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Abstract Biogeochemical models are often used for
making projections of future carbon dynamics under
scenarios of global change. The aim of this study was to
assess the accuracy of the process-based biogeochemical
model Biome-BGC for application in central European
forests from the lowlands to upper treeline as a pre-
requisite for environmental impact assessments. We
analyzed model behavior along an altitudinal gradient
across the alpine treeline, which provided insights on the
sensitivity of simulated average carbon pools to changes
in environmental factors. A second set of tests included
medium-term (30 years) simulations of carbon fluxes,
and a third set of tests focused on daily carbon and
water fluxes. Model results were compared to above-
ground biomass measurements, leaf area index record-
ings as well as net ecosystem exchange (NEE) and actual
evapotranspiration (AET) measurements. The simulated
medium-term forest growth agreed well with measured
data. Also daily NEE fluxes were simulated adequately
in most cases. Problems were detected when simulating
ecosystems close to the upper timberline (overestimation
of measured growth and pool sizes), and when simu-
lating daily AET fluxes (overestimation of measured
fluxes). The results showed that future applications of
Biome-BGC could benefit much from an improvement
of model algorithms (e.g., the Q10 model for respiration)
as well as from a detailed analysis of the ecological
significance of crucial parameters (e.g., the canopy water
interception coefficient).
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Introduction

Besides pure scientific interest, the assessment of carbon
sinks and sources of forests has gained high policy rel-
evance in the course of the implementation of the Kyoto
Protocol (UNFCCC 1997). However, an accurate esti-
mate of the contribution of forest ecosystems to the
global carbon cycle remains a major challenge, as it is
difficult to directly measure carbon pools or fluxes over
large areas. Regarding the estimation of carbon
dynamics, the use of process-based ecosystem models is
of particular interest because this approach allows not
only for the estimation of the carbon budget under
various environmental conditions, but it also interprets
and quantifies the possible causes of changes in carbon
stocks as a result of environmental changes (cf. White
et al. 1998; Churkina et al. 2003). The potential error
sources of these models can be separated into errors in
(1) model theory and equations, (2) the forcing data,
primarily climatic data, (3) the initial conditions of the
model, and (4) the parameterization estimates.

In the present study, we tested the process-based
ecosystem model Biome-BGC (Running and Hunt 1993;
Hunt et al. 1996; Thornton 1998) with the default
parameterization at a number of specific central Euro-
pean forest sites. Using the model without parameter
adaptation is a test of whether physiology can be rep-
resented in a general manner, while knowing that a lot of
site-specific variability of ecological processes exists.
Therefore, it is as much a test of the model parameter-
ization as of the model theory and equations.

Biome-BGC has already been applied in a range of
studies for assessing carbon fluxes in forests (e.g., Mel-
illo et al. 1995; Hunt et al. 1996; Churkina and Running
2000). Biome-BGC originates from a coniferous forest
ecosystem model, Forest-BGC (Running and Coughlan
1988; Running and Gower 1991), and it has undergone
extensive validation of several water and carbon cycle
components in North American and European forest
ecosystems (e.g., Nemani and Running 1989; Hunt et al.
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1991; Running 1994; White et al. 1997, 2000; Cienciala
et al. 1998; Cramer et al. 1999; Law et al. 2001, 2003;
Thornton et al. 2002; Churkina et al. 2003). However,
these previous evaluation studies have all focused on flux
simulations.

In contrast, the Biome-BGC evaluation presented in
this study includes an analysis of carbon fluxes as well
as of carbon pools. The model evaluation was based on
data from central European forests comprising an ex-
tended altitudinal gradient, which allowed for tests
under a wide range of climatic conditions. We tested the
performance of different model components at various
time scales and examined the sensitivity of Biome-BGC
to climate and soil parameters. First, we examined the
sensitivity of simulated long-term aboveground carbon
storage (80-year simulation) towards changes in climate
and soil characteristics along an altitudinal gradient in
the Dischma valley (Switzerland, subalpine to alpine
zone). Then, we simulated medium-term (30 years)
changes in forest growth and aboveground carbon
storage at 19 forest yield research plots ranging from
the colline to the upper subalpine zone in Switzerland
and compared these values with long-time measure-
ments and with simulation results from a semi-empirical
forest growth model, SILVA (Pretzsch et al. 2002;
Schmid et al. 2006). Finally, we compared simulated
annual leaf area index (LAI), daily net ecosystem ex-
change (NEE), and daily actual evapotranspiration
(AET) with measured data from two central European
research sites of the EUROFLUX project (Aubinet
et al. 2000; Valentini et al. 2001; Valentini 2003) (4-year
simulation).

Materials and methods

Model description

We used the ecosystem process model Biome-BGC ver-
sion 4.1.2 described in Thornton et al. (2002), with the
minor modifications described in the Biome-BGC User’s
Guide, version 4.1.2 (P.E. Thornton, personal commu-
nication). Biome-BGC is a biogeochemical model that
simulates above- and belowground carbon, water, and
nitrogen cycles of different vegetation types. The model
is strongly controlled by LAI and climate.

Regarding spatial structure, Biome-BGC is based on
some simplifying assumptions. Trees are not defined
individually, but rather the whole ecosystem (above- and
belowground parts) is split up into the different pools
that are relevant for the carbon, water, and nitrogen
cycles. The vertical structure of the model includes a
differentiation into a number of layers between the
rooting system and the vegetation canopy, whereas the
ecosystem is assumed to be horizontally homogeneous.
Additionally, the model does not consider tree species,
but forests are divided into four different plant func-
tional types: evergreen and deciduous needleleaf forest,
and evergreen and deciduous broadleaf forest. Due to

the lack of horizontal structure, Biome-BGC provides
point estimates of carbon, water, and nitrogen pools.

The temporal framework of the Biome-BGC model is
based on a dual discrete time step approach (Thornton
1998). Most ecosystem processes are calculated on a
daily basis (e.g., soil water balance, photosynthesis, new
leaf and fine root growth, litterfall, and carbon and
nitrogen dynamics in the litter and soil layer); they are
driven by daily values of temperature, precipitation,
vapor pressure deficit, and radiation. However, a few
processes—including the determination of phenological
timing and the allocation of carbon and nitrogen to the
growth of new tissue—are simulated on an annual time
step.

Study sites

Dischma valley (carbon storage along an altitudinal
gradient)

We simulated aboveground carbon storage along an
altitudinal gradient in the Dischma valley (46�46¢N,
9�53¢E) located in the eastern part of the Swiss Alps. The
valley runs from south–southeast to north–northwest
and has a continental to moderate central-alpine climate
(Walder 1983; Riedo et al. 2001). Its elevation extends
from 1,500 to 3,200 m a.s.l. While at the valley bottom
hay meadows and pastures are the predominant vege-
tation type, the hillslopes are primarily covered by
spruce-dominated forests up to the timberline (Hefti and
Bühler 1986). Above the timberline (located at approx-
imately 2,100 m a.s.l. under current land-use condi-
tions), dwarf shrubs and alpine tundra dominate the
landscape.

Within the valley, we chose two transects (at the
valley entrance and in the middle of the valley), with two
slopes each [east–northeast (ENE) and west–southwest
(WSW)]. We applied Biome-BGC at every 10-m eleva-
tion interval along each of the four slopes. Information
on soil, stand characteristics and management history
were available from the ‘‘Man and the Biosphere’’
(MAB) project (Krause 1986) (Table 1), in which soil
and stand data had been collected in the Dischma valley
during the years 1982 and 1983.

Forest yield research plots (medium-term carbon
dynamics)

We used 19 long-term forest yield research plots of the
Swiss Federal Institute of Forest, Snow, and Landscape
Research (WSL) to estimate aboveground carbon; we
compared simulated and measured carbon storage in
aboveground living plants (subsequently called ‘above-
ground carbon’) during a 30-year period for these sites.
For each research plot, detailed information about sin-
gle-tree growth, single-tree mortality, and forest man-
agement was collected at intervals ranging from 1 to
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13 years. The general characteristics of the sites used in
this study are summarized in Table 2. The sites range
from the colline to the upper subalpine zone in Swit-
zerland and include three different plant functional
types. The majority of the stands were between 60 and
120 years old at the beginning of the simulation period,
and all stands are managed, the only exception being the
site Horgen (no. 8). Plot area varies between 0.2 and
1.0 ha. Soil characteristics (soil texture and soil depth)
were derived from the soil suitability map of Switzerland
(BFS 1992).

EUROFLUX sites (daily NEE and AET)

To compare daily model estimates of NEE and AET
with measurements, we used datasets provided by the
EUROFLUX project (Aubinet et al. 2000; Valentini

et al. 2001; Valentini 2003). These datasets were
available for the years 1996–1999. EUROFLUX uses a
standardized protocol and the eddy covariance meth-
odology (Leuning and Moncrieff 1990) as an estab-
lished technique to measure the long-term exchanges of
CO2, water vapour, and sensible heat between vege-
tated surfaces and the atmosphere at various sites
across Europe. A complete description of the method-
ology and the instrumentation used at these sites is
given by Moncrieff et al. (1997) and Aubinet et al.
(2000). For this study, we used data from the two
central European EUROFLUX sites that are closest to
the Alpine region, i.e. Sarrebourg-Hesse (eastern
France) and Bayreuth (southern Gemany; cf. Table 3).
The forests at both sites are of natural origin and are
managed. Data on the management history and soil
conditions were available from the EUROFLUX
network.

Table 1 Site characteristics of the four slopes in the Dischma valley along which aboveground carbon storage was simulated (Krause
1986)

Transect location
in valley

Slope Elevation
(m a.s.l.)
(bottom/top)

Plant
functional
type

Soil texture (%)
(sand/silt/clay)

Soil depth (m)
(bottom/top)

Ndep in 1998
(kg N ha�1 year�1)

At entrance WSW 1,550/25,00 enf 67/30/3 0.2/0.089 10
At entrance ENE 1,550/25,00 enf 67/30/3 0.2/0.055 10
Middle WSW 1,720/2,500 enf 67/30/3 0.1/0.06 10
Middle ENE 1,720/2,500 enf 67/30/3 0.1/0.032 10

WSW West–southwest, ENE east–northeast, bottom lowest simulation site, top highest simulation site, enf evergreen needleleaf forest,
Ndep nitrogen deposition

Table 2 Site characteristics of the 19 forest yield research plots and location of the meteorological station used to generate the climate of
the plot

No. Zone Site Elevation
(m a.s.l.)

Plant
functio-nal
type

Soil texture
(%) (sand/
silt/clay)

Soil
depth
(m)

Ndep in 1998
(kg N
ha-1 year-1)

Meteorological
station

Stand age
at beginning
of simulation

Simulated
period

1 Colline Neuendorf 470 enf 5/60/35 0.97 22 Olten 36 1950–1980
2 Colline Brittnau 570 enf 5/60/35 0.69 27 Olten 82 1956–1986
3 Colline Chanéaz 805 enf 5/60/35 0.97 22 Lausanne 59 1960–1990
4 Colline Chanéaz 805 enf 5/60/35 0.97 22 Lausanne 58 1960–1990
5 Colline Chanéaz 805 enf 5/60/35 0.97 22 Lausanne 59 1960–1990
6 Colline Chanéaz 795 enf 5/60/35 0.97 22 Lausanne 58 1960–1990
7 Colline Aarburg 475 dbf 40/35/25 0.64 22 Olten 108 1963–1993
8 Colline Embrach 595 dbf 25/60/15 0.89 22 Zürich Flughafen 112 1961–1991
9 Colline Horgen 630 dbf 25/60/15 0.89 22 Zürich SMA 70 1959–1989
10 Colline Galmiz 445 dbf 5/60/35 0.97 22 Biel 67 1962–1992
11 Colline Winterthur 505 dbf 25/60/15 0.89 27 Zürich Flughafen 94 1972–2002
12 Montane Landiswil 960 enf 25/60/15 0.97 22 Bern-Liebefeld 93 1965–1995
13 Montane Oberhünigen 1,050 enf 5/60/35 0.69 35 Bern-Liebefeld 120 1964–1994
14 Subalpine Hospental 1,475 enf/dnf 5/60/35 0.64 12 Gütsch ob And. Uneven-aged 1969–1999
15 Subalpine Morissen 1,630 enf 25/60/15 0.64 17 Disentis 91 1965–1995
16 Subalpine Morissen 1,640 enf 25/60/15 0.64 17 Disentis 89 1965–1995
17 Upper

subalpine
St. Moritz 1,810 enf/dnf 5/60/35 0.18 12 Sils Maria Uneven–aged 1969–1999

18 Upper
subalpine

St. Moritz 1,810 enf/dnf 5/60/35 0.18 12 Sils Maria Uneven-aged 1969–1999

19 Upper
subalpine

Sils 1,800 dnf 5/60/35 0.13 12 Sils Maria Uneven-aged 1964–1994

enf Evergreen needleleaf forest, dbf deciduous broadleaf forest, dnf deciduous needleleaf forest, Ndep nitrogen deposition
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Model input data and parameters

Meteorological and environmental data

The required daily climate input data were generated for
each site separately. For the Swiss test sites (the forest
yield research plots and the altitudinal gradient in the
Dischma valley), daily climate measurements of a close-
by meteorological station of MeteoSwiss (the national
weather service of Switzerland) were extrapolated to the
site by means of the weather generator MTCLIM 4.3
(Running et al. 1987; Thornton and Running 1999).
Based on daily values of—at least—maximum and
minimum air temperature and total precipitation,
MTCLIM generated daily values of air temperature,
total precipitation, total incoming radiation, and day-
light average humidity as required for Biome-BGC, and
adjusted them to the location of interest, correcting for
elevation, slope, and aspect differences between the
meteorological station and the location. For the forest
yield research sites, we applied the default MTCLIM
lapse rates for minimum and maximum air temperature
(�3.0 and �6.0�C km�1), since at these sites altitudinal
differences between the selected meteorological station
and the site of interest were small. Yet, in the case of the
altitudinal transect in the Dischma valley, the altitudinal
differences between the meteorological station and the
highest location amounted to nearly 1,000 m. Therefore,
we derived local lapse rates of minimum and maximum
air temperature from two meteorological stations (Da-
vos 1,560 m a.s.l. and Weissfluhjoch 2,590 m a.s.l.),
resulting in local lapse rates of �3.3 and �6.9�C km�1,
respectively. These were then used by MTCLIM to
extrapolate climate values from one single meteorologi-
cal station to different locations along the altitudinal
gradient.

For the simulation at the two EUROFLUX sites,
which are situated outside Switzerland, the surface
weather data were drawn from two different databases.
During the EUROFLUX measurement period (1996–
1999) we used the daily climate values measured directly
at the EUROFLUX sites (Granier 2003; Tenhunen and
Schulze 2003). For the years prior to the EUROFLUX
measurements, we used a climate dataset provided by
Mitchell et al. (2004). It comprises gridded monthly
climate variables for Europe at a spatial resolution of
10¢ · 10¢ covering the period from 1901 to 2000. The
data include temperature, diurnal temperature range,

precipitation, vapor pressure, and cloud cover. For both
EUROFLUX sites under consideration, climate data
from a nearby raster point were used and corrected for
differences in elevation. Finally, the monthly data were
downscaled linearly to daily data as required by Biome-
BGC.

For the simulations, transient scenarios of atmo-
spheric CO2 concentration and nitrogen deposition were
used. Atmospheric CO2 concentrations show a contin-
uous increase from 296 ppm in 1900 to 373 ppm in 2002
(Erhard et al. 2005), whereas nitrogen deposition was
assumed to remain at a constant rate of 2 kg ha�1 up to
the year 1949 (Holland et al. 1999) and thereafter to
increase linearly up to the current value. For the simu-
lations in the Dischma valley and at the forest yield re-
search plots, the current annual nitrogen deposition rate
was taken from the nitrogen deposition map of Swit-
zerland (value of the year 1998; BUWAL 1996; Rihm
and Kurz 2001) (Tables 1, 2). For the EUROFLUX
simulations, data on nitrogen deposition were available
from the EUROFLUX network (Table 3).

Ecophysiological parameters

The following plant functional types that are used in
BIOME-BGC occurred at the test sites: evergreen nee-
dleleaf forest, deciduous needleleaf forest, and deciduous
broadleaf forest. In the model, each of these plant
functional types is defined by a set of 44 ecophysiolog-
ical characteristics that do not change over time
(parameters). For the present study, we used the default
parameterization of model version 4.1.2, except for the
annual whole-plant mortality fraction. The default value
of this parameter (0.005 year�1) was replaced by values
from the Swiss national forest inventory (NFI) (Brassel
and Brändli 1999) (Table 4) depending on the vegetation
zone and on forest management. This mortality rate
includes natural tree mortality and mortality due to
disturbances such as windthrow. The vegetation zones
are defined according to Ott et al. (1997). For the sim-
ulation at the forest yield research plots, where mortality
had been recorded in detail, we used the measured values
instead of those in Table 4.

Since the model does not currently simulate mixed
forest stands, we divided sites with mixed-species stands
into different plots according to the basal area fraction
covered by the respective plant functional type, and
simulated them separately. In this study, the separation

Table 3 Site characteristics of the two EUROFLUX sites

Site Elevation
(m a.s.l.)

Plant
functional
type

Age in 1996 Soil texture (%)
(sand/silt/clay)

Soil depth
(m)

Current Ndep

(kg N ha�1 year�1)

Sarrebourg-Hesse
(France)

300 dbf 27 5/47.5/47.5 1.6 12

Bayreuth (Germany) 780 enf 37 40/20/40 1.0 12

Ndep Nitrogen deposition

170



of mixed forest stands into their components led to
better agreement with the measured dynamics than
including only the dominant forest type. Nevertheless,
the potential implications of this separation on stand
growth must be considered (see also the discussion of the
importance of interacting plant functional types by Law
et al. 2001).

Simulation experiments and analysis of output data

In Biome-BGC, the ecosystem is represented by a
number of carbon, water, and nitrogen pools, the
model’s state variables. Due to a lack of measured data
for the initialization of some of the state variables
(mainly the belowground carbon and nitrogen pools),
we performed model simulations for their initialization
(so-called ‘‘spin-up runs’’). The spin-up runs were used
to bring the state variables into steady state with respect
to the site’s climate and the specified plant functional
type. For the simulation in the Dischma valley and at
the EUROFLUX sites, we aimed at reproducing prein-
dustrial environmental conditions during the spin-up
run. Therefore, the atmospheric CO2 concentration was
set to 296 ppm, approximating the level at the end of the
nineteenth century (Erhard et al. 2005), and for the
annual nitrogen deposition we used 2 kg N ha�1 (Hol-
land et al. 1999). For the spin-up run, we used climate
data from the years 1901 to 1930. In the case of the
forest yield research plots, where climate measurements

from this period often were lacking, the same environ-
mental conditions were used as for the simulation run.
After the spin-up run, the model runs and output anal-
yses described below were performed (a summary of
these simulations is given in Table 5).

Carbon storage along an altitudinal gradient

The spin-up run, conducted at every 10 m of elevation
along each of the four slopes in the Dischma valley be-
tween 1,500 and 2,500 m a.s.l., included timber har-
vesting of 10% of the standing biomass every tenth year,
which approximates the historic management in the
Dischma valley as derived using expert knowledge and
data from the Swiss NFI (Mahrer 1989; Brassel and
Brändli 1999). After this spin-up run, we assumed hav-
ing reached the state of the year 1900. Then, we simu-
lated ecosystem dynamics from 1901 to 1980. During the
simulation, every tenth year a timber harvest of 5% of
the standing biomass was performed as derived from
data of the MAB project (Hefti and Bühler 1986). We
applied this harvesting intensity to all simulation points
at all elevations, as the altitudinal dependence of har-
vesting intensity is unknown. To test the sensitivity of
model outputs to harvesting, the model simulations were
also performed without timber harvest in the twentieth
century, but based on the same initialization.

The endpoints of these simulations (year 1980) along
the four slopes—once with and once without harvest-
ing—provided eight altitudinal gradients of above-
ground carbon. They were compared to the observed
aboveground biomass gradient that had been calculated
by Schumacher (2004) based on measurements from the
MAB project (Hefti and Bühler 1986). This measured
gradient represents the mean over the entire Dischma
valley. To compare the measured with the simulated
gradient, we applied a factor of 0.5 to convert biomass
to carbon (IPCC 2003).

Table 4 Whole-plant mortality fraction (year-1) for the different
vegetation zones based on Swiss NFI data (Brassel and Brändli
1999)

Colline Montane Subalpine and
upper subalpine

No management 0.012 0.0074 0.0081
Management 0.0016 0.0027 0.0042

Table 5 Summary of the sequence of the different model runs and the data analyses

Dischma valley Forest yield research plots EUROFLUX sites

Spin-up run Climate data from 1901–1930;
CO2 296 ppm; Ndep

2 kg ha�1 year�1, 10% harvest
every tenth year

Climate data, CO2, and Ndep

from the 30-year simulation run
period

Climate data from 1901–1930;
CO2 296 ppm; Ndep

2 kg ha�1 year�1

Initialization for simulation run The spin-up run endpoint is di-
rectly taken as initialization for
the simulation run

Initialization of tree bio-mass
with initial values

The spin-up run endpoint is di-
rectly taken as initialization for
the simulation run

Simulation run 80 years, with 5% harvest every
tenth year and without man-
agement

30 years; including harvesting
according to site management
history

99 years; including harvesting
according to site management
history

Comparison Aboveground carbon at the end
of the simulation run is com-
pared with measured above-
ground carbon along the
altitudinal gradient

Simulated 30-year aboveground
carbon increment is compared
with measured increment and
with SILVA model results

Simulated NEE, AET, and LAI
from the last four years of the
simulation run is compared
with measured data

CO2 Atmospheric CO2 concentration, Ndep nitrogen deposition
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Medium-term carbon dynamics

To initialize aboveground carbon (and nitrogen) pools
of the model after the spin-up run at the 19 forest yield
research plots, we converted the measured single-tree
data to aboveground carbon. This was done using al-
lometric functions based on Swiss high-resolution data
(Perruchoud et al. 1999; Kaufmann 2001), the wood
densities described in Körner et al. (1993), and again a
factor of 0.5 to convert biomass to carbon (IPCC 2003).
Soil carbon values as obtained from the spin-up run
were left unchanged. Then, we performed a 30-year
simulation run including timber harvest and mortality
based on the history of management practices and tree
mortality at each site. Depending on the years when
measurements were made, the starting year of model
simulations varied between 1950 and 1972 for the dif-
ferent sites. To obtain simulated aboveground carbon
increments, we subtracted final aboveground carbon as
simulated by Biome-BGC at the end of the simulation
period from the initial data and compared this increment
with the measured increment. Finally, the aboveground
carbon increments simulated by Biome-BGC were
compared to the simulation results of the semi-empirical
single-tree model SILVA 2.2 (Pretzsch et al. 2002) ap-
plied at the same sites and for the same period. For the
SILVA simulations, we used the default model param-
eterization of the dominant European tree species and
the model was initialized with climate and soil data from
the test sites. The details of these SILVA simulation
experiments were described by Schmid et al. (2006).

Daily NEE and AET

For the simulations at the two EUROFLUX sites, we
used a combination of results from the spin-up run for
the initialization as well as our knowledge of each site’s
management history. The spin-up run was followed by a
model run representing the development of the years
1900–1999 including site-specific timber harvesting
amounts as provided by the EUROFLUX network.

The results of these model runs were used to ana-
lyze the fluxes of carbon and water. To this end, we
compared simulated values of NEE and AET with
eddy covariance flux measurements for the period
from 1996 to 1999. NEE is the net exchange of carbon
between the biosphere and the atmosphere. NEE
provides the size and direction of the net carbon flux,
which can be positive (a flux from the atmosphere to
the biosphere) or negative; at equilibrium it would be
zero. NEE is a critical variable to consider for long-
term (decadal) carbon storage (IGBP et al. 1998). In
contrast, AET can serve as an indicator of water
balance in the ecosystem, since it represents the net
flux of water from the land surface back to the
atmosphere. AET includes canopy and soil evapora-
tion, plant transpiration, and snow sublimation.

Additionally, the simulated annual LAI from 1996 to
1999 was compared with measured data. LAI is a
measure for canopy density and size and is defined as
the ratio of projected leaf area per unit ground area.
Finally, we tested the sensitivity of NEE and AET
towards changes in the canopy water interception
coefficient, which is a crucial factor in the modeled
water cycle.

Data analysis

For the analysis of the simulated medium-term increment
of aboveground carbon, we used the relative difference
between the simulated (x) and the measured (X) incre-
ment of each forest yield research plot. Based on these
values, we performed two-sided Wilcoxon signed rank
tests for dependent data samples with a significance level
of 0.05. Moreover, the absolute bias (�e) and the relative
bias (�e%) of the relative differences were calculated over
i = 1, ..., n forest yield research plots (Eqs. 1, 2).

�e ¼

Pn

i¼1
xi � Xið Þ

n
ð1Þ

�e% ¼ 100� �e
�X

: ð2Þ

The analysis of the NEE and AET fluxes was based on
7-day averaged fluxes instead of daily fluxes to avoid
daily flux ‘‘noise’’, as Biome-BGC has been designed
primarily to capture weekly to seasonal rather than daily
variations of NEE (S. Running, personal communica-
tion). Again, we calculated bias and relative bias to
compare simulated NEE and AET fluxes with measured
values. Additionally, we used two-sided paired t-tests
with a significance level of 0.05 and linear regression
analysis. However, instead of using the common ordin-
ary least squares (OLS) regression, we applied reduced
major axis (RMA) regression (Sokal and Rohlf 1995). In
contrast to OLS, the RMA regression method considers
errors in both the simulated and the measured values.
The slope b of the regression line x = a + bX is cal-
culated in RMA as the ratio of the standard deviations
of x and X, sx and sX:

b ¼ � sX

sx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðX � �X Þ2

P
ðx� �xÞ2

s

: ð3Þ

The sign of b is the sign of the following sum of prod-
ucts:
X

X � �Xð Þ x� �xð Þ: ð4Þ

The intercept a and the degree of determination R2 are
calculated in the same way as in OLS regression. For a
more complete description and discussion of RMA, see
Sokal and Rohlf (1995) and Niklas (1994).
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Results

Carbon storage along an altitudinal gradient

The measured aboveground carbon gradient for the year
1980 (Schumacher 2004) represents the average over the
entire Dischma valley. Therefore, it cannot be used for
an (absolute) quantitative comparison with the simu-
lated gradients of the year 1980 that refer to two par-
ticular transects at the entrance and in the middle of the
Dischma valley. However, the qualitative comparison
between the shape of the measured and the simulated
gradient allows for an assessment of the biological
plausibility of our simulations. Under the simulations
with forest management (5% of the standing biomass is
harvested every tenth year), the shape of the simulated
and measured carbon gradients agreed quite well up to
an elevation of about 2,000 m a.s.l. (Fig. 1). Above this
elevation, however, the simulated gradient was much
flatter than the measured one, thus leading to higher

biomass carbon stocks. Furthermore, the simulated
timberline lay well above the observed timberline.

Variations in climatic and soil conditions between the
four slopes that we studied did not seem to strongly
impact aboveground carbon stocks. Within one man-
agement regime (5% harvest every tenth year or no
harvest), the results differed only slightly between the
four slopes (maximum difference of 17.8 t ha�1 at
2,190 m a.s.l.; Fig. 1). In contrast, aboveground carbon
stocks were quite sensitive to management impacts: the
absolute difference between 5% harvest every tenth year
and no harvest was largest at the valley bottom
(35.7 t ha�1). However, the relative differences remained
fairly constant along the gradients, since harvesting was
implemented as a percentage of standing biomass with-
out altitudinal differentiation.

Medium-term carbon dynamics

The relative difference between the simulated and mea-
sured increment of aboveground carbon during the 30-
year growth period was calculated for each of the forest
yield research plots (Fig. 2). For comparison, Fig. 2 also
shows the relative increment differences obtained by the
single-tree simulator SILVA at the same forest yield
research sites of the colline, the montane, and the sub-
alpine zone (Schmid et al. 2006). Note that the three
upper subalpine sites were found to be located outside
the application region SILVA (cf. Schmid et al. 2006).

The results from Biome-BGC revealed that, in the
colline region, the model mainly underestimated growth
(�e = �17.283, �e% = �17.92), but not significantly
(two-sided Wilcoxon signed rank tests for dependent
data samples, n = 11, P value = 0.998). However,
Biome-BGC significantly overestimated growth at the
montane, subalpine, and upper subalpine sites
(�e = 17.719, �e% = 45.55) (two-sided Wilcoxon signed
rank tests for dependent data samples, n = 8, P va-
lue = 0.0289). Across all 19 forest yield research plots, a
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slight but not significant underestimation of measured
growth was found (�e = �2.541, �e% = �3.60) (two-si-
ded Wilcoxon signed rank tests for dependent data
samples, n = 19, P value = 0.730). At the majority of
the sites, i.e., 14 out of 19, the simulated increment was
within ± 30% relative to the measured increment, and
at seven sites, the simulated increment differed less than
10% from the measured value. The comparison of the
relative increment differences of Biome-BGC with those

Table 6 Measured and simulated LAI (m2/m2) for the four simu-
lation years

Site Measured Simulated LAI

LAI 1996 1997 1998 1999

Sarrebourg-Hesse 5.5–7.0 5.5 5.0 6.5 6.6
Bayreuth 5.0–6.7 5.2 6.3 6.3 6.5
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measured (grey) development of
daily NEE over time (left) and
scatterplot of simulated versus
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of SILVA revealed no significant difference between the
two models (two-sided Wilcoxon signed rank tests for
dependent data samples, n = 16, P value = 0.211).
Moreover, at those sites where the relative difference in
aboveground carbon increment was larger than ± 40%
in the Biome-BGC simulation, SILVA simulations dif-
fered considerably from measurements as well. Yet, at
these sites the Biome-BGC differences were larger than
those of SILVA.

Daily NEE and AET

Simulated LAI of the years 1996–1999 at the two EU-
ROFLUX sites Sarrebourg-Hesse and Bayreuth agreed
well with measured values (Table 6). The comparisons
of simulated 7-day averaged NEE and AET values with
eddy flux measurements are illustrated in Figs. 3 and 4.

Linear RMA regression analysis of simulated versus
measured NEE showed reasonable agreement of the
simulated and observed flux variance for both sites
(Sarrebourg-Hesse: R2 = 0.595; Bayreuth: R2 = 0.545;
Fig. 3, Table 7). Nevertheless, the NEE fluxes at Bay-
reuth were significantly overestimated by the model
(two-sided paired t-test, n = 175, P value = 2·10�16).
At Sarrebourg-Hesse no significant differences were
found (two-sided paired t-test, n = 187, P va-
lue = 0.462). Dividing the simulation period into days
with net carbon uptake (simulated NEE > 0, predom-
inantly summer months) and days with net carbon re-
lease (simulated NEE £ 0, predominantly winter
months) revealed large seasonal differences in simulation
accuracy. Biome-BGC simulated the variance in the
measured fluxes relatively well during the net carbon
uptake period at Sarrebourg-Hesse (R2 = 0.507) and
less well at Bayreuth (R2 = 0.310), but the model failed
when simulating the fluxes during the net carbon release
period (R2 = 0.070; R2 = 0.002) (Table 7). Simulations

during the net carbon uptake significantly overestimated
the NEE fluxes at both sites (two-sided paired t-test,
Sarrebourg-Hesse: n = 99, P value = 10�7; Bayreuth:
n = 101, P value = 2·10�16). During the net carbon
release period, however, measured NEE was underesti-
mated, but only Sarrebourg-Hesse showed a significant
difference (two-sided paired t-test, Sarrebourg-Hesse:
n = 88, P value = 2·10�16; Bayreuth: n = 74, P va-
lue = 0.937). The flux overestimation during the net
carbon uptake period and the flux underestimation
during the net carbon release period are also supported
by the intercept and slope from the linear RMA
regression (Table 7). The standard errors of these two
statistical parameters were probably underestimated,
because the regression analysis was based on statistically
dependent values (temporal autocorrelation). Therefore,
the intercepts may be closer to 0 and the slopes closer to
1, respectively, than shown in Table 7. However, over
the entire simulation period flux measurements and
simulations agreed on the fact that both forests are net
carbon sinks.

Regarding daily AET, simulated values agreed well
with measured data at Sarrebourg-Hesse (R2 = 0.675),
but the model failed to simulate the variance in the mea-
sured AET fluxes in Bayreuth (R2 = 0.284) (Fig. 4,
Table 8). However, measured AET was significantly
overestimated by themodel at both sites (two-sided paired
t-test, Sarrebourg-Hesse: n = 187, P value = 2·10�16;
Bayreuth: n = 175, P value = 2·10�16; Table 8). The
simulatedAETpeaks at Bayreuthwere found at dayswith
extremely high precipitation, with a correlation coefficient
between simulated AET and precipitation of 0.829 (7-day
averaged values).

The overestimation of AET at Bayreuth was found to
be caused mainly by the fact that Biome-BGC simulates
high rates of evaporation of rainwater that was inter-
cepted by the canopy (Fig. 5). Yet, canopy water inter-
ception is not the dominant component of AET in

Table 7 Results from the linear RMA regression (x = a + bX) between measured and simulated daily average NEE

n R2 Intercept a (Std. Err.) Slope b (Std. Err.) Bias �e Rel. bias �e%

Sarrebourg-Hesse
All NEE 187 0.595 0.203 (0.143) 1.125 (0.053) 0.103 13.45
NEP > 0* 99 0.507 2.208 (0.169) 0.686 (0.049) 1.069 48.045
NEP £ 0* 88 0.070 �1.731 (0.092) 0.587 (0.061) �0.985 111.45
Bayreuth
All NEE* 175 0.545 1.214 (0.108) 1.745 (0.092) 1.181 �1,130.05
NEP > 0* 101 0.310 2.197 (0.134) 1.302 (0.109) 2.051 386.88
NEP £ 0 74 0.002 �0.961 (0.122) 0.936 (0.110) �0.007 0.696

*Simulated and observed values show a significant difference (two-sided paired t-test with a significance level of 0.05)

Table 8 Results from the linear RMA regression (x = a + bX) between measured and simulated daily average AET

n R2 Intercept a (Std. Err.) Slope b (Std. Err.) Bias �e Rel. bias �e%

Sarrebourg-Hesse* 187 0.675 0.525 (0.109) 1.612 (0.068) 0.887 79.48
Bayreuth* 175 0.284 1.208 (0.195) 2.559 (0.165) 1.526 174.00

*Simulated and observed values show a significant difference (two-sided paired t-test with a significance level of 0.05)
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temperate forests (Flemming 1995). A sensitivity analy-
sis of AET and NEE to changes in the canopy water
interception coefficient revealed that decreasing the va-
lue of the interception coefficient led to improved AET
simulation (Table 9). Particularly, decreasing its value
from 0.041 (default value of model version 4.1.2) to
0.01 LAI�1 day�1 (value from the ecophysiological
parameter set from the Biome-BGC web database;
Biome-BGC 2004) led to a strongly improved AET
simulation. A decrease of the coefficient value to
0.00025 LAI�1 day�1 (found in Churkina et al. 2003)
further improved simulated AET, especially at the
Bayreuth site. However, decreasing the canopy water
interception coefficient did not necessarily lead to better
results in the NEE flux simulations (Table 9).

Expanding this sensitivity analysis to the 30-year
growth simulation at the forest yield research plots
showed that the change of the interception coefficient
from 0.041 to 0.00025 LAI�1 day�1 led to a higher
simulated aboveground carbon sink. It caused a shift in
the relative difference in aboveground carbon increment
towards higher values between + 5.4% (St. Moritz,
no.17) and + 38.0% (Chanéaz, no.5) (cf. Fig. 2). At 13

of the 19 forest yield research plots, this led to larger
relative differences in aboveground carbon increment
between simulation and measurement. In other words,
while decreasing the interception coefficient helped to
improve short-term AET simulations, the medium-term
simulations of aboveground carbon increment deterio-
rated considerably.

Discussion

Carbon storage along an altitudinal gradient

According to the records from the MAB project, the
current timberline (i.e., the upper elevation limit of
closed forest; cf. Körner 1998) in the Dischma valley is
located at about 2,100 m a.s.l. The strong decrease in
measured aboveground biomass observed between 2,000
and 2,100 m a.s.l. is usually thought to be due to
intensive grazing and avalanches, which are common
features in the Dischma valley. Thus, the elevation of the
current upper timberline is a result of anthropogenic
land use and, to a smaller extent, of natural distur-
bances. The potential timberline in the Dischma valley is
generally assumed to be situated at least 100 m higher,
i.e., at 2,200 m a.s.l. (Walder 1983). Moreover, in the
Dischma valley, the treeline (highest occurrence of tree
patches; cf. Körner 1998) is located at about 2,300 m
a.s.l. (Walder 1983).

Biome-BGC, however, simulates aboveground car-
bon stocks of 60–90 t ha�1 at elevations around
2,100 m, which still represents a closed forest, and car-
bon stocks of 35–70 t ha�1 at 2,300 m a.s.l., where po-
tential treeline should be located. It has to be
emphasized that Biome-BGC simulates growth
depending on climatic and edaphic conditions and on
forest management, but without any further influences
such as grazing or avalanche activity. Nevertheless, the
simulations indicate that Biome-BGC overestimates
growth at and above the current timberline. This con-
clusion is also supported by the fact that the model
simulates tree growth up to 2,500 m a.s.l., 200 m above
climatic treeline.

One reason for this growth overestimation at treeline
might be the fact that some climate-based influences
crucial to tree growth at high elevations are not simulated
in the model. For example, in the model version ATE
(Alpine Treeline Ecotone)-BGC developed by Cairns and
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Fig. 5 Monthly mean values of simulated daily AET and its
components. Solid lines AET, long dashed line canopy evaporation
(from intercepted rainwater), dash dotted line plant transpiration,
dotted line soil evaporation, short dashed line snow sublimation

Table 9 Sensitivity of NEE and AET, represented by the coefficient of determination R2 of the linear RMA regression analysis, to changes
in the canopy water interception coefficient

Interception coefficient

NEE AET

0.041 0.01 0.00025 0.041 0.01 0.00025

Sarrebourg-Hesse (R2) 0.595 0.670 0.676 0.595 0.745 0.798
Bayreuth (R2) 0.545 0.543 0.540 0.545 0.509 0.798

Interception coefficient values: 0.041 LAI�1day�1 (default value); 0.01 LAI�1day�1; 0.00025 LAI�1day�1
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Malanson (1998), a winter injury process due to wind
exposure was incorporated as the main model adaptation
to the upper treeline ecotone. Another reason might be
that in Biome-BGC as in most other biogeochemical
models (e.g., Foley et al. 2000; Sitch et al. 2003) photo-
synthesis, is assumed to be the limiting process of plant
production. However, Körner and Paulsen (2004) sug-
gested that particularly at low temperatures the transfer
of sugars into structural tissue is limiting carbon storage,
rather than the process of photosynthesis per se (cf.
Körner 1998). Therefore, also the increased limitation of
tissue growth under the cold environmental conditions at
high elevations could lead to the growth overestimation
of Biome-BGC near upper treeline.

A further potential explanation for the overestima-
tion of growth at high elevations could be the respiration
submodel of Biome-BGC. The magnitude of the respi-
ration response to temperature is modeled by a pre-
scribed rate defined at a reference temperature (i.e.,
15�C) and a proportional change in the rate for a 10�C
change in temperature, defined by the so-called Q10

parameter. At low temperatures, the Q10 model leads to
extremely small respiration rates, which in turn can
easily lead to an increased storage of biomass carbon.
Therefore, several authors (e.g., Qi et al. 2002; Zierl and
Bugmann 2006) have suggested that the Q10 model is
inappropriate for larger temperature ranges, and they
postulate a temperature-dependent function for the Q10

parameter.

Medium-term carbon dynamics

The Biome-BGC simulation results from the 19 forest
yield research plots revealed that the model tends to
underestimate measured growth at low elevations and to
overestimate growth at high elevations. These differ-
ences may be a result of incorrect climatic input data,
which raises the question of the accuracy of the weather
generator MTCLIM. Since MTCLIM was designed
especially for applications in mountainous terrain
(Thornton et al. 2000), we expect the model to provide
rather accurate data. Moreover, sites for which climate
data had to be extrapolated across large elevations (e.g.,
Embrach, Oberhünigen, Hospenthal, Morissen with
differences larger than 400 m) were not those that re-
vealed the largest differences between simulated and
measured increment of aboveground carbon. Thus, it is
more likely that the deviations between simulation and
measurements were caused by the parameters describing
that plant functional types that are the same regardless
of elevation, whereas in reality, the parameters of a plant
functional type are likely to change over large altitudinal
ranges as acclimation occurs. Alternatively, the differ-
ences may be due to the mortality rates applied that may
be low compared to actual mortality rates, in spite of the
increase with elevation. We cannot conclude this firmly,
but we surmise that the different climatic conditions in
combination with plant acclimation phenomena at high

elevations (cf. Theurillat and Guisan 2001) constitute the
main reasons for the differences between simulations
and measurements.

It is striking that those test sites that revealed large
deviations from the measurements in the Biome-BGC
simulations (differences of more than ± 40%) also
showed relatively large errors in the simulations with
SILVA (Schmid et al. 2006), a model parameterized for
central European forests. However, even though Biome-
BGC simulates the impact of environmental conditions
on growth in a far more mechanistic manner than SIL-
VA, the Biome-BGC errors exceeded those of SILVA.
This could indicate that Biome-BGC is more susceptible
to uncertainties in climatic input data and in the accu-
racy of the parameter estimation than the SILVA model,
or that variations in plant physiological traits over a
large range of altitudes may limit the accuracy of pro-
cess-based simulations. It also suggests that the relevant
processes and their interactions and interdependencies
are not fully understood yet.

Finally, the differences between measured and simu-
lated growth may be due to site-specific drivers of forest
growth [e.g., grazing as observed at the upper subalpine
site in Sils (no. 19)] that would be quite difficult to
quantify and to incorporate adequately into Biome-BGC.

Daily AET and NEE

The comparison of simulated and measured NEE values
indicates that the model has a better predictive ability
for photosynthesis-related processes or carbon sinks
(simulated NEE > 0, predominantly summer months)
than for respiration-related processes or carbon sources
(simulated NEE £ 0, predominantly winter months).
At both EUROFLUX sites, the variance of the mea-
sured fluxes was not simulated well by Biome-BGC.

Problems with the way respiration is modeled in
Biome-BGC have also been found in other studies (e.g.,
Hunt et al. 1996; Thornton et al. 2002; Churkina et al.
2003). However, the NEE differences between simula-
tion and measurement during respiration periods may
also be due to measurement errors, mainly errors of flux
measurements in winter (Baldocchi 2003; Churkina et al.
2003). During winter, nights are significantly longer than
days, and thus the contribution of the nighttime flux to
the total daily flux becomes more important. Because at
night the turbulent flux is partially inhibited by stable
stratification of the atmospheric surface layer above the
canopy (winds are light and intermittent), the measure-
ment of nighttime ecosystem respiration is difficult and
can lead to a flux underestimation (Baldocchi 2003).

The strikingly high simulated AET at Bayreuth war-
rants some discussion. Total evapotranspiration ismainly
a function of climatic factors and LAI. The comparisons
of simulated vs. measured LAI (a measure of canopy
density and size) were very favorable. Therefore, the
strong overestimation of AET, particularly for the ever-
green needleleaf forest at Bayreuth, cannot be attributed

177



to an erroneous simulation of canopy leaf area. More-
over, it is unlikely that the overestimation is caused by
deficient climatic inputs, as weather data were measured
on-site). Our finding that mainly the evaporation of
rainwater intercepted by the forest canopy leads to this
AET overestimation agrees well with a Biome-BGC study
by Thornton et al. (2002). In this study, the discrepancy
between simulation and measurement of AET in ever-
green needleleaf forests was attributed to measurement
errors, i.e., a suspected flux underestimation bias in the
measurements when the sonic anemometers are wet.
Thornton et al. (2002) even omitted the simulated evap-
oration of intercepted water when comparing simulated
AETwithmeasured fluxes. In the present study, however,
measurement errors cannot fully explain the large differ-
ences between simulated and measured AET. Indepen-
dent from these AET differences, the simulated share of
evaporated interception water relative to total forest
evaporation at Bayreuth must be considered as being
definitely too large: According to Flemming (1995),
evaporation of water intercepted by the canopy reaches
30–40% of AET for spruce, 25–35% for pine, and
15–25% for deciduous forests. The results at Sarrebourg-
Hesse agree well with these data, but clearly not those at
Bayreuth. Therefore, not only measurement errors but
also deficiencies in the simulation of intercepted water
evaporation are likely to contribute to the differences
between simulated and measured AET.

Although a reduction in the canopy interception
coefficient led to better AET simulations, this was not
true for NEE simulations. In Biome-BGC (as in virtually
all other biogeochemistry models), the water and carbon
cycles of the ecosystem are coupled through a control on
stomatal conductance. Therefore, changing the param-
eters of the water cycle also has an impact on the carbon
cycle. Even if the effect on carbon fluxes remains small,
the change becomes apparent when looking at medium-
term carbon storage. This demonstrates the susceptibil-
ity of the model output to single parameters, and the
difficulty to simulate appropriately the different com-
ponents of biogeochemical cycling in a forest ecosystem,
particularly if the predictions are evaluated simulta-
neously at several temporal scales.

In addition to these potential model-based and
measurement-based biases, uncertainties in the man-
agement history may also contribute to the discrepancies
between simulation and measurements. Several studies
have shown that management and other disturbances
can play an important role when assessing carbon fluxes
at short (e.g., Churkina et al. 2003) as well as at decadal
and longer time scales (e.g., Thornton et al. 2002).

Conclusions

Model-based predictions of changes in the global carbon
cycle across the twenty-first century are a scientific
challenge and have become of key political interest over
the past few years. In this study, we tested the ability of

the ecosystem process model Biome-BGC to simulate
different aspects of forest growth. We wanted to evalu-
ate within one single study both long-term and medium-
term dynamics of carbon pools as well as daily carbon
and water fluxes of a series of coniferous and deciduous
forests in central Europe from the colline zone to upper
treeline. In the context of carbon sources and sinks,
estimating the accuracy of long-term carbon simulations
has become quite important, particularly because short-
term simulation successes cannot be interpreted as long-
term predictability. Moreover, analyzing the accuracy of
a model applied across heterogeneous regions is partic-
ularly challenging because ecosystem processes often
respond in a nonlinear manner to variations in climate
and physiography (cf. Band et al. 1991).

Simulations along an altitudinal gradient in the Alps
resulted in vigorous tree growth up to approximately
200 m above the climate-determined treeline. This may
be attributed to a lack of mechanic disturbance pro-
cesses in the model, but probably also to changing plant
traits at high elevations that are not accounted for in the
model. A further reason for the overestimation could be
the incomplete representation of ecological processes
and their interactions, such as the limiting effect of low
temperatures on tissue growth (transfer of sugars into
structural tissue) that is not included in Biome-BGC, or
the respiration model that is not well adapted to the cold
climates at high elevations.

Further, our results showed that Biome-BGC
appropriately simulated medium-term (30 years)
dynamics of carbon fluxes at different elevations and
climatic regions in Switzerland. At low elevations, the
model tended to underestimate measured growth, while
it generally overestimated growth at high elevations.
However, the accuracy of these simulations did not
significantly differ from those of the semi-empirical sin-
gle-tree model SILVA parameterized particularly for
central European tree species.

At the Sarrebourg-Hesse site, Biome-BGC performed
well in simulating the annual course of daily net carbon
uptake during the growing season, but the model was
less successful in reproducing net carbon release by the
forests during winter. At Bayreuth, NEE simulations
deviated strongly from measurements. The differences
between simulation and measurement during respiration
periods can be attributed to some extent to flux mea-
surement errors. Also, the overestimation of daily water
fluxes may partly be due to measurements errors (i.e.,
biases for wet canopy evaporation), but there are also
deficiencies in the model itself. Our attempt to improve
daily water flux simulations by changing the value of the
canopy water interception coefficient led to better esti-
mates of the water balance, but applying this ‘improved’
parameter to the simulation of medium-term carbon
dynamics led to larger differences (overestimation) be-
tween simulation and measurements.

By using the process-based model Biome-BGC
without any site-specific parameter adaptations, we tes-
ted the model parameterization as well as the model
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theory and equations. The test results show that future
applications of Biome-BGC could benefit much from an
improvement of some of the model algorithms (e.g., the
Q10 model) as well as from a detailed analysis of the
ecological significance of crucial parameters such as the
canopy water interception coefficient. In spite of these
model deficiencies, comparing Biome-BGC simulations
with measurements and with simulations of the semi-
empirical model SILVA adapted to central European
forests, we conclude that Biome-BGC provides good
results in terms of carbon fluxes as well as in terms of
carbon pools in large parts of the Central European
forests.
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Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement
R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard
K, Rebmann C, Snijders W, Valentini R, Vesala T (2000)
Estimates of the annual net carbon and water exchange of
forests: The EUROFLUX methodology. Adv Ecol Res 30:113–
175

Baldocchi D (2003) Assessing the eddy covariance technique for
evaluating carbon dioxide exchange rates of ecosystems: past
present and future. Glob Change Biol 9:479–492

Band LE, Peterson DL, Running SW, Coughlan J Lammers R
Dungan J, Nemani R (1991) Forest ecosystem processes at the
watershed scale: basis for distributed simulation. Ecol Model
56:171–196

BFS (1992) Bodeneignungskarte der Schweiz. GEOSTAT Bunde-
samt für Statistik (BSF) Bern

Biome-BGC (2004) Biome-BGC: ecophysiological parameteriza-
tion. http://www.ntsg.umt.edu/ecosystem_modeling/ Bio-
meBGC/bgc_epc.htm
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