4} {s,2,3,4} {s,1,4} {s,2,4} {s,3,4} {s,4}
Ql 0.31684 0.03916 0.47526 0.03916 0.05874 0.00484 0.05874 0.00726

It is easy to see that this optimal solution does not satisfy the requirement (10)
having reliability equal to 0.89 (the connective configurations are C1,C2,C3 and C5).

The optimal solution for the PMPM problem is ys1 = ys3 = y12 = y14 = y32 =
y34 = 1 with all the other variables equal to zero. It has cost equal to 13 and reliability
equal to 0.9879.

4 Exact solution approach

In this section we present an exact algorithm based on an iterative row and column
generation (IRCG) procedure for solving the PMPM problem. The bottleneck of the
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Fig. 2 Evolution of the lower bounds

problem formulation (P ) described in Sect. 3 is represented by the high number of
variables vl and of connectivity constraints (9). Preliminary tests showed that using an
ILP solver only very small instances can be solved directly. However, it is reasonable
to expect that many variables vl and constraints (9) will not be relevant at optimality.
Therefore a suitable approach is to generate the rows and the columns of the ILP in a
dynamic way.

4.1 Algorithm description

The key idea is to consider a reduced ILP (Pk) containing only k connectivity con-
straints (9) and only the variables vl that appear in these constraints. Therefore, in
(Pk) also the reliability constraint (10) will contain only the variables vl involved in
the connectivity constraints.

Essentially algorithm IRCG generates a sequence of problems (Pk) by adding
a new constraint (9) (and possibly a vl variable) at each iteration. It is easy to see
that any feasible solution of a problem (Pk+1) is also feasible for problem (Pk), in
other words (Pk) can be regarded as a relaxation of (Pk+1) and ultimately of (P ).
Therefore the solution of any relaxed problem (Pk) provides a lower bound to the
original problem (P ). A typical evolution of the lower bounds is shown in Fig. 2.
As a consequence, if (y, v) is the solution of a relaxed problem (Pk) and a reliability
computation shows that y reaches the required threshold α, it follows that there exists
a setting of the variables vl , ∀l ∈ {1, . . . ,N}, such that all constraints of problem
(P ) can be satisfied. In other terms the obtained solution is feasible for the original
problem (P ) and thus optimal.

Summarizing, the iterative algorithm IRCG is based on three main steps: the so-
lution of the ILP (Pk), the estimation of the reliability of the obtained solution y and
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the insertion of a new connectivity constraint (9) in the ILP. How these operations are
performed is explained in detail in the next sections and in the following sketch of
the algorithm.

Estimation of the reliability

As mentioned before, calculating an estimate ᾱ of the reliability of the current solu-
tion (y, v) is an essential step of the algorithm IRCG.

The reliability procedure implemented in algorithm IRCG tests the connectivity
of the configurations defined by the sequence {Cl}l∈{1,...,N}. More specifically, we
start by setting ᾱ := 0 and each time a connective configuration Cl is found, ᾱ is
incremented by Ql . In other words ᾱ sums up the probabilities of the connective
scenarios in the sequence {Cl}l∈{1,...,N}.

It is easy to see that this procedure leads to the exact reliability of solution (y, v) if
all configurations are tested, but due to the high number of configurations, the calcula-
tion of the exact reliability at each iteration would be very time consuming. Therefore
the procedure is performed on a subset of the sequence {Cl}l∈{1,...,N}, obtaining an
estimation ᾱ from below of the reliability. The exit criterion ᾱ ≥ α simply states that
if the estimated reliability ᾱ reaches the threshold α, the solution is feasible and thus
optimal.

Ordering of the configurations

The sequence in which the configurations are analyzed in order to detect violated
constraints (9) is a crucial issue in the design of algorithm IRCG. Indeed, the quality
of the added violated constraints and also of the estimated reliability strongly depends
on the chosen sequence of the configurations.

The key idea behind the strategy we adopt is to process first the configurations with
a high probability of realization. In this way the added cuts regulate the connectivity
on the most probable configurations and, on the other side, the estimated reliability ᾱ

is likely to increase as fast as possible. In realistic applications it might be expected
that the probabilities of the transition nodes are close to 1. According to (5), the
configurations with many active nodes are usually weighted with high probabilities,
therefore they should be tested first. Formally, if |Cl | is the number of active nodes
in configuration l, the set of the configurations is ordered in such a way that |Cl+1| ≤
|Cl | ∀l ∈ {1, . . . ,N − 1}. In other words, the sequence begins with C1, the scenario
with all nodes available, followed by the configurations with one failure, and so on.
We refer to this enumeration as an ordering by increasing failure.

Row and column generation

Due to the fact that problem (Pk) does not contain all connectivity constraints (9),
the obtained solution (y, v) might violate some of them. Thus the following incon-
sistency might occur: a variable vl assumes value 0, or it has not been yet generated,
although the solution (y, v) is not connective on configuration l. As soon as the algo-
rithm detects such a situation, a violated constraint (9) is identified and added to the
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problem (Pk). In the case that the violated constraint contains a new variable vl , also
a new column is inserted in the ILP (see Step 4 of the outline of the algorithm). Then
the reinforced ILP is solved again in order to obtain an improved solution. We notice
that the opposite situation, i.e. vl = 1 while (y, v) is connective on configuration l,
does not cause violated constraints.

It would be possible to add more than one constraint (9) at each iteration, but in
the economy of the algorithm we propose it is computationally more convenient not
to add too many constraints each time (see also Sect. 4.2).

As it will be clear in Sect. 5, which is devoted to the computational results, in
most of the cases only a small subset of the configurations is actively used by the
algorithm. In other words, most variables vl do not appear in the inserted connectivity
constraints (9). Since most of the computational times are spent for the solution of the
integer linear programs, it is not surprising that the speed up obtained by generating
the variables dynamically is considerable. An evidence of this will be provided in
Sect. 5.3.

Algorithm IRCG can now be described formally:

Step 0. Set k := 0, l := 1 and ᾱ := 0.
Step 1. Solve ILP (Pk). Let (y, v) be the solution of problem (Pk).
Step 2. Check configuration l: if vl = 1 increment l := l + 1 and repeat Step 2. If

vl = 0 or vl has not been yet generated then verify whether y is connective on
configuration l. If y is connective on configuration l, increment ᾱ := ᾱ + Ql

and go to Step 3, otherwise go to Step 4.
Step 3. Exit criterion: if ᾱ ≥ α, (y, v) is feasible. Stop. Otherwise set l := l + 1 and

go to Step 2.
Step 4. Row and column generation: Add the violated constraint detected on con-

figuration l to the ILP and, if vl is a new variable, add also a column. Set
k := k + 1, l := 1, ᾱ := 0 and go to Step 1.

It is worthwhile remarking that algorithm IRCG is exact, in the sense that it al-
ways provides an optimal solution of problem (P ). Indeed, if an optimal solution is
reached, algorithm IRCG is able to recognize its feasibility. In the worse case this
happens when all configurations l ∈ {1, . . . ,N} have been tested and no new con-
straint can be added. This means that the current solution satisfies all constraints of
the formulation (P ). We notice that this theoretical worse case never occurred during
our computational tests.

Observe that in the proposed procedure the column generation activity is only
carried out implicitly, alongside the row generation step. However, no true advantage
would result by implementing a full-fledged pricing procedure. In fact, on the one
hand the price of a variable vl not appearing in any of the currently active constraints
of type (9) is simply given by βQl , where β ≥ 0 is the dual variable associated with
constraint (10). It follows that at any step of the proposed procedure all the currently
missing variables have positive price and should not be considered for addition. On
the other hand, no real saving would be obtained by not generating (if not already
present) the single variable vl contained in a constraint of type (9) as soon as it is
added.
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4.2 Implementation details

During preliminary tests we observed that a high number of violated cuts is often
introduced very early in the ILP. This has two drawbacks: firstly the exit criterion
can not immediately recognize a feasible solution, because the algorithm is stuck on
the first configurations. Secondly the rapid growth of the ILP has a strong slow-down
effect on the algorithm.

For these reasons we adopted the strategy that, before adding a violated cut to the
ILP, the estimation of the reliability is carried on for a given number lm of additional
configurations. Basically this strategy improves the quality of the estimate ᾱ and
slows down the growth of the ILP. In Sect. 5.2 we provide detailed information about
the tuning of parameter lm.

When an algorithm like that described in Sect. 4 is implemented, it is common
practice (see for example [17]) to first generate some cuts from a linear relaxation of
the problem. The aim of such a pre-processing procedure is to speed up the conver-
gence of the method. Cuts generated on a linear relaxation are potentially the same
that would have been generated on the original, fully integer, problem. On the other
hand, solving a relaxation is likely to be less time consuming.

Therefore we first consider the problem (P ′
0) obtained from (P0) by relaxing the

integrity requirement on the variables yij . We start to solve the MIP (state variables
vl are still integer) and to heuristically generate constraints (9) searching for violated
cuts of the form

∑

(i,j)∈A,i∈S,j∈Cl\S
yij + vl ≥ 1 (14)

and then strengthening the resulting inequality. We highlight the fact that with this
procedure only a subset of violated cuts (9) can be detected.

Preliminary tests suggest that the use of the linear relaxation is useful to speed up
the algorithm IRCG, especially on the largest networks.

5 Computational experiments

All the algorithms have been coded in ANSI C. Ilog Cplex 10.2 (http://www.ilog.com/
products/cplex) has been used to handle and solve integer linear programs. The ex-
periments reported in Sects. 5.2 and 5.3 have been run on a computer equipped with
a Pentium 4 (2.8 GHz) processor with 512 MB of memory. All the results reported
in Sect. 5.4 have been obtained on a computer equipped with an AMD Opteron 246
(2 GHz) dual processor and 2 GB of memory. The complete, detailed output of our
tests can be found at http://www.idsia.ch/~roberto/PMPM09.pdf. Finally the tests re-
ported in Sect. 6 have been carried out on a Pentium M (1.5 GHz) processor with
512 MB of memory.

5.1 Description of the test problems

No benchmark problem is available from the literature for the PMPM problem. Con-
sequently we have generated a new benchmark set. We defined Euclidean instances

http://www.ilog.com/products/cplex
http://www.ilog.com/products/cplex
http://www.idsia.ch/~roberto/PMPM09.pdf
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according to the following schema. A multicast problem is characterized by the fol-
lowing parameters:

n number of devices in the network
r number of destinations, i.e. devices that have to receive the messages originated

at the root node s

α reliability level required for the multicast structure
qmin minimum value considered for the reliability probabilities associated with de-

vices: qi ≥ qmin ∀i ∈ V \{s ∪ R}
qmax maximum value considered for the reliability probabilities associated with de-

vices: qi ≤ qmax ∀i ∈ V \{s ∪ R}
The coordinates of the nodes are chosen at random on a 100×100 square grid. Power
pij required to send from node i to node j is obtained according to the relation
pij = (dij )

γ , where dij is the Euclidean distance between nodes i and j and the
coefficient γ —which models path loss in the signal propagation model—is set to 2.

5.2 Tuning of parameter lm

The maximum number of configurations lm tested on a single solution y is defined as
a function of the total number of configurations N and of the required reliability α.
A suitable bound lm keeps the number of added cuts low, but it also stops the testing
of a solution when its feasibility can not be decided in a reasonable number of steps.

In Table 1 we consider two problem instances and we report the computation times
required to solve them when different values of parameter lm are considered. Notice
that for each of the problems considered, the highest value reported for lm coincides
with the total number of configurations of the problem.

Table 1 suggests that values in the range [3000,7000] for parameter lm guarantee
the fastest convergence. Additional tests, not reported here, confirmed that values in
this range are indicated for all kind of problems, although it does not seem to be
possible to further discriminate within this interval, since results are very instance-
dependent. For the remainder of our tests we set lm = 5000.

It is finally interesting to observe how, for the first problem considered in Table 1,
there is a threshold for parameter lm after which the optimal solution is identified
almost immediately.

5.3 Importance of the dynamic insertion of variables vl

The aim of the experiments reported in this section is to show the idea of incre-
mentally (and dynamically) introducing variables vl into problems (Pk) only when
involved in some active constraint of type (9). Table 2 reports the computation times
required to solve two instances when all the variables vl are introduced at the begin-
ning and when they are added dynamically only when required (which is the strategy
we propose).

The benefit of the strategy we propose is clear from Table 2, where the introduction
of all the variables vl at the beginning even leads to no solution in the maximum
computation time of 3600 s for the second problem considered (the corresponding
entry of the table is marked with “–”).
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Table 1 Tuning of
parameter lm

n r α qmin qmax lm Seconds

20 1 0.9 0.85 0.95 10 262.20

100 206.61

1000 186.49

3000 186.42

5000 0.08

7000 0.08

10000 0.08

262144 0.08

25 3 0.9 0.85 0.95 10 320.61

100 248.80

1000 230.52

3000 227.00

5000 223.70

7000 231.94

10000 269.88

2097152 888.02

Table 2 Insertion strategy of
variables vl

n r α qmin qmax vl strategy Seconds

20 1 0.9 0.85 0.95 Static 14.09

Dynamic 0.08

25 3 0.9 0.85 0.95 Static –

Dynamic 223.70

An important side effect of the dynamic strategy we adopt for the introduction of
variables vl is on the number of constraints of type (9) we introduce at each iteration
of the algorithm IRCG. As explained in Sect. 4, we introduce only one cut during each
iteration. We found that this is the most effective strategy because otherwise many
variables vl (corresponding to configurations, and in turns to constraints (9)) were
quickly introduced into the sequence of problems (Pk), leading to a much slower
algorithm.

5.4 Detailed results

For each problem considered, ten instances have been generated and IRCG has been
run on them. Experimental results are summarized in Tables 3 to 6, that are organized
as follows. The first five columns describe the problems, as defined in Sect. 5.1. The
column Solved reports, for each problem considered, the number of instances solved
to optimality within the allowed computation time of 3600 s out of the ten consid-
ered. Then we report, for each problem, average, minimum and maximum values,
calculated over the instances solved to optimality, for the following three indicators.
Cuts, which indicates the number of cuts (9) added to obtain the optimal solution;
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Table 3 Performance of the IRCG algorithm when the number of devices n is varied (small/large sets of
destination devices). Statistics over ten instances

n r α qmin qmax Solved Indicator Avg. Min Max

15 5 0.9 0.85 0.95 9 Cuts 57.00 5.00 166.00

Configs 28.78 5.00 45.00

Seconds 15.22 0.02 37.34

20 5 0.9 0.85 0.95 6 Cuts 452.67 65.00 660.00

Configs 192.83 13.00 640.00

Seconds 1431.34 89.87 3443.99

25 5 0.9 0.85 0.95 1 Cuts 359.00 359.00 359.00

Configs 580.00 580.00 580.00

Seconds 389.34 389.34 389.34

25 20 0.9 0.85 0.95 10 Cuts 61.90 32.00 109.00

Configs 4.30 2.00 7.00

Seconds 111.63 26.27 301.54

30 25 0.9 0.85 0.95 10 Cuts 107.80 74.00 161.00

Configs 6.60 2.00 16.00

Seconds 602.44 166.34 1330.49

35 30 0.9 0.85 0.95 3 Cuts 112.00 93.00 131.00

Configs 5.00 5.00 5.00

Seconds 2597.00 1376.14 3406.53

Configs, which indicates the configurations (l) considered by the IRCG algorithm to
prove optimality (see Sect. 4); Seconds, which contains the time (in seconds) required
to solve problems to optimality. Notice that for each problem, there is a line for each
of the indicators considered.

Tables are organized in such a way that only one, or at most two, of the problem-
defining parameters are varied in each table. This choice should highlight how algo-
rithm IRCG reacts at changes in a single parameter, while the others are blocked to
reference settings.

In Table 3 we change the number of devices in the network (n). The table shows
that algorithm IRCG is able to handle problems with up to 30 nodes within the given
time limit. This value reduces to 20 when just a few destination devices are consid-
ered. A simple explanation exists for this phenomenon: according to Sect. 3, when
the set of destinations is decreased, the number of possible configurations, and in
turn the number of possible constraints, rapidly increases, making the problem more
difficult. It is also interesting to observe that most of the difficulty seems to come
from the increase of n itself, since (see the last three problems), the computation time
rapidly increases even if the number of configurations considered and of cuts gen-
erated does not have such a rapid increase. However it has to be remarked that the
number of activated cuts and configurations remains very small compared to L, the
total number of constraints of type (10) and the total number of configurations N ,
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Table 4 Performance of the IRCG algorithm when the number of destinations r is varied. Statistics over
ten instances

n r α qmin qmax Solved Indicator Avg. Min Max

20 1 0.9 0.85 0.95 5 Cuts 109.60 2.00 491.00

Configs 307.60 2.00 987.00

Seconds 15.96 0.00 72.58

20 5 0.9 0.85 0.95 6 Cuts 452.67 65.00 660.00

Configs 192.83 13.00 640.00

Seconds 1431.34 89.87 3443.99

20 9 0.9 0.85 0.95 10 Cuts 177.10 32.00 425.00

Configs 38.80 22.00 56.00

Seconds 543.44 15.14 2642.79

20 14 0.9 0.85 0.95 10 Cuts 45.70 15.00 70.00

Configs 5.80 4.00 8.00

Seconds 73.71 3.75 199.31

20 19 0.9 0.85 0.95 10 Cuts 17.30 12.00 32.00

Configs 1.00 1.00 1.00

Seconds 9.39 1.97 30.46

Table 5 Performance of the IRCG algorithm when the reliability threshold α is varied. Statistics over ten
instances.

n r α qmin qmax Solved Indicator Avg. Min Max

20 5 0.95 0.85 0.95 5 Cuts 291.40 89.00 476.00

Configs 436.80 113.00 611.00

Seconds 1080.76 26.60 2781.83

20 5 0.9 0.85 0.95 6 Cuts 452.67 65.00 660.00

Configs 192.83 13.00 640.00

Seconds 1431.34 89.87 3443.99

20 5 0.85 0.85 0.95 9 Cuts 266.89 15.00 608.00

Configs 69.56 1.00 309.00

Seconds 597.71 0.53 2002.00

respectively (see Sect. 3). For instance, in the case of the problem with parameters
n = 20, r = 5, α = 0.9, qmin = 0.85 and qmax = 0.95, even considering the maximum
values given in Table 3, less than 0.001% of the possible cuts and less than 4% of all
configurations have been explicitly used to solve the instances. This result confirms
that the cut generation strategy adopted, as well as the configurations ordering chosen
are suitable.
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Table 6 Performance of the IRCG algorithm when the range of possible probabilities associated with
nodes (qmin and qmax) is varied. Statistics over ten instances

n r α qmin qmax Solved Indicator Avg. Min Max

20 5 0.9 0.88 0.93 5 Cuts 350.80 61.00 630.00

Configs 147.40 29.00 297.00

Seconds 659.73 81.12 1313.19

20 5 0.9 0.85 0.95 6 Cuts 452.67 65.00 660.00

Configs 192.83 13.00 640.00

Seconds 1431.34 89.87 3443.99

20 5 0.9 0.7 1 5 Cuts 322.40 170.00 458.00

Configs 290.00 78.00 1070.00

Seconds 887.04 55.53 2254.50

The number of destination devices is varied for the tests shown in Table 4. The
results reported can be explained with the same arguments already used to justify the
behavior of the IRCG algorithm in the tests of Table 3. Results in the table clearly
show how the number of configurations considered, and the number of cuts generated
rapidly decreases when the number of destination devices is increased.

In Table 5 we study how the indicators vary when the reliability threshold α is
changed. As expected, the computational times and the number of generated config-
urations and cuts tend to grow as the required reliability α increases. The explanation
is trivial: higher values for α lead to multicasting structures that are potentially very
different from those obtained when reliability is not considered (what our algorithm
IRCG in fact considers during the first iterations).

Table 6 is devoted to the study of how variations on the range of possible prob-
abilities associated with nodes (qmin and qmax) affect the performance of algorithm
IRCG. The table suggests that the performance of the algorithm are almost indepen-
dent on variations in the range of the probabilities assigned to the nodes, although
the number of configurations considered seems to increase as the range of possible
probabilities is enlarged.

It is finally worthwhile remarking the high variance that characterizes all the indi-
cators reported in the tables. This suggests that the algorithm IRCG is in some sense
not very robust, since its performance is strongly instance-dependent.

6 Heuristic algorithm

As seen in Sect. 5.4, the exact algorithm IRCG does not always succeed in finding a
feasible solution in a given maximum computation time. In this case it is of interest
to switch to a fast heuristic method that generates a feasible solution.

The heuristic algorithm (HPMPM) we propose is based on the idea that the reli-
ability of any solution y obtained during the execution of the exact algorithm IRCG
can be increased by adding suitable arcs to it. After having evaluated different arc
insertion criteria, we implemented the following strategy in algorithm HPMPM.
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Consider a solution y having an estimated reliability ᾱ < α, calculated with the
sequential procedure explained in Sect. 4, and a total cost c. The algorithm HPMPM
calculates the estimate of the reliability ᾱ′ and the cost c′ of a new solution y′, ob-
tained by adding a given arc (i, j) to the solution y. This procedure is performed for
all arcs (i, j) not contained in y, but outgoing from an active node i of solution y.
The insertion of arcs is carried on iteratively until the estimated reliability ᾱ reaches
the required threshold α.

It has to be remarked that, according to the WMA property, the insertion of an arc
(i, j) implies also the insertion of the arcs covered by (i, j).

The key idea of the heuristic HPMPM is to choose the arc(i, j) that provides a
maximum increase of reliability and at the same time a minimum increase of cost.
Essentially the algorithm maximizes the ratio ᾱ′−ᾱ

c′−c+1 .
In addition, algorithm HPMPM has been equipped with a useful post-processing

phase, inspired by the procedure discussed in [22], which tries to eliminate certain
arcs of the obtained solution in such a way that the reliability level does not fall be-
low the threshold α. The novelty of our approach consists in performing the arc elim-
ination by considering both the cost difference and the reliability difference. The arc
elimination criterion is based substantially on the minimization of the ratio ᾱ−ᾱ′

c−c′+1 .
When the maximum computation time is reached, the algorithm IRCG switches

to the heuristic HPMPM and starts the arc insertion procedure on the last solution
provided by the exact algorithm. Preliminary tests showed that this choice is usually
the most convenient.

The heuristic algorithm HPMPM can be described formally as follows:

Step 0. y = solution provided by algorithm IRCG, ᾱ = reliability of y.
Step 1. ∀ (i, j) such that yij = 0, calculate the cost c′ and the reliability ᾱ′ of the

solution y′ obtained by adding arc (i, j) to the support of y. Choose the arc
(i, j) with the maximum ratio ᾱ′−ᾱ

c′−c+1 (if the maximum is 0 the shortest arc
is chosen). Update y := y′ and ᾱ := ᾱ′.

Step 2. If ᾱ < α go to Step 1. Otherwise go to Step 3.
Step 3. ∀(i, j) such that yij = 1, calculate the cost c′ and the reliability ᾱ′ of the

solution y′ obtained by eliminating arc (i, j) from the support of solution y.
Choose the arc (i, j) with the minimum ratio ᾱ−ᾱ′

c−c′+1 .
Step 4. If ᾱ′ ≥ α update y := y′ and ᾱ := ᾱ′ and go to Step 3. Otherwise stop.

Table 7 contains some computational results obtained on problems with up to 32
nodes. For each problem three different random instances have been considered. Fur-
thermore, in order to observe the performance of the heuristic HPMPM, the maxi-
mum computation time has been set to 10 s for the problems with n = 12 and n = 15,
to 120 s for the problems with n = 20, n = 30 and for the first instance with n = 32
and finally to 7200 s for last two instances. The second and the third column of the
table show the number of added and deleted arcs respectively. The most interesting
results are contained in the columns four and five: the percentage gap between the
heuristic upper bound and the best available lower bound and the percentage im-
provement provided by the post-processing phase. Column six indicates whether the
lower bound used to compute the gap coincides with the optimum or not. Finally,
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Table 7 Performance of the heuristic algorithm HPMPM

n r α qmin qmax #Arcs(+) #Arcs(−) Gap (%) Imp (%) Optimal Seconds

12 3 0.9 0.85 0.95 4 1 0.00 1.85 Yes 0.09

8 4 13.40 7.73 Yes 0.21

2 2 0.00 1.07 Yes 0.08

15 5 0.9 0.85 0.95 10 0 8.19 0.00 Yes 0.19

1 2 4.23 14.16 Yes 0.17

4 0 15.54 0.00 Yes 0.17

20 10 0.8 0.85 0.95 12 12 2.35 29.16 Yes 0.72

4 4 0.00 4.72 Yes 0.70

2 3 3.03 17.36 Yes 0.36

30 20 0.8 0.85 0.95 10 6 6.97 10.81 Yes 1.67

5 5 0.00 5.25 Yes 2.29

19 17 0.86 33.64 Yes 5.71

32 20 0.9 0.85 0.95 14 6 15.43 12.16 Yes 13.25

12 1 41.29 0.01 No 15.60

13 3 78.22 3.02 No 21.99

the last column shows the CPU-times (in seconds) required by the arc insertion and
elimination procedures.

Table 7 shows that algorithm HPMPM succeeds in generating quickly a feasible
solution. The number of inserted arcs is not very high, which means that the adopted
selection strategy of the arcs is efficient. On the other hand the arc elimination phase
is usually able to improve the last solution. It can be observed that the gap is moderate
when the optimal value is available as a lower bound. This fact suggests that the large
gaps of the last instances are mainly on the lower bound side. In addition, it can be
expected that a more elaborated heuristic approach could lead to an improvement of
the upper bounds. However this open issue definitely deserves further studies that we
leave for future research.

7 Concluding remarks

A probabilistic variant of the minimum power multicast problem for wireless net-
works has been defined and studied in this paper. In the model proposed node failure
probabilities for the transmission are explicitly considered. The problem has been
formulated as an integer linear program, by means of connectivity constraints and a
global reliability requirement. An exact algorithm, based on an iterative cut genera-
tion procedure, and an heuristic approach have been proposed. Experimental results
suggest that problems of moderate size can be solved to optimality by the proposed
exact algorithm and that larger instances can be efficiently handled by a suitable
heuristic method.
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