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Abstract Partial LAD regression uses the L1 norm associated with least
absolute deviations (LAD) regression while retaining the same algorithmic
structure of univariate partial least squares (PLS) regression. We use the boot-
strap in order to assess the partial LAD regression model performance and
to make comparisons to PLS regression. We use a variety of examples coming
from NIR experiments as well as two sets of experimental data.

Keywords Resampling · Partial least squares · LAD regression · NIR
experiments

1 Introduction

Resampling methods are used in several related but distinct areas of statistics,
for instance: randomization tests, cross-validation, the jackknife, and the boot-
strap. These techniques are used to assess the performance of a given statistic
under study, as well as in model selection and validation. For instance, see
(Diaconis and Efron 1983; Efron and Gong 1983; Shao 1993; Edgington 1995).

Partial least absolute deviations (PLAD) regression (Dodge et al. 2004), is a
variation of partial least squares (PLS) regression that estimates the median
response rather than the mean response. However, it seems impossible to
extract theoretically the sampling properties of PLS and consequently of PLAD.
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We use the bootstrap here in order to evaluate the repeated sampling properties
of PLAD and to compare these with PLS.

The variation of PLS regression that leads to PLAD is described in Sect. 3. Its
relation to principal components and PLS regression methods are given therein.
In Sect. 4 a brief description of the bootstrap is given, while Sects. 4.1, 4.2, and
4.3 give the necessary details on the use of the bootstrap in PLAD regression.
Section 5 uses near infra-red (NIR) data sets, commonly used in PLS regression
applications, in order to assess the PLAD regression and to make comparisons
with PLS regression. Experimental data analysis follows in Sect. 6 and finally,
in Sect. 7 some conclusions are drawn.

2 Notation and preliminaries

The following notation is used throughout this article: bold faced lower case
symbols are vectors, upper case are matrices. The superscript T is used to denote
the transpose of a matrix. We use the subscript n to denote that the expecta-
tions are taken on sample quantities, so that En(·) is a sample mean, and so
varn(·), sdn(·), and covn(·|·) denote the sample variance, standard deviation,
and covariance, respectively. We also use medn to denote the sample median,
while the median absolute deviation is denoted as madn. Later, we introduce
the use of the subscript R in the above notation to indicate estimates obtained
by R bootstrap replicates; the latter are flagged by the use of the superscript �.

The subscript k indicates the number of dimensions extracted in PLS and
PLAD regression, and kmax is the largest model dimension envisaged. Since
both PLS and PLAD regression use components as regressors instead of original
predictors it is sensible to use the notation tk for the components while xj
denotes the jth original predictor. The loadings and weights of a component tk
are denoted by pk and wk, respectively. The vectors tk, pk, and wk are collected
together in the matrices Tk, Pk, and Wk, of appropriate dimension. We consider
univariate regression problems with the original predictors being the columns
of the n × p matrix X, and response vector y. We use i = 1, . . . , n to denote
observations and and j = 1, . . . , p for predictors. The fitted value for the ith
observation in a regression model based on k components is denoted by ŷik and
the fitted response vector by ŷk. Further notation is introduced as needed.

3 Partial LAD regression

Partial LAD regression, introduced by Dodge et al. (2004), uses the L1 norm
associated with least absolute deviations regression. It takes the structure of the
PLS algorithm for univariate partial least squares regression (Martens and Naes
1989; Tenenhaus 1998), and similarly extracts components t, in directions that
depend upon the response variable. In PLAD these directions are determined
by a Gnanadesikan–Ketterning (GK) covariance estimate (Gnanadesikan and
Kettenring 1972), that replaces the usual variance based on the L2 norm with
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mad, the median absolute deviation based on L1;

madn(x) = medn |x − medn(x)|.

We use the superscript mad to emphasize that covariance is calculated from
mad instead of from the more common variance.

Algorithm 1 Partial LAD regression

(1) Center (standardise) the data D = (X0, y)

(2) For k = 1, . . . , kmax
(2a) compute wmad

k from:

wmad
jk = 1

4

(

mad2
n(xjk−1 + y) − mad2

n(xjk−1 − y)
)

; (1)

(2b) scale wmad
k to 1;

(2c) build the component
tk = Xk−1wmad

k ; (2)

(2d) orthogonalise each xjk−1, j = 1, . . . , p with respect to tk,
to give Xk.

(3) Compute the LAD regression to give the fitted vectors ŷk = Tk q̂k
lad, where Tk = (t1, . . . , tk)

is the score matrix, and q̂lad
k = (̂qlad

1 , . . . , q̂lad
k )T is the LAD regression coefficient.

(4) Recover the implied partial LAD regression coefficients from ̂βk = ˜Wk q̂lad
k , where the matrix

˜Wk includes as columns the wmad
k expressed in terms of the original xj.

With i = 1, . . . , n and j = 1, . . . , p, denoting observation units and predictors,
the PLAD regression algorithm is given in Algorithm 1. In contrast to princi-
pal components regression, which extracts the same components whatever the
response, PLS and PLAD regression share similar properties, we note

(1) y = q1 t1 + · · · + qk tk + ε,

(2) X = p1 t1 + · · · + pk tk + f ,

(3) covn(ti, tj) = 0 for i �= j,

where e and f correspond to residual terms, and pk are the X-loadings. PLAD
builds a regression model at each iteration k that relates the predictors to the
response according to

ŷk =
p

∑

j=1

̂βjk xj. (3)

The implied regression coefficients ̂βjk are determined by the derived compo-
nents retained in the final regression model. In fact,
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̂β
plad
k = ˜Wk q̂ lad

k , (4)

with ˜Wk = Wk(PT
k Wk)−1 being the X-weights expressed in terms of the

original predictors. Expression (4) demonstrates the similarity of PLAD to
PLS regression, and displays its main difference. PLAD regression deflates
the X-data as in PLS regression. It retains therefore orthogonal components,
while it recovers the weight vectors wk contained in the matrix Wk in terms
of the original predictors (instead of in terms of deflated data) according to
˜Wk = Wk(PT

k Wk)−1. The PLAD coefficients qlad
k are obtained using LAD

regression of the scores t1, . . . , tk on the response y. While for PLS regression
at dimension k the coefficients q1, . . . , qk−1 remain the same, for PLAD regres-
sion this is not the case. In the same sense we use the suffix plad in wplad

k to
emphasize that the direction vectors depend upon the GK-type covariance used
in expression (1).

We choose to assess the overall prediction error incurred by the partial LAD
regression model in (3) for the data at hand D by the standard root mean
squared error (RMSE) loss function given by

L(D) = √ En[loss(y, ŷk)] = √ 1
n

n
∑

i=1

(yi − ŷik)2. (5)

Recall the notation En[·] indicates averaging over the n observations in D.
The essential motivation for PLAD regression is to model the median of the

response, instead of the mean as with PLS, and so it employs the L1 instead of
the L2 norm. Additionally, as LAD regression is less sensitive to outliers than
least squares regression PLAD may profit in the same way. However, PLAD is
not a robust alternative to PLS for two main reasons: firstly, because the partial
LAD algorithm does not bound the influence arising from high leverages in
the predictor space. This is verified by the scores expression in (2). Secondly,
because of the GK type of covariance, with the mad replacing the variance, has
unstable robust properties depending on the scales of X and y (Huber 1981). A
simple alternative is to set

wjk = 1
4 αjβ

( mad2
n(αjxjk−1 + βy) − mad2

n(αjxjk−1 − βy)), (6)

with αj = 1/ madn(xj) and β = 1/ madn(y). This is the definition we use in this
paper.

The rationale for replacing (1) by (6) is that the latter is less sensitive to the
choice of scale for the predictor variables. Recall that PLS regression is not
scale invariant.

Our goal is to further examine the properties and, in particular, the stability
of PLAD regression under resampling. This is in line with most PLS procedures
where prediction performance and model selection are determined by means of
cross validation or some other resampling method. In Sect. 4, we consider how
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to use the bootstrap to evaluate sampling variability. In particular, we choose
to bootstrap data, rather than residuals, for building empirical distributions of
regression coefficients and of prediction errors.

4 PLS, PLAD and the bootstrap

The bootstrap (Efron and Tibshirani 1993) is a resampling method which pro-
vides an assessment of uncertainty when theoretical solutions are not available,
as is the case with PLS and PLAD regression. The general bootstrap algorithm
is sketched in Algorithm 2.

Algorithm 2 Bootstrap

Let (y1, . . . , yn) be an observed sample of size n, and θ the statistic of interest. For b = 1, . . . , R the
number of repetitions:

(1) Generate a random sample (yb
1 , . . . , yb

n) ∼ F, with replacement, from the distribution F which
is either given or estimated by the empirical distribution ̂F.

(2) Compute ̂θb from the simulated data (yb
1 , . . . , yb

n).

Use (̂θ1, ̂θ2, . . . ̂θR) to estimate the sampling distribution of ̂θ and summaries of interest such as
ER(̂θ), var R(̂θ), and sdR(̂θ).

The subscript R in ER(·), var R(·), and sdR(·) indicates averaging over the R
bootstrap replicates.

4.1 Bootstrapping data or residuals?

In principle may base our analysis on bootstrapping the raw data D or on
bootstrapping the residuals having fitted a regression. For several reasons we
employ the former here. Bootstrapping residuals requires fixing the number of
components k in order to define the fitted values and so determine the residuals.
This may conflict with our interest in comparison of how different regression
methods might choose k. Furthermore our interest is to compare the manner in
which PLS and PLAD regression generalise performance to new observations
rather than to new samples of residuals. More generally, bootstrapping data is
less sensitive to assumptions made on the regression model [see (Efron and
Tibshirani 1993), p 113].

We generate R bootstrap samples D� b, b = 1, 2, . . . , R, each consisting of
(X� b, y� b) obtained by resampling the rows of (X, y). We compare the bootstrap
results from PLS and PLAD regression. When necessary we use a suffix pls or
plad to denote quantities computed from the corresponding methods.

Let s = s(D) be the statistic of interest calculated from the original data, and
assumed to be invariant to permutation of the rows of the data D. Its mean and
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standard deviation calculated over the bootstrap samples are given as

ER(s�) = 1
R

R
∑

b=1

s(D� b) and sdR(s�) = √ 1
R − 1

R
∑

b=1

[s(D� b) − ER(s�)]2. (7)

Constructing confidence intervals and hypothesis testing based on the statistic s
is then straightforward [see (Efron and Tibshirani 1993), chapters 12, 13, 14, 16].

4.2 Bootstrapping the regression coefficients

Consider the implied coefficients ̂βjk, j = 1, 2, . . . , p using PLAD from (4) and a
similar expression for PLS. These statistics are invariant to permuting the rows
of D. From the bootstrap we compute ER(̂β�

jk) and sdR(̂β�
jk) as at (7) above,

that is

ER(̂β�
jk) = 1

R

R
∑

b=1

̂β� b
jk and sdR(̂β�

jk) = √ 1
R − 1

R
∑

b=1

[̂β� b
jk − ER(̂β�

jk)]2. (8)

The (1 − α)% percentile bootstrap confidence limits for ̂βjk are

[q�
α/2, q�

1−α/2] (9)

corresponding to the α/2 and 1 − α/2 empirical quantiles of the distribution of
the bootstrap replicates for ̂β� b

jk . We set α equal to 0.05. Bootstrap confidence
intervals may be also obtained by using the ABC or the BCa methods (Efron
1987). We use the percentile approach here because it is simpler to interpret
and it is not more computationally expensive.

4.3 Bootstrapping the prediction error

For any value of k the RMSE, or apparent prediction error, L at (5) is invariant
to permutation, and its bootstrap standard deviation is

sdR(L�) = √ 1
R − 1

R
∑

b=1

[L(D� b) − ER(L�)]2, (10)

from (7). These quantities are computed for PLS and PLAD, giving sdR(L� pls)

and sdR(L� plad).
The mean bootstrapped RMSE

ER(L�) = 1
R

R
∑

b=1

L(D� b), (11)
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is the resampling prediction error. It is commonly used for model selection
(Denham 2000) as the magnitude of the errors decrease with the number of the
components k retained in the final regression model.

The bootstrap estimate of the apparent prediction error can be improved
by subtracting the bias induced in using ER instead of En. That is, by using
̂F instead of F (see Algorithm 2, step 1). This is the optimism. The bootstrap
estimate of the expected optimism ω̂(̂F) is obtained by

ω̂(̂F) = En[L(D�,b, F) − L(D�,b,̂F)], (12)

with L(D�,b,̂F) equally denoting the resampling error L(D� b). This is often
called type II error. The first term in the right hand side of expression (12)
corresponds to the loss induced by testing predictions for models constructed
on the bootstrap sample on the original response, and it is often called type I
error.

The averaged optimism above is approximated for the R bootstrap samples
by

ω̂(̂F) = 1√
n R

⎧

⎨

⎩

R
∑

b=1

√

√

√

√

n
∑

i=1

(yi − xT
i

̂β
� b
k )2 −

R
∑

b=1

√

√

√

√

n
∑

i=1

(y� b
i − x� b

i
T ̂β

� b
k )2

⎫

⎬

⎭

.

(13)
The final estimate for the prediction error (FPE) of the partial LAD regression
model including k components is given by

FPE plad
k = L(D,̂F) + ω̂(̂F), (14)

with a similar expression for the PLS regression model.
Further improvement in assessing the prediction error can be obtained by

the use of the 0.632 bootstrap estimator (Efron and Tibshirani 1997). In that
case the optimism is estimated in the apparent prediction error for observation i
by using bootstrap samples that do not include the latter observation. The 0.632
estimate is computationally more expensive. We therefore base our estimation
for prediction error on the expression (14).

5 Experience based on NIR data sets

5.1 NIR data sets

The field of near infra-red (NIR) experimentations is a principal application
of PLS methods (Martens and Naes 1989). We use here three NIR data sets:
the Wheat data (Fearn 1983), the Fish data (Naes 1985), and the Octane data
(Tenenhaus 1998).

The predictors in each data set are spectra at different number of wave-
lengths, and are highly collinear. The reflectance of the NIR radiation by the
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sample units at different wavelengths are used to model chemical concentra-
tions. The Wheat and the Fish data have a relatively small number of regressors,
while the Octane data count more than 200 regressors for 39 observations. Fur-
ther details on these data sets are given in the references.

5.2 Results

The analyzed data are initially centered but not rescaled as they are measured
on similar physical scales. The number kmax is known for each data set due to
previous analysis. Nevertheless, in our results we obtain and we present esti-
mates for k = 1, . . . , 4. The number of the bootstrap replicates is set to R = 500
for all data sets. Table 1 gives the values of the apparent and the resampling
prediction errors for the NIR data sets together with the bootstrap estimates
for the optimism.

The prediction errors from PLS and PLAD are close for both the Wheat and
the Fish data sets. The PLAD estimates of the resampling prediction error are
slightly more variable in comparison to the PLS. For the Octane data, PLAD
regression reduces the apparent error on the second component rather more
than PLS does (though including the third component brings PLS and PLAD
together). However this reduction is accompanied by a relatively large varia-
tion in the second PLAD component, which is illustrated in Fig. 1, where the
solid line (green) represents the apparent prediction error and the boxplots are
constructed according to the prediction error values on the bootstrap samples.
Finally, the horizontal dashed lines (red) correspond to the final prediction error
estimate given by equation (14).

Table 1 leads to the conclusion that PLS generally reaches slightly lower
levels of prediction error than PLAD regression. PLAD regression in certain
cases has lower apparent prediction error for the data at hand in comparison to
PLS. For the Octane data set, the apparent PLAD error provides some evidence
that two components (instead of three for PLS) could have been retained in the
final model. This is probably due to six outlying observations in the Octane data
(Dodge et al. 2004). Outlying observations and high leverages are also found
in the Fish data set, where observations 43, 44, 45 are high leverages while
observations 1 and 43 are outliers. For PLAD regression the difference in the
prediction loss for k = 2 and k = 3 is much less than for PLS. This is in line with
our findings for the Octane data. However for both data sets the resampling
procedure does not indicate that this performance generalizes (note the right
hand panel of Fig. 1 for k = 2).

Figures 2 and 3 display the percentile bootstrap confidence limits for the
implied regression coefficients from the Octane and the Wheat data. The PLAD
implied coefficients in the right panel of Fig. 2 are more variable than PLS coeffi-
cients given in the left panel.

This is also apparent for the Fish and Wheat data sets as well. We illustrate the
latter in Fig. 3 where the estimated regression coefficients for PLAD and PLS
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Table 1 NIR data: RMSE: apparent error (AE), resampling error (RE), with standard errors (in
parentheses), and the expected optimism ω̂(̂F) for the three NIR data sets, and for k = 1, . . . , 4

k = 1 Data Method AE RE (sd) ω̂(̂F)

Wheat PLS 1.2326 1.1690 (0.1282) 0.0882
PLAD 1.2181 1.1919 (0.1528) 0.1101

Fish PLS 3.0161 2.8758 (0.3484) 0.2445
PLAD 3.0220 2.9429 (0.3601) 0.2612

Octane PLS 1.7395 1.6041 (0.2691) 0.0901
PLAD 1.8308 1.8325 (0.2443) 0.1448

k = 2 Data Method AE RE (sd) ω̂(̂F)

Wheat PLS 0.9790 0.8050 (0.1979) 0.1114
PLAD 0.9688 0.9697 (0.1957) 0.1352

Fish PLS 1.7914 1.6728 (0.1998) 0.1748
PLAD 1.7234 1.6881 (0.2530) 0.1570

Octane PLS 0.6973 0.7364 (0.1152) 0.0408
PLAD 0.5878 0.5783 (0.1740) 0.0472

k = 3 Data Method AE RE (sd) ω̂(̂F)

Wheat PLS 0.2413 0.2127 (0.0546) 0.0545
PLAD 0.3352 0.2901 (0.1200) 0.0792

Fish PLS 1.2777 1.1170 (0.2094) 0.3396
PLAD 1.2900 1.2796 (0.2771) 0.3063

Octane PLS 0.2574 0.3801 (0.1469) 0.0260
PLAD 0.3664 0.3878 (0.1515) 0.0434

k = 4 Data Method AE RE (sd) ω̂(̂F)

Wheat PLS 0.1968 0.1673 (0.1968) 0.0569
PLAD 0.2112 0.2049 (0.0557) 0.0709

Fish PLS 1.2266 1.0616 (0.2042) 0.3457
PLAD 1.2713 1.1907 (0.2566) 0.3102

Octane PLS 0.2409 0.3555 (0.1533) 0.0482
PLAD 0.2740 0.2511 (0.0478) 0.0505

are displayed together. The larger intervals for PLAD regression coefficients
show them to be more variable than the PLS coefficients.

6 Experimental data

We consider two sets of data constructed from simulation. The first from a
switching regression model is an example where the results of PLS and PLAD
differ because they are estimating different features of the data. The second
illustrates the effect of outlier contamination on a standard factor model often
employed to illustrate PLS regression (Martens and Naes 1989).

6.1 Data from a switching regression model

There are underlying latent variables here with distributions M ∼ Uniform
(0, 1), Z ∼ N(0, 1), and, to induce a switch, S ∼ Bernoulli(0.65) on {−1, 1}.
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Fig. 1 Octane data. Apparent and resampling prediction error for PLS (left panel) and PLAD (right
panel) regression models. The apparent error follows the solid line (green) while the resampling
prediction error is summarized by boxplots. The horizontal dashed lines (red) correspond to the
final prediction error

0 50 100 150 200

4
2

0
2

−
4

−
6

−
8

−

tneiciffeoc deilp
mI

PLS1 bootstrap percentile confidence limits

0 50 100 150 200

4
2

0
2

−
4

−
6

−
8

−

t neiciffeoc dei lp
mI

PLAD bootstrap percentile confidence limits

Fig. 2 Octane data. Regression coefficients for PLS (left panel) and PLAD (right panel) regressions
using on three components. Percentile bootstrap confidence limits for percentiles 0.025 and 0.975
are displayed as dashed lines (green)

The covariates are partitioned into X = (X1, X2), and are related to the latent
variables by

X1|M ∼ N(m1, I), X2|Z ∼ N(z1, I), and Y|(S, M) ∼ N(sm + z, 1).

The non linear model generated shows that scatter plots of elements of X1
with Y are somewhat triangular with the lower quantile decreasing with X1 but
the upper quartile increasing.

A sample of n = 100 observations based on p = 20 explanatory variables
is generated, and the results are displayed in Fig. 4. The fitted median and the
fitted mean resulting from the PLAD and PLS regression models are illustrated
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Fig. 3 Fearn’s Wheat data. Regression coefficients for PLS (black solid line) and PLAD (red
dashed line) regression models on three components. The percentile bootstrap confidence limits
for percentiles 0.025 and 0.975 are displayed as points, with bullets for PLAD and crosses for PLS
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Fig. 4 Data from a switching regression model. The PLS and PLAD fitted values plotted versus
the fitted median. The fitted median and the fitted mean are illustrated by the dashed and solid line,
respectively

in Fig. 4 by the dashed and solid line, respectively. In this figure the fitted PLS
and PLAD lines are plotted versus the fitted median. Differences between the
two methods are here detected on the two fits and the PLS and PLAD lines are
now well distinguished.
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6.2 Data from the bilinear factor model

Both PLS and PLAD methods are based on a bilinear model (see Sect. 3) of
the form

y = q1 t1 + · · · + qk tk + ε, and X = p1 t1 + · · · + pk tk + f . (15)

The bilinear model is described in (Martens and Naes 1989), and here forms
the basis for our experimental data. In particular, we simulate the components
T by taking n independent realisations of

T ∼ N (0k, �kk).

The k-variate normal distribution has parameters 0k (as the data are centered)
and the variance–covariance matrix �kk is diagonal with specified variances.

�T =

⎛

⎜

⎜

⎜

⎝

var(t1) 0 ... 0
0 var(t2) ... 0
...

...
. . .

...
0 0 ... var(tk)

⎞

⎟

⎟

⎟

⎠

.

The data set X and y is obtained according to Eq. (15) for a specified choice
of residual structure in f and ε. We fix kmax = 3, P = I3,p, and q = (1, 1, 1)T .
Finally the matrix �kk is set to diag (10, 5, 1), so that

�T =
⎛

⎝

10 0 0
0 5 0
0 0 1

⎞

⎠ .

We generate the artificial data set as follows: the elements of the error term
ε in expression (15) are independent normals, that is εi ∼ N (0, 0.01) where
i = 1, . . . , n. We then contaminate by replacing a small fraction, 10%, of the
data set with outliers. The contaminated error vector is denoted as εcont and
its elements are generated according to εi′,cont ∼ N (µ, 1) with µ = 5 and
i′ = 1, . . . , � for � = 0.10 · n . The residual term f in expression (15) remains a
random normal variate centered to zero, and no contamination on the X-space
has been used. The dimensions of the data sets are set to n = 100 and p = 50.
For the simulated data we apply bootstrap methods with R equal to 500.

Results

Table 2 gives the apparent and the resampling prediction error together with
the optimism and the FPE estimate for both PLS and PLAD methods. For both
regression models the simulation setting is verified since three components are
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Table 2 Data from the bilinear factor model: the apparent and the resampling prediction error
together with the optimism and the FPE estimate for PLS and PLAD methods

k PLS

AE RE (sd) ω̂(̂F) FPE

1 1.5066 1.48 (0.0906) 0.0203 1.5269
2 1.2406 1.22 (0.0508) 0.0258 1.2665
3 1.0479 1.01 (0.0465) 0.0478 1.0958
4 0.9557 0.87 (0.0467) 0.1755 1.1312
5 0.9397 0.83 (0.0497) 0.2300 1.1697

k PLAD

AE RE (sd) ω̂(̂F) FPE

1 1.3667 1.42 (0.1265) 0.0392 1.4060
2 1.1951 1.26 (0.1160) 0.0401 1.2353
3 1.0902 1.15 (0.1000) 0.0476 1.1379
4 1.0873 1.11 (0.0719) 0.0462 1.1335
5 1.0810 1.09 (0.0630) 0.0499 1.1309

The standard deviations for the resampling error given in the parenthesis
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Fig. 5 Data from the bilinear factor model. Apparent and resampling prediction error for PLS (left
panel) and PLAD (right panel) regression models. The apparent error is displayed by solid lines
(green) while the resampling prediction error is summarized in boxplots. The horizontal dashed
lines (red) correspond to the final prediction error

retained. The PLAD resampling prediction error is slightly more variable than
the PLS resampling prediction error for all the components.

The available information on prediction error assessment for the contami-
nated case is displayed in Fig. 5. Figure 5 is similar to Fig. 1 with the horizontal
dashed lines (red) indicating the final prediction error estimate (FPE) given by
Eq. (14).

Both regression methods retain three components. In this sense contam-
ination has no effect on model dimension neither for PLS nor for PLAD.
Yet PLAD is accompanied by a larger variability of the resampling prediction
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error. This is seen on the first three boxplots (that correspond to k = 1, 2, 3)
in the right panel of Fig. 5. Note also that PLAD seems to be much less vul-
nerable to overfitting in comparison to PLS. Especially for k ≥ 3 the PLAD
apparent error is much closer to the FPE in comparison to PLS regression
for which the apparent error decreases constantly with the number of the
components.

The study of the regression coefficient vectors for the PLAD and the PLS
regression methods for the two experimental data sets have led us to the follow-
ing two conclusions. Firstly, the PLAD estimates are nearly twice more variable
than PLS estimates on both data sets. Secondly, both PLS and PLAD regression
vectors are subject to nearly the same loss compared to the regression vector
β computed according to (4), for q = (1, 1, 1). The loss was taken as the vector

norm for (̂β
plad
k − β) and (̂β

pls
k − β) for k = 1, 2, 3.

7 Conclusions

The PLAD regression has been tested and compared to PLS regression using
the bootstrap. In the limited examples and experiments considered, we have
established that PLAD and PLS estimate different features, but PLS is superior
to PLAD in the sense that the implied regression coefficient estimates have
smaller bootstrap confidence intervals; so that when the features are the same
PLS is to be preferred. The magnitude of the difference is in line with the well
known ratio of the standard deviation of the sample mean compared to that of
the sample median when sampling from a Normal distribution. This gives some
confidence in the basic structure of the PLAD algorithm when the response
distribution is far from Normal. Furthermore, we have established that PLAD
performs as well as PLS in model selection and prediction error assessment
with final prediction error estimates nearly equal.

Using the bootstrap reveals two main drawbacks for PLAD regression.
Firstly, PLAD estimates of prediction error are more variable than PLS esti-
mates, so that achieving a small number of retained components might be more
hazardous. Secondly, the PLAD regression method is computationally more
expensive than PLS regression. This is due to the LAD algorithm as well as
the GK-type covariance which demands the computation of wmad

k for all the
columns of matrix X. A nice feature observed in the experimental studies is
that PLAD is more resistant to overfitting in comparison to PLS. The apparent
error from PLAD is always closer to the FPE, especially for k ≥ kmax. In these
cases the variability of PLAD resampling error reaches smaller levels which are
comparable to those obtained from PLS.

This research has provided a further illustration of using the bootstrap to pro-
vide numerical solutions for analytically intractable problems. Further research
on PLAD include (i) experiments with more distinctly non-Gaussian features,
and (ii) computing error ellipses for component plots of the sample members
based on the bootstrap.
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