
Constr Approx (2013) 38:235–251
DOI 10.1007/s00365-012-9178-7

A Note on the Construction of L-Fold Sparse Tensor
Product Spaces

Michael Griebel · Helmut Harbrecht

Received: 29 April 2012 / Revised: 19 August 2012 / Accepted: 3 September 2012 /
Published online: 24 January 2013
© Springer Science+Business Media New York 2013

Abstract In the present paper, we consider the construction of general sparse ten-
sor product spaces in arbitrary space dimensions when the single subdomains are of
different dimensionality and the associated ansatz spaces possess different approxi-
mation properties. Our theory extends the results from Griebel and Harbrecht (Math.
Comput., 2013) for the construction of two-fold sparse tensor product space to arbi-
trary L-fold sparse tensor product spaces.
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1 Introduction

Many problems in science and engineering lead to problems which are defined on the
tensor product of L domains Ω1 × Ω2 × · · · × ΩL, where Ωi ∈ R

ni . Already for the
simple situation of L = 2, there exists a large number of problems. This includes, for
instance, radiosity models and radiative transfer [25], where Ω1 denotes the spatial
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three-dimensional domain of a geometric object under consideration and Ω2 is the
sphere S

2. Then there are the parabolic problems, where Ω1 is the time interval and
Ω2 is the spatial domain [5, 13, 15, 22], or various phase space problems, e.g., the
Boltzmann equation, kinetic equations, or the Langevin equation [2], where both Ω1
and Ω2 are three-dimensional cubes or the full three-dimensional real space.

Even more applications can be found in case of a general L > 2. For example, non-
Newtonian flow can be modeled by a coupled system which consists of the Navier
Stokes equation for the flow in a three-dimensional geometry described by Ω1 and
of the Fokker–Planck equation in the 3(L − 1)-dimensional configuration space on
Ω2 × Ω3 × · · · × ΩL, where each domain Ωi (i ≥ 2) is a sphere. Here L denotes the
number of atoms in a chain-like molecule which constitutes the non-Newtonian be-
havior of the flow; for details, see [3, 20, 21]. Also the L-th moment of linear elliptic
boundary value problems with stochastic source terms are known to satisfy a deter-
ministic partial differential equation with the L-fold tensor product of the elliptic op-
erator on the L-fold product of the physical domain [23, 24]. This approach extends to
stochastic diffusion problems and to more general partial differential equations with
stochastic coefficient functions or with stochastic domains [16–18]. Another example
is multiscale homogenization. After unfolding [1, 6, 7], it gives rise to the product of
the macroscopic physical domain with the L−1 periodic microscopic domains which
correspond to the L − 1 different microscales [19]. Finally, we find the product of L

domains in quantum mechanics for, e.g., the electronic Schrödinger equation where
each electron has its associated three-dimensional domain, see, e.g., [10, 26, 27].

A naive, conventional discretization would use tensor products of all basis func-
tions from suitable finite dimensional ansatz spaces V

(i)
J , i = 1,2, . . . ,L which

are defined on each domain separately. This leads to the full tensor product space
V

(1)
J ⊗V

(2)
J ⊗ · · ·⊗V

(L)
J . However, in general, the full tensor product space contains

way too many degrees of freedom such that desirable realistic simulations are be-
yond current computing capacities. This relates to the well-known curse of dimension
which states that the number of degrees of freedom for an approximation necessary
to obtain a prescribed accuracy grows exponentially with the dimension.

To overcome the curse of dimension, we will focus in this paper on the construc-
tion of sparse tensor product spaces, also known as sparse grids [4, 28]. The starting
point are multilevel decompositions of the ansatz spaces

V
(i)
J = W

(i)
0 ⊕ W

(i)
1 ⊕ · · · ⊕ W

(i)
J , i = 1,2, . . . ,L,

which can be constructed via hierarchical bases, interpolets, or wavelet-like bases.
From this, the regular sparse tensor product space is defined according to

̂V
reg
J =

⊕

j1+j2+···+jL≤J

W
(1)
j1

⊗ W
(2)
j2

⊗ · · · ⊗ W
(L)
jL

, (1.1)

see, e.g., [4, 12, 14, 28]. Its approximation power is nearly as good as that of the
corresponding full tensor product space if the functions to be approximated provide
additional smoothness in terms of bounded mixed derivatives. Note here that the regu-
lar sparse tensor product space (1.1) is optimal if the approximation error is measured
in the L2-norm and the properties of the ansatz spaces V

(i)
J and W

(i)
ji

, respectively,
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do not depend in i. This means that all the domains Ωi have the same dimension and
all the spaces V

(i)
J and W

(i)
ji

, respectively, are equipped with the same type of ansatz
functions.

To also cover the more general cases, we will introduce in the following the special
sparse tensor product space

̂Vα
J :=

⊕

αT j≤J

W
(1)
j1

⊗ W
(2)
j2

⊗ · · · ⊗ W
(L)
jL

for an arbitrary vector α = (α1, α2, . . . , αL) > 0 and j = (j1, j2, . . . , jL) ∈ N
L
0 , and

we will discuss various choices of α for respective general situations of local dimen-
sions and regularities of the L domains.

For the case L = 2, we already systematically studied in [11] what the most effi-
cient construction of sparse tensor product spaces is if the spatial dimension of the
underlying domains or the polynomial exactness (and thus the approximation power)
of the ansatz spaces differ. In this paper, we will now extend these results to L-fold
sparse tensor product spaces. It will turn out that, in case of smooth functions, there
is a whole range of sparse tensor product spaces which possess the same optimal con-
vergence rate. However, in case of functions with limited regular or mixed Sobolev
smoothness, it will turn out that the sparse tensor product space, which equilibrates
the number of degrees of freedom (see Sect. 3), is superior to all the other sparse ten-
sor product spaces under consideration. We recently learned that the situation L ≥ 2
has been considered in [9], too. There, different approximation powers in the coordi-
nate directions were also taken into account but the underlying domains were only of
equal dimension n1 = n2 = · · · = nL = 1.

The remainder of this paper is organized as follows. In Sect. 2, we specify the
requirements of the multiscale hierarchies on each subdomain. Then, in Sect. 3, we
construct general sparse tensor product spaces. In Sect. 4, we study their properties.
Section 5 is dedicated to the comparison of the cost complexities for the approxi-
mation of functions of mixed Sobolev smoothness, where also different degrees of
smoothness are possible in the different coordinate directions. Finally, in Sect. 6, we
give some concluding remarks.

Throughout this paper, the notion “essential” in the context of complexity es-
timates means “up to logarithmic terms.” Moreover, to avoid the repeated use of
generic but unspecified constants, we signify by C � D that C is bounded by a mul-
tiple of D independently of parameters which C and D may depend on. Obviously,
C � D is defined as D � C, and C ∼ D as C � D and C � D.

2 Approximation on a Subdomain

Let Ω ⊂ R
n be a sufficiently smooth, bounded domain. We consider a nested se-

quence of finite dimensional spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ L2(Ω), (2.1)
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each of which consists of piecewise polynomial ansatz functions Vj = span{ϕj,k : k ∈
Δj } (Δj denotes a suitable index set) such that dimVj ∼ 2jn and

L2(Ω) =
⋃

j∈N0

Vj . (2.2)

We will use the spaces Vj for the approximation of functions. To this end, we
assume that the approximation property

inf
vj ∈Vj

‖u − vj‖Hq(Ω) � h
s−q
j ‖u‖Hs(Ω), u ∈ Hs(Ω), (2.3)

holds for q < γ , q ≤ s ≤ r uniformly in j . Here we set hj := 2−j , i.e., hj corre-
sponds to the width of the mesh associated with the subspace Vj on Ω . The parameter
γ > 0 refers to the regularity of the functions which are contained in Vj , i.e.,

γ := sup
{

s ∈ R : Vj ⊂ Hs(Ω)
}

.

The integer r > 0 refers to the polynomial exactness, that is, the maximal order of
polynomials which are locally contained in the space Vj .

We now introduce a wavelet basis associated with the multiscale analysis (2.1) and
(2.2) as follows. The wavelets Ψj := {ψj,k : k ∈ ∇j }, where ∇j := Δj \Δj−1, are the
bases of the complementary spaces Wj of Vj−1 in Vj , i.e.,

Vj = Vj−1 ⊕ Wj, Vj−1 ∩ Wj = {0}, Wj = span{Ψj }.
Recursively, we obtain

VJ =
J

⊕

j=0

Wj, W0 := V0,

and thus, with

ΨJ :=
J

⋃

j=0

Ψj , Ψ0 := span{ϕ0,k : k ∈ Δ0},

we get a wavelet basis in VJ . A final requirement is that the infinite collection
Ψ := ⋃

j≥0 Ψj forms a Riesz basis of L2(Ω). Then there exists also a dual (or

biorthogonal) wavelet basis ˜Ψ = ⋃

j≥0
˜Ψj = {˜ψj,k : k ∈ ∇j } which defines a dual

multiscale analysis of regularity γ̃ > 0, see, e.g., [8] for further details. In particular,
each function f ∈ L2(Ω) admits the unique representation

f =
∞
∑

j=0

∑

k∈∇j

(f, ˜ψj,k)L2(Ω)ψj,k. (2.4)

With the definition of the projections

Qj : L2(Ω) → Wj, Qjf =
∑

k∈∇j

(f, ˜ψj,k)L2(Ω)ψj,k,
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the atomic decomposition (2.4) gives rise to the multilevel decomposition

f =
∞
∑

j=0

Qjf.

Since for all −γ < q < γ̃ also a (properly scaled version of the) wavelet basis Ψ is a
Riesz basis of Hq(Ω), we especially have

‖f ‖2
Hq(Ω) ∼

∞
∑

j=0

‖Qjf ‖2
Hq(Ω), −γ < q < γ̃ , (2.5)

see [8]. Finally, for any f ∈ Hs(Ω), the approximation property (2.3) induces the
estimate

‖Qjf ‖Hq(Ω) � 2−j (s−q)‖f ‖Hs(Ω), q ≤ s ≤ r. (2.6)

3 Sparse Tensor Product Spaces

Consider now L domains Ωi ⊂ R
ni with ni ∈ N for all i = 1,2, . . . ,L. We aim for

the approximation of functions in anisotropic Sobolev spaces

Hs(Ω) := Hs1(Ω1) ⊗ Hs2(Ω2) ⊗ · · · ⊗ HsL(ΩL),

where Ω := Ω1 × Ω2 × · · · × ΩL. To this end, we assume to individually have for
each subdomain Ωi , i = 1,2, . . . ,L, the multiscale analysis

V
(i)
0 ⊂ V

(i)
1 ⊂ V

(i)
2 ⊂ · · · ⊂ L2(Ωi), V

(i)
0 = span

{

Φ
(i)
j

}

, i = 1,2, . . . ,L,

with associated complementary spaces

V
(i)
j = V

(i)
j−1 ⊕ W

(i)
j , V

(i)
j−1 ∩ W

(i)
j = {0}, W

(i)
j = span

{

Ψ
(i)
j

}

.

Furthermore, for all i = 1,2, . . . ,L, let us denote the polynomial exactnesses of the
spaces V

(i)
j by ri , and the regularity of the primal and dual wavelet bases by γi and

γ̃i , respectively.
In this paper, we study the approximation of functions in the special sparse tensor

product space1

̂Vα
J :=

⊕

αT j≤J

W
(1)
j1

⊗ W
(2)
j2

⊗ · · · ⊗ W
(L)
jL

(3.1)

for an arbitrary vector α = (α1, α2, . . . , αL) > 0 and j = (j1, j2, . . . , jL) ∈ N
L
0 . Here

and subsequently, inequalities for vectors are to be understood componentwise, i.e.,

1Here and subsequently, the summation limits are in general no natural numbers and must of course be
rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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α > 0 means αi > 0 for all i = 1,2, . . . ,L. Moreover, we set r = (r1, r2, . . . , rL),
γ = (γ1, γ2, . . . , γL), and γ̃ = (γ̃1, γ̃2, . . . , γ̃L).

Now we can formulate the following problem: How must α > 0 be chosen such
that, for given parameters −γ̃ < q < γ and q < s ≤ r, a function f ∈ Hs(Ω) can be
best approximated in ̂Vα

J in the Hq(Ω)-norm?
Natural choices of the parameter α > 0 are:

(i) To equilibrate the accuracy in the involved univariate spaces V
(i)
J/αi

, i =
1,2, . . . ,L, we obtain the condition

2−J (r1−q1)/α1 = 2−J (r2−q2)/α2 = · · · = 2−J (rL−qL)/αL.

This means that we have to choose αi = ri − qi for all i = 1,2, . . . ,L.
(ii) To equilibrate the number of degrees of freedom in the involved univariate

spaces V
(i)
J/αi

, i = 1,2, . . . ,L, we obtain the condition

2Jn1/α1 = 2Jn2/α2 = · · · = 2JnL/αL.

This condition is satisfied if αi = ni for all i = 1,2, . . . ,L.
(iii) Following the idea of an equilibrated cost-benefit rate (see [4]), we get the con-

dition

2j1(n1+r1−q1) · 2j2(n2+r2−q2) · · ·2jL(nL+rL−qL) = 2J ·const. for all αT j = J .

For const. = 1, we find αi = ni + ri − qi for all i = 1,2, . . . ,L.

In the next section, we will compute for these and other choices the cost and the error
of the approximation in the related sparse tensor product spaces.

4 Properties of the Sparse Tensor Product Spaces

To compute the convergence rate of functions in the sparse tensor product spaces ̂Vα
J

with arbitrary α > 0, we first count the degrees of freedom which are contained in
these spaces.

Theorem 4.1 For any α > 0, the dimension of the sparse tensor product space

̂Vα
J =

⊕

αT j≤J

W
(1)
j1

⊗ W
(2)
j2

⊗ · · · ⊗ W
(L)
jL

is proportional to 2J max{n1/α1,n2/α2,...,nL/αL}JR−1, where R counts how often the
maximum is attained.

Proof We shall use induction to prove this theorem. Consider first the case L = 1.
Due to dimW

(1)
j1

∼ 2j1n1 , it holds that

dim̂Vα
J ∼

J/α1
∑

j1=0

2j1n1 � 2Jn1/α1 .
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Since R = 1, the desired result follows immediately.
We now show the induction step L �→ L + 1. To this end, we denote the (L + 1)-

fold sparse tensor product space by

̂V(α,αL+1)

J =
⊕

αT j+αL+1jL+1≤J

W
(1)
j1

⊗ · · · ⊗ W
(L)
jL

⊗ W
(L+1)
jL+1

, (4.1)

where, without loss of generality2, we will assume

n1

α1
= · · · = nR

αR

>
nR+1

αR+1
≥ nR+2

αR+2
≥ · · · ≥ nL

αL

and
nL

αL

≥ nL+1

αL+1
. (4.2)

Obviously, there holds the identity

̂V(α,αL+1)

J =
J/αL+1
⊕

jL=0

[

⊕

αT j≤J−αL+1jL+1

W
(1)
j1

⊗ · · · ⊗ W
(L)
jL

]

⊗ W
(L+1)
jL+1

=
J/αL+1
⊕

jL+1=0

̂Vα
J−αL+1jL+1

⊗ W
(L+1)
jL+1

. (4.3)

According to our induction hypothesis, the sparse tensor product space ̂Vα
J−αL+1jL+1

consists of O(2(J−αL+1jL+1)n1/α1(J − αL+1jL+1)
R−1) degrees of freedom. Hence,

since dimW
(L+1)
jL+1

∼ 2jL+1nL+1 , we get the estimate

dim̂V(α,αL+1)

J �
J/αL+1
∑

jL+1=0

2jL+1nL+12(J−αL+1jL+1)n1/α1(J − αL+1jL+1)
R−1

� 2Jn1/α1JR−1
J/αL+1
∑

jL+1=0

2jL+1(nL+1−n1αL+1/α1).

Due to the ordering (4.2), we have to distinguish two cases, namely n1/α1 >

nL+1/αL+1 and n1/α1 = nL+1/αL+1. In the case n1/α1 > nL+1/αL+1, which al-
ways happens for R < L and might happen if R = L, the exponent in the last sum is
always negative, which immediately implies

dim̂V(α,αL+1)

J � 2Jn1/α1JR−1. (4.4)

In the case n1/α1 = nL+1/αL+1, which can only happen if R = L, the exponent in
the sum is zero, and it follows that

dim̂V(α,αL+1)

J � 2Jn1/α1JL−1
J/αL+1
∑

jL+1=0

1 � 2Jn1/α1JL. (4.5)

2Otherwise, we apply the induction to an appropriate permutation of the spatial dimensions.
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The combination of (4.4) and (4.5) yields the desired result in case of L + 1. This
completes the proof. �

Remark 4.2 The statement of Theorem 4.1 is sharp, which can be seen as follows.
The sparse tensor product space ̂Vα

J contains the space W
(1)
0 ⊗ · · · ⊗ W

(k−1)
0 ⊗

W
(k)
J/αk

⊗ W
(k+1)
0 ⊗ · · · ⊗ W

(L)
0 for all 1 ≤ k ≤ L whose number of degrees of free-

dom is proportional to 2Jnk/αk (i.e., 2Jnk/αk bounds its number of degrees of free-
dom from below and above). Thus, 2J max{n1/α1,n2/α2,...,nL/αL} is obviously a lower
bound for the number of degrees of freedom of the sparse tensor product space ̂Vα

J .
If the maximum is attained R times, for example, if n1/α1 = n2/α2 = · · · = nR/αR ,
then there are asymptotically JR−1 further combinations of (j1, j2, . . . , jR) such that
∑R

k=1 αkjk = J . The numbers of degrees of freedom of the associated spaces W
(1)
j1

⊗
· · ·⊗W

(R)
jR

⊗W
(R+1)
0 ⊗· · ·⊗W

(L)
0 are also proportional to 2J max{n1/α1,n2/α2,...,nL/αL}.

This yields the logarithmic factor JR−1 in the estimate as well as its sharpness.

Next we consider the approximation power in the sparse tensor product spaces ̂Vα
J .

Obviously, the highest possible rate of convergence is attained in the space Hr(Ω),
where r = (r1, r2, . . . , rL) is the vector of polynomial exactness of the underlying
full tensor product spaces. Therefore, in the following theorem, we restrict ourselves
without loss of generality to s ≤ r.

Theorem 4.3 Let −γ̃ < q < γ and q < s ≤ r and f ∈ Hs(Ω). Then, the sparse grid
projector

̂Qα
J : Hq(Ω) → ̂Vα

J , ̂Qα
J f =

∑

αT j≤J

(

Q
(1)
j1

⊗ Q
(2)
j2

⊗ · · · ⊗ Q
(L)
jL

)

f (4.6)

satisfies

∥

∥

(

I − ̂Qα
J

)

f
∥

∥

Hq(Ω)
� 2

−J min{ s1−q1
α1

,
s2−q2

α2
,...,

sL−qL
αL

}
J (P−1)/2‖f ‖Hs(Ω). (4.7)

Here, P counts how often the minimum is attained in the exponent.

Proof We show the assertion again by induction over L. For the case L = 1, the
tensor product domain Ω is a single domain Ω1 and the projector ̂Qα

J onto the sparse

grid is simply
∑J/α1

j1=0 Q
(1)
j1

. Hence, the assertion follows immediately from (2.5) and
(2.6), since

∥

∥

(

I − ̂Qα1
J

)

f
∥

∥

2
Hq1 (Ω1)

�
∞
∑

j1=J/α1+1

∥

∥Q
(1)
j1

f
∥

∥

2
Hq1 (Ω1)

�
∞
∑

j1=J/α1+1

2−2j1(s1−q1)‖f ‖2
Hs1 (Ω1)

� 2−2J (s1−q1)/α1‖f ‖2
Hs1 (Ω1)

for all f ∈ Hs1(Ω1).
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We now assume that the assertion is shown for the product domain Ω = Ω1 ×· · ·×
ΩL and the sparse grid projector ̂Qα

J given by (4.6). This means the error estimate
(4.7) is valid for any function from Hs(Ω). To prove the induction step L �→ L + 1,
we shall assume without loss of generality3 that

s1 − q1

α1
= · · · = sP − qP

αP

<
sP+1 − qP+1

αP+1
≤ sP+2 − qP+2

αP+2
≤ · · · ≤ sL − qL

αL

and
sL − qL

αL

≤ sL+1 − qL+1

αL+1
.

The induction step then reads as follows. For any given function

f ∈ H(s,sL+1)(Ω × ΩL+1) := Hs(Ω) ⊗ HsL+1(ΩL+1)

= Hs1(Ω1) ⊗ · · · ⊗ HsL+1(ΩL+1),

we shall show that the sparse grid projection

̂Q(α,αL+1)

J =
∑

αT j+αL+1jL+1≤J

Q
(1)
j1

⊗· · ·⊗Q
(L+1)
jL+1

: H(q,qL+1)(Ω ×ΩL+1) → ̂V(α,αL+1)

J

satisfies the error estimate

∥

∥

(

I − ̂Q(α,αL+1)

J

)

f
∥

∥

H(q,qL+1)(Ω×ΩL+1)

� 2
−J min{ s1−q1

α1
,
s2−q2

α2
,...,

sL+1−qL+1
αL+1

}
J (P 
−1)/2‖f ‖H(s,sL+1)(Ω×ΩL+1)

.

Here, the sparse tensor product space ̂V(α,αL+1)

J is defined in (4.1) and P 
 := P + 1
if (s1 − q1)/α1 = (sL+1 − qL+1)/αL+1 and P 
 := P otherwise.

Analogously to (4.3), we find the identity

̂Q(α,αL+1)

J =
∑

αT j+αL+1jL+1≤J

Q
(1)
j1

⊗ · · · ⊗ Q
(L)
jL

⊗ Q
(L+1)
jL+1

=
J/αL+1
∑

jL+1=0

̂Qα
J−αL+1jL+1

⊗ Q
(L+1)
jL+1

.

In particular, it holds that

I −
J/αL+1
∑

jL+1=0

̂Qα
J−αL+1jL+1

⊗ Q
(L+1)
jL+1

3Otherwise, we apply the induction to an appropriate permutation of the spatial dimensions.
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=
J/αL+1
∑

jL+1=0

(

I − ̂Qα
J−αL+1jL+1

) ⊗ Q
(L+1)
jL+1

+ I ⊗
(

I −
J/αL+1
∑

jL+1=0

Q
(L+1)
jL+1

)

=
J/αL+1
∑

jL+1=0

(

I − ̂Qα
J−αL+1jL+1

) ⊗ Q
(L+1)
jL+1

+ I ⊗
∞
∑

jL+1=J/αL+1+1

Q
(L+1)
jL+1

.

Thus, in view of (2.5) and (2.6), since f ∈ H(s,sL+1)(Ω × ΩL+1), we find

∥

∥

(

I − ̂Q(α,αL+1)

J

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

�
J/αL+1
∑

jL+1=0

∥

∥

((

I − ̂Qα
J−αL+1jL+1

) ⊗ Q
(L+1)
jL+1

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

+
∞
∑

jL+1=J/αL+1+1

∥

∥

(

I ⊗ Q
(L+1)
jL+1

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

.

The second norm on the right-hand side can be estimated as

∥

∥

(

I ⊗ Q
(L+1)
jL+1

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

� 2−2jL+1(sL+1−qL+1)‖f ‖2
H(q,sL+1)(Ω×ΩL+1)

� 2−2jL+1(sL+1−qL+1)‖f ‖2
H(s,sL+1)(Ω×ΩL+1)

.

The induction hypotheses (4.7) implies

∥

∥

((

I − ̂Qα
J−αL+1jL+1

) ⊗ I
)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

� 2−2(J−αL+1jL+1)(s1−q1)/α1(J − αL+1jL+1)
P−1‖f ‖2

H(s,qL+1)(Ω×ΩL+1)
.

By employing in addition (2.6), the first norm on the right-hand side of the above
expression can be estimated according to

∥

∥

((

I − ̂Qα
J−αL+1jL+1

) ⊗ Q
(L+1)
jL+1

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

� 2−2(J−αL+1jL+1)(s1−q1)/α1(J − αL+1jL+1)
P−12−2jL+1(sL+1−qL+1)

× ‖f ‖2
H(s,sL+1)(Ω×ΩL+1)

� 2−2J (s1−q1)/α1JP−12−2jL+1((sL+1−qL+1)−(s1−q1)αL+1/α1)‖f ‖2
H(s,sL+1)(Ω×ΩL+1)

.

Altogether, we thus get

∥

∥

(

I − ̂Q(α,αL+1)

J

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

�
[

2−2J (s1−q1)/α1JP−1
J/αL+1
∑

jL+1=0

2−2jL+1((sL+1−qL+1)−(s1−q1)αL+1/α1)
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+
∞
∑

jL+1=J/αL+1+1

2−2jL+1(sL+1−qL+1)

]

‖f ‖2
H(s,sL+1)(Ω×ΩL+1)

.

If (s1 − q1)/α1 < (sL+1 − qL+1)/αL+1, the exponent in the first sum is always nega-
tive, and we obtain

∥

∥

(

I − ̂Q(α,αL+1)

J

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

�
(

2−2J (s1−q1)/α1JP−1 + 2−2J (sL+1−qL+1)/αL+1
)‖f ‖2

H(s,sL+1)(Ω×ΩL+1)

� 2−2J (s1−q1)/α1JP−1‖f ‖2
H(s,sL+1)(Ω×ΩL+1)

.

If (s1 − q1)/α1 = (sL+1 − qL+1)/αL+1, which may only happen if P = L, the expo-
nent in the first sum is always 0, which, due to J/αL+1 + 1 terms in the sum, leads
to

∥

∥

(

I − ̂Q(α,αL+1)

J

)

f
∥

∥

2
H(q,qL+1)(Ω×ΩL+1)

�
(

22J (s1−q1)/α1JL + 2−2J (sL+1−qL+1)/αL+1
)‖f ‖2

H(s,sL+1)(Ω×ΩL+1)

� 2−2J (s1−q1)/α1JL‖f ‖2
H(s,sL+1)(Ω×ΩL+1)

.

This completes the proof. �

Remark 4.4 (i) The constant in (4.7) depends on the particular choice of α (and of
course also of L, q, and r).

(ii) For any 1 ≤ k ≤ L, the sparse tensor product space ̂Vα
J contains the full

tensor product space V
(1)
0 ⊗ · · · ⊗ V

(k−1)
0 ⊗ V

(k)
J/αk

⊗ V
(k+1)
0 ⊗ · · · ⊗ V

(L)
0 . But it

does not contain the space V
(1)
0 ⊗ · · · ⊗ V

(k−1)
0 ⊗ V

(k)
J/αk+1 ⊗ V

(k+1)
0 ⊗ · · · ⊗ V

(L)
0 .

Therefore, the convergence rate cannot be higher than 2−J (sk−qk)/αk . Repeating this
argument for all 1 ≤ k ≤ L and taking the minimum, we obtain the lower bound

2
−J min{ s1−q1

α1
,
s2−q2

α2
,...,

sL−qL
αL

}
. Thus, we conclude that the error estimate (4.7) is essen-

tially sharp.
(iii) Note that for s �= r, the logarithmic factor J (R−1)/2 in (4.7) can be reduced or

even removed by using more sophisticated estimates, see [14].

By combining Theorems 4.1 and 4.3, we can express the convergence rate in terms
of the number of degrees of freedom N := dim̂Vα

J . This gives us the cost complexity
of the approximation of functions in the sparse tensor product spaces ̂Vα

J .

Corollary 4.5 Let −γ̃ < q < γ , q < s ≤ r, and f ∈ Hs(Ω). Furthermore, denote by
N := dim̂Vα

J the number of degrees of freedom in the sparse tensor product space
̂Vα

J , and set

β := min{(s1 − q1)/α1, (s2 − q2)/α2, . . . , (sL − qL)/αL}
max{n1/α1, n2/α2, . . . , nL/αL} .
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Assume that the minimum in the numerator is attained P times and the maximum in
the denominator is attained R times. Then, the approximation (4.6) in ̂Vα

J possesses
the following convergence rate in terms of the degrees of freedom N :

‖f − ̂fJ ‖Hq(Ω) � N−β(logN)(P−1)/2+β(R−1)‖f ‖Hs(Ω). (4.8)

Proof First assume R = 1. We then have N ∼ 2J max{n1/α1,n2/α2,...,nL/αL} due to The-
orem 4.1. Hence, it holds that

N−β = N
− min{(s1−q1)/α1,(s2−q2)/α2,...,(sL−qL)/αL}

max{n1/α1,n2/α2,...,nL/αL} ∼ 2
−J min{ s1−q1

α1
,
s2−q2

α2
,...,

sL−qL
αL

}
,

which, together with (4.7), yields the desired error estimate (4.8) for R = 1.
If R > 1, then the sparse tensor product space ̂Vα

J contains

N ∼ 2J max{n1/α1,n2/α2,...,nL/αL}JR−1

degrees of freedom. Thus, we now have the relation

(

N

JR−1

)−β

∼ 2
−J min{ s1−q1

α1
,
s2−q2

α2
,...,

sL−qL
αL

}
.

Consequently, by taking the logarithm on both sides, we get log(N/JR−1) ∼ J , and
since log(N/JR−1) ≤ logN , we obtain from (4.7) the estimate

‖f − ̂fJ ‖L2(Ω) �
(

N

(logN)R−1

)−β

(logN)(P−1)/2‖f ‖Hs(Ω),

i.e., the desired error estimate (4.8) for R > 1. This completes the proof. �

5 Discussion of the Results

We now discuss the best choice of the parameter α > 0. To this end, we intend to ap-
proximate a function f ∈ Hs(Ω) of maximal smoothness, i.e., we shall apply Corol-
lary 4.5 in the case s = r. Our first question addresses the highest possible conver-
gence rate β
 which can be achieved in the sparse tensor product spaces ̂Vα

J .

Lemma 5.1 It holds that

β = min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}
max{n1/α1, n2/α2, . . . , nL/αL}

≤ β
 := min

{

r1 − q1

n1
,
r2 − q2

n2
, . . . ,

rL − qL

nL

}

for all α > 0.
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Proof Choose α > 0 arbitrarily but fixed and let k, � ∈ {1,2, . . . ,L} be such that

rk − qk

αk

= min

{

r1 − q1

α1
,
r2 − q2

α2
, . . . ,

rL − qL

αL

}

and

n�

α�

= max

{

n1

α1
,
n2

α2
, . . . ,

nL

αL

}

.

It thus holds that (rk − qk)/αk ≤ (ri − qi)/αi and n�/α� ≥ ni/αi for i = 1,2, . . . ,L.
In particular, we find

β = rk − qk

αk

· α�

n�

≤ ri − qi

αi

· αi

ni

= ri − qi

ni

for all i = 1,2, . . . ,L,

which immediately implies the assertion

β ≤ min

{

r1 − q1

n1
,
r2 − q2

n2
, . . . ,

rL − qL

nL

}

.

�

This lemma thus gives an upper bound β
 for the convergence rate β in Corol-
lary 4.5. We now show that this rate is essentially achieved for the canonical choices
(i)–(iii) of α of Sect. 3.

(i) The equilibration of the accuracy in the involved univariate spaces led to the
choice αi = ri − qi for all i = 1,2, . . . ,L. According to Corollary 4.5 and since we
consider s = r, we have here

β = min{1,1, . . . ,1}
max{n1/(r1 − q1), n2/(r2 − q2), . . . , nL/(rL − qL)}

= min

{

r1 − q1

n1
,
r2 − q2

n2
, . . . ,

rL − qL

nL

}

= β
.

We thus obtain the rate

‖f − ̂fJ ‖Hq(Ω) � N−β


(logN)(L−1)/2+β
(R−1)‖f ‖Hr(Ω).

(ii) The equilibration of the degrees of freedom in the involved univariate spaces
corresponds to the choice αi = ni for all i = 1,2, . . . ,L. This immediately leads to

β = min{(r1 − q1)/n1, (r2 − q2)/n2, . . . , (rL − qL)/nL}
max{1,1, . . . ,1} = β
.

Hence, the rate of convergence is

‖f − ̂fJ ‖Hq(Ω) � N−β


(logN)(P−1)/2+β
(L−1)‖f ‖Hr(Ω).
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(iii) The equilibration of the cost-benefit rate is given by αi = ri − qi + ni for all
i = 1,2, . . . ,L. Let k ∈ {1,2, . . . ,L} such that

rk − qk

nk + rk − qk

= min

{

r1 − q1

n1 + r1 − q1
, . . . ,

rL − qL

nL + rL − qL

}

.

Then, it follows that

rk − qk

nk + rk − qk

≤ ri − qi

ni + ri − qi

for all i = 1,2, . . . ,L, (5.1)

which is equivalent to

rk − qk

nk

≤ ri − qi

ni

for all i = 1,2, . . . ,L.

Hence, (5.1) also implies

nk

nk + rk − qk

≥ ni

ni + ri − qi

for all i = 1,2, . . . ,L.

It therefore again holds that

β = min{(r1 − q1)/(n1 + r1 − q1), . . . , (rL − qL)/(nL + rL − qL)}
max{n1/(n1 + r1 − q1), . . . , nL/(nL + rL − qL)} = β
,

and Corollary 4.5 yields
∥

∥f − ̂fJ

∥

∥

Hq(Ω)
� N−β


(logN)(P−1)/2+β
(R−1)‖f ‖Hr(Ω).

We can generalize these particular examples as follows. Set

αi = λni + (1 − λ)(ri − qi) for all i = 1,2, . . . ,L, (5.2)

where λ ∈ [0,1] is an arbitrarily chosen parameter. For λ = 1, we find αi = ni ; for
λ = 0, we find αi = ri − qi ; and for λ = 1/2, we find αi = (ni + ri − qi)/2, which
yields the same sparse tensor product spaces as the choice αi = ni + ri − qi . Thus,
the above examples are covered by (5.2).

For the choice (5.2), it holds for a specific k that

rk − qk

λnk + (1 − λ)(rk − qk)
= min

i∈{1,2,...,L}

{

ri − qi

λni + (1 − λ)(ri − qi)

}

if and only if

nk

λnk + (1 − λ)(rk − qk)
= max

i∈{1,2,...,L}

{

ni

λni + (1 − λ)(ri − qi)

}

.

Consequently, for all λ ∈ [0,1], we find

β = mini∈{1,2,...,L}{(ri − qi)/(λni + (1 − λ)(ri − qi))}
maxi∈{1,2,...,L}{ni/(λni + (1 − λ)(ri − qi))} = β
.
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Nevertheless, the logarithmic factors in the convergence rate in (4.8) might differ in
the extremal cases λ = 0 and λ = 1.

In the case of L = 2, this construction covers all possible sparse tensor product
spaces ̂Vα

J which essentially (i.e., except for logarithmic terms) offer the highest pos-
sible convergence rate β
, see [11]. Note however that in the case L > 2, there might
be other choices which also result in optimal sparse tensor product spaces.

Lemma 5.2 Let k ∈ {1,2, . . . ,L} be such that

rk − qk

nk

= min

{

r1 − q1

n1
,
r2 − q2

n2
, . . . ,

rL − qL

nL

}

= β
.

Then, for all α > 0 such that

rk − qk

ri − qi

≤ αk

αi

≤ nk

ni

for all i = 1,2, . . . ,L, (5.3)

it holds that

β = min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}
max{n1/α1, n2/α2, . . . , nL/αL} = β
.

If (5.3) is not satisfied, then it holds that β < β
.

Proof The condition (5.3) immediately implies the equalities

rk − qk

αk

≤ ri − qi

αi

and
ni

αi

≤ nk

αk

for all i = 1,2, . . . ,L.

Hence,

β = min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}
max{n1/α1, n2/α2, . . . , nL/αL} = rk − qk

nk

= β


indeed holds. If (5.3) is not satisfied for some specific j ∈ {1,2, . . . ,L}, then it fol-
lows that

rj − qj

αj

<
rk − qk

αk

or
nk

αk

<
nj

αj

.

Therefore, we obtain

β = min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}
max{n1/α1, n2/α2, . . . , nL/αL} �= β
,

which, in view of Lemma 5.1, shows β < β
. �

6 Conclusion

The analysis in Sect. 5 reveals that all sparse tensor product spaces ̂Vα
J with α sat-

isfying the criterion (5.3) produce essentially the optimal convergence rate β
 =
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mini∈{1,2,...,L}{(ri − qi)/ni} when a function f ∈ Hr(Ω) of maximal smoothness
is to be approximated. However, if the function to be approximated is only in Hs(Ω)

with q < s < r, then the highest possible convergence rate is

β = min
i∈{1,2,...,L}

{

(si − qi)/ni

}

.

To achieve this rate, the criterion (5.3) for the choice of α > 0 has to be modified
according to

sk − qk

si − qi

≤ αk

αi

≤ nk

ni

for all i = 1,2, . . . ,L.

As a consequence, to obtain for all q < s ≤ r the highest possible rate in ̂Vα
J , one has

to choose αi = ni for all i = 1,2, . . . ,L, i.e., one has to equilibrate the degrees of
freedom in the involved univariate spaces V

(i)
J/αi

.
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