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Abstract In this paper we study real O∗-algebra, on the hermitian elements of which
a partial order exists which is compatible with the algebraic structure. Such algebras
occur in the axiomatic approach to the description of the space of random variables
(observables) in quantum probability theory. We study the relations between these
so called real O∗-algebras and their complexification, and also their Jordan structure.
Our main result is the theorem on the representation of abstract real O∗-algebras
as algebras of locally measurable (unbounded) operators affiliated with a real von
Neumann algebra on a Hilbert space.
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1 Introduction

This work is devoted to an axiomatic approach to the description of the space of
random variables in quantum probability theory in the framework of real involutory
algebras. Unlike the C∗-algebras (or W∗-algebras) models dealing with bounded
observables, our approach includes rather wide classes of unbounded observables
and in the particular case of abelian ∗-algebras it describes the algebra of all random
variables in the classical probability theory.

Such ideas were firstly suggested in the paper of T. A. Sarymsakov and M.
Sh. Goldshtein [12], where the notion of a partially ordered complex involutory
algebra was introduced, such that on its hermitian elements a partial order is defined
which is compatible with the algebraic operations. These algebras were called O∗-
algebras. Later the structure of these algebras was investigated and relations with
operator algebras (C∗-algebras, W∗-algebras, AW∗-algebras, etc.) were established.
In particular a theorem on the representation of abstract O∗-algebras as algebras
of measurable operators affiliated with von Neumann algebras on Hilbert spaces
was proved (see the monograph [13] for details). There are also many application
of O∗-algebras in the non commutative probability theory and the theory of sto-
chastic processes. In this approach the hermitian elements of an O∗-algebra E are
interpreted as random variables (or observables) which are unbounded in general,
the projections of the O∗-algebra E (i.e., self-adjoint idempotents) – as events, and
states on the algebra of bounded elements of E as probability measures or quantum
states.

The theory of O∗-algebras as well as the theory of operator algebras (C∗-, W∗-
algebras, etc.) is usually developed over the field of complex numbers. But from the
probabilistic point of view it is more natural to consider real algebras. Nevertheless
as it was mentioned in the recent monograph of Li Bing-Ren [11] “up to now
the theory of operator algebras over the field of real numbers seems not to be
introduced systematically and sufficiently”. So in the mentioned book the author
gives a systematic discussion of real operator algebras and sets up the fundamentals
of real Banach spaces and Hilbert spaces, real Banach algebras, real C∗-algebras and
W∗-algebras, and other structures over the reals. Later an analogue of the theory
of AW∗-algebras (Kaplansky algebras) over the reals was developed in the papers
[1, 2, 6, 7].

This is the starting point of the present paper which in devoted to the real
counterpart of the theory of O∗-algebras. Similar to the case of AW∗-algebras
[1, 2] some properties of real O∗-algebras are the same as of complex O∗-algebras,
but there are also properties which completely differ from the complex case. In
particular we prove in Section 2 that the set of all symmetric (hermitian) elements
of a real O∗-algebra forms an ordered Jordan algebra [5, 13] as in the case of
complex O∗-algebras. We show that if the complexification of a real ∗-algebra E
is a (complex) O∗-algebra then E itself is a real O∗-algebra. On the other hand we
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give examples of real O∗-algebras complexification of which are not O∗-algebras.
We also study the subalgebra of bounded elements of a real O∗-algebra and prove
that it is a normed ∗-algebra but may not be a real C∗-algebra (while the bounded
part of complex O∗-algebras always forms a C∗-algebra) (Section 3). In Section 4
we give necessary and sufficient conditions for two elements to commute in terms of
symmetrized (i.e., Jordan) products and prove that in real O∗-algebras there is no
Heisenberg representation of canonical commutation relations, i.e., scalar multiples
of the identity can not be equal to the commutator of two hermitian elements. We
completely describe discrete real O∗-factors and prove that they are isomorphic to
the algebra B(H) of all bounded linear operators on either a real or a quaternionic
Hilbert space H. In Section 5 we construct the most general examples of real O∗-
algebras – ∗-algebras of all measurable and locally measurable operators affiliated
with a real von Neumann algebra, and prove the main result of the paper: under
rather natural conditions any abstract real O∗-algebra can be embedded into the real
O∗-algebra of all locally measurable operators affiliated with a real von Neumann
algebra.

Remark A different notion of an O∗-algebra as a ∗-algebra of closable operators
defined on a dense subspace in a Hilbert space was considered by K. Schmüdgen, A.
Inoue and collaborators (see e.g., [4, 10, 14]). The O∗-algebras considered by T.A.
Sarymsakov and M.Sh. Goldshtein [12] (the complex case) and in this paper (the
real case) are essentially different even for concrete (not abstract) O∗-algebras of
unbounded operators on a Hilbert space, because unlike O∗-algebras in the sense of
[4, 10, 14], our O∗-algebras of measurable or locally measurable operators affiliated
with a von Neumann algebra (see Theorems 5.4 and 5.5. below) are not defined on a
common dense subspace of the underlying Hilbert space.

2 Real O∗-algebras

Let E be an associative ∗-algebra over the field of reals R, Eh = {x ∈ E : x∗ = x} –
the space of all hermitian elements in E.

Definition 1 A partial order ≥ on Eh is said to be compatible with the algebraic
operations, if it satisfies the following conditions:

1) x ≥ y ⇒ x + z ≥ y + z, for all z ∈ Eh;
2) x ≥ y ⇒ λx ≥ λy, for all λ ∈ R, λ ≥ 0;
3) If x ≥ 0, y ≥ 0, xy = yx then xy ≥ 0;
4) x∗x ≥ 0 for all x ∈ E and x∗x = 0 implies x = 0.

Definition 2 A real involutory algebra E with the identity 1I is called a real O∗-
algebra, if Eh admits a partial order compatible with the algebraic operations and
such that

(a) If {xα} is any monotone increasing net of hermitian elements bounded above,
then there exists x = supα xα , and if for y ∈ E xα y = yxα for all α, then xy = yx;

(b) If Ẽ is any maximal commutative subalgebra in E then Ẽh = {x ∈ Ẽ: x∗ = x} is
a lattice with respect to the induced partial order.
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Example 1 Let E0 be the algebra of all measurable real functions on a measure space
(�,�, μ), i.e., E0 = L0(�,�, μ) (or more generally let E0 be a semi-field in the sense
of [11]). Then E0h = E0 and E0 is a commutative real O∗-algebra.

Example 2 Let E0 be as above. Consider the space

E = E0 + iE0 = {a + ib , a, b ∈ E0}
and equip E with coordinate-wise linear operations, the product

(a1 + ib 1)(a2 + ib 2) = (a1a2 − b 1b 2) + i(a1b 2 + b 1a2)

and the involution

(a + ib)∗ = a∗ − ib ∗.

Then E is a both a complex [13] and a real commutative O∗-algebra.

Example 3 Any complex O∗-algebra [12, 13] is a real O∗-algebra at the same time.
Moreover in this case the second part of the axiom (4), i.e., x∗x = 0 ⇒ x = 0 is
redundant – it follows from other axioms (see [13, Ch. IV, §2, Proposition 1]). In
particular any von Neumann algebra is an example of a real O∗-algebra.

Example 4 Any real von Neumann algebra � is a real O∗-algebra.

Remark Unlike the complex case the axiom x∗x = 0 ⇒ x = 0 is not redundant in
the real case as the following example shows. Consider the real O∗-algebra E0 from
the Example 1. Put E = E0 + iE0, equip E with coordinate-wise linear operations,
involution (a + ib)∗ = a − ib and the multiplication

(a1 + ib 1)(a2 + ib 2) = a1a2 + i(a1b 2 + b 1a2)

(i.e., i2 = 0). Then it is clear that Eh = E0 and all the axioms (1)–(3), (a),(b) are
fulfilled (since E is commutative). Moreover for all x = a + ib we have

x∗x = a2 + i(ab − ba) = a2 ≥ 0.

But x∗x = 0 does not imply that x = 0, since for x = ib , b �= 0, b ∈ E0, we have
x∗x = 0.

Now let as consider the relation between real O∗-algebras and partially ordered
Jordan algebras in the sense of [5, 13]. In the monograph [13] it was proved that the
hermitian part of any (complex) O∗-algebra is a partially ordered Jordan algebra –
OJ-algebra. A similar result is true also for real O∗-algebras.

Let E be a real O∗-algebra, Eh – its hermitian part. Consider on Eh the sym-
metrized (Jordan) product x ◦ y = 1

2 (xy + yx), so (Eh, ◦) becomes a Jordan algebra.
Recall that two elements a, b in a Jordan algebra J are said to be compatible

(or simultaneously observable, denoted as a ↔ b) if the Jordan subalgebra J(a, b)

generated by these elements is strongly associative, that is

{x, z, y} = (x ◦ z) ◦ y − x ◦ (z ◦ y) = 0
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for all x, y ∈ J(a, b) and any z ∈ J, i.e., any two elements of J(a, b) operator
commute. It is known [13] that a ↔ b if and only if all elements a, b , a2, b 2, ab
pairwise operator commute.

In the particular case where the Jordan products is induced by an associative
product as x ◦ y = 1

2 (xy + yx) it is easy to see that

{a, c, b} = a ◦ (c ◦ b) − (a ◦ c) ◦ b = 1

4
[c, [a, b ]] (1)

where [x, y] = xy − yx.

Proposition 2.1 Let E be a real O∗-algebra, Eh – its hermitian part. For a, b ∈ Eh

the following conditions are equivalent

(1) [a, b ] = 0;
(2) a ↔ b in (Eh, ◦).

Proof

(1) ⇒ (2) : Let ab = ba, then it is clear that all elements a, b , a2, b 2, ab pairwise
operator commute. For example {a, c, b 2} = 1

4 [c, [a, b 2]] = 0 because
[a, b 2] = 0. Thus as it was mentioned above a ↔ b .

(2) ⇒ (1) : Let a ↔ b , i.e., all elements a, b , a2, b 2, ab mutually operator commute.

In particular
[
c, [a, b ]] = 4{a, c, b} = 0 for all c ∈ Eh (2)

[
c, [a2, b ]] = 4{a2, c, b} = 0 for all c ∈ Eh. (3)

From Eq. 2 we have that [a, b ] commutes with each hermitian element in E, and
since a ∈ Eh we have

[a2, b ] = a2b − ba2 = a2b − aba + aba − ba2 = a(ab − ba)

+(ab − ba)a = a[a, b ] + [a, b ]a = 2a[a, b ].
Therefore Eq. 3 implies that for any c ∈ Eh :

0 = [
c,

[
a2, b

]] = [c, 2a[a, b ]] = 2ca[a, b ] − 2a[a, b ]c
= 2ca[a, b ] − 2ac[a, b ] = 2[c, a][a, b ].

In particular putting a = c we obtain

0 = [b , a][a, b ] = [a, b ]∗[a, b ].
Now the axiom (4) of real O∗-algebras implies that [a, b ] = 0. The proof is complete.


�

Theorem 2.2 The hermitian part Eh of an arbitrary real O∗-algebra E, equipped with
the symmetrized product forms an OJ-algebra. Conversely, let the hermitian part Eh

of a real ∗-algebra E equipped with the symmetrized product form an OJ-algebra and
the let the following condition be hold:

(∗) Given any x ∈ E, x �= 0, there exists a ∈ Eh, a �= 0, such that x∗x = a2.

Then E is a real O∗-algebra.
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Proof Let E be a real O∗-algebra. Consider the Jordan algebra (Eh, ◦). By
Proposition 2.1 the compatibility of elements from (Eh, ◦) means their commutativity
in E. Therefore the validity of the axioms of OJ-algebras (see [13, Ch. III]) follows
from the corresponding axioms (1)–(4) and (a),(b) of real O∗-algebras and from the
fact that any maximal strongly associative subalgebra in (Eh, ◦) is the hermitian part
of a maximal abelian ∗-subalgebra in E.

Conversely, suppose that E is a real ∗-algebra such that (Eh, ◦) is an OJ-algebra
and the condition (*) is satisfied. Let us prove that E is a real O∗-algebra.

First of all note that in this case we also have that the conditions a ↔ b and
[a, b ] = 0 are equivalent: the proof repeats step by step the proof of Proposition 2.1
with the only difference that the implication [a, b ]∗[a, b ] = 0 ⇒ [a, b ] = 0 is implied
by the condition (∗). Indeed if [a, b ] �= 0, then there exists an element a �= 0 a ∈ Eh,
such that [a, b ]∗[a, b ] = a2. But since any OJ-algebra is formally real [13, Ch.III, §3,
Corollary of Theorem 1], one has that a2 �= 0.

Now, all the axioms of the real O∗-algebra follow from the corresponding axioms
of the OJ-algebra. The proof is complete. 
�

Theorem 2.2 implies that all of results concerning the hermitian elements of
real O∗algebras, the lattice of projections, etc. easily follow from the corresponding
results on OJ-algebras similar to the case of complex O∗-algebras [13, Ch. IV]. In
particular:

– Projections {e ∈ E : e2 = e = e∗} of real O∗-algebras form a complete orthomod-
ular lattice in the induced order;

– The spectral theorem for hermitian elements of real O∗-algebras is valid i.e.,
given any hermitian element x ∈ Eh there exists a spectral family of projections

{ex
λ, λ ∈ R} such that x =

+∞∫

−∞
λdex

λ where the convergence of the integral means

the order convergence (see for details [13, Ch. III]);
– Given any a ∈ E the map x → a∗xa is positive and normal, i.e., x ≥ 0 ⇒ a∗xa ≥

0, and xγ ↓ 0 ⇒ a∗xγ a ↓ 0, etc.

Given a real O∗-algebra E consider its complexification F = E + iE which is
clearly a complex ∗-algebra. A natural question arises: is there any partial order on
Fh such that F becomes a (complex) O∗-algebra?

It is known [13] that if such an order exists then it is unique and the cone of positive
elements F+ coincides with the set {x∗x, x ∈ F}. The following example shows that
the answer to the above question is negative in general.

Example 5 Let m be the commutative algebra of all bounded sequences of real
numbers, c0 – the subalgebra (ideal) in m consisting of all sequences converging to
zero. Put B = m + ic0, i.e., B is a real ∗-algebra of all bounded complex sequences
{λn} which are “real at infinity,” i.e., Im λn → 0 as n → ∞. Then since Bh = m
it is clear that B is a commutative real O∗-algebra. But in [1] it was proved that
the C∗algebra B + iB is not an AW∗-algebra. Therefore B + iB is also not an O∗-
algebra, because any C∗-algebra which is an O∗-algebra (i.e., an OC∗-algebra [13]) is
necessarily an AW∗-algebra (see [13, Ch. IV]).
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Now let us consider the converse problem: given a real ∗-algebra suppose that its
complexification admits the O∗-algebra structure; has the initial real ∗-algebra the
structure of a real O∗-algebra? The following theorem gives a positive answer to this
question.

Theorem 2.3 Let E be an associative real ∗-algebra with the identity 1I. Suppose that
its complexification F = E + iE admits a partial order such that F is a (complex) O∗-
algebra. Then E is a real O∗-algebra with respect to the partial order induced on Eh

from Fh.

Proof We recall that a (complex) linear map α : F → F is called an involutive ∗-anti-
automorphism if :

1) α(x∗) = α(x)∗,
2) α(xy) = α(y)α(x),
3) α2(x) = x,

for all x, y ∈ M.
An arbitrary element x ∈ F = E + iE can be represented as x = x1 + ix2, where

x1, x2 ∈ E. Then the canonical involutive ∗-anti-automorphism on F generated by E
is defined as

α(x) = x∗
1 + ix∗

2, x = x1 + ix2 ∈ F.

Then it straightforward to check that α is an involutive ∗-anti-automorphism on M
and

E = {x ∈ F : α(x) = x∗}.
Indeed, one has

α(x∗) = α(x∗
1 − ix∗

2) = x1 − ix2 = (x∗
1 + ix∗

2)
∗ = α(x)∗.

α(xy) = α((x1 y1 − x2 y2) + i(x2 y1 + x1 y2)) = (x1 y1 − x2 y2)
∗ + i(x2 y1 + x1 y2)

∗

= (y∗
1x∗

1 − y∗
2x∗

2) + i(y∗
1x∗

2 + y∗
2x∗

1) = (y∗
1 + iy∗

2)(x∗
1 + ix∗

2) = α(y)α(x).

α(α(x)) = α(x∗
1 + ix∗

2) = x1 + ix2 = x.

Further, the real linearity of α is clear. Therefore it is sufficient to show that for
x ∈ F

α(ix) = iα(x).

But

α(ix)=α(i (x1 + ix2))=α(−x2 + ix1)=−x∗
2 + ix∗

1 = i (x∗
1 + ix∗

2)= i α(x1 + ix2)= iα(x).

Finally given any x = x1 + ix2 ∈ F we have

x ∈ E ⇔ x2 = 0 ⇔ x∗ = x∗
1 = α(x), i.e. E = {x ∈ F : α(x) = x∗}.

Consider the hermitian parts Fh and Eh of F and E respectively. Then

Eh = {x ∈ F : α(x) = x∗ = x} = {x ∈ Fh : α(x) = x}.
It is clear that the partial order an Eh induced from Fh is compatible with the
algebraic operation in the sense of Definition 1. Note that the condition x∗x = 0 ⇒
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x = 0 follows from the corresponding property of complex O∗-algebras [13, Ch. IV,
§2, Proposition 1]. Now let us check the axioms (a) and (b) of real O∗-algebras.

(a): Let {xγ } be an increasing set of hermitian elements of E bounded from above.
Then each xγ also belongs to F and α(xγ ) = xγ . Since F is a complex O∗-
algebra, there exists x = sup xγ . But any ∗-anti-automorphism is an order
isomorphism on Fh, therefore

α(x) = α(sup xγ ) = sup α(xγ ) = sup xγ = x,

i.e., x ∈ Eh is the least upper bound for xγ in Eh. If given y ∈ Eh one has xγ y =
yxγ for all γ , then xy = yx also by the corresponding axiom of complex O∗-
algebras.

(b): Let Ẽ be a maximal abelian ∗-subalgebra in E, then it is clear that F̃= Ẽ+iẼ is
a maximal abelian ∗-subalgebra in F and Ẽ=F̃∩E. By the axiom (II) of complex
O∗-algebras F̃h is a lattice, i.e., given any x, y ∈F̃h there exist x ∨ y in F̃h.
Suppose that x, y ∈Ẽh, then x ∨ y in F̃h exists. Since α is an order isomorphism
of Fh one has

α(x ∨ y) = α(x) ∨ (y) = x ∨ y, i.e., x ∨ y ∈ Ẽh.

Similarly x ∧ y ∈Ẽh, i.e., Ẽh is a lattice. Therefore E is a real O∗-algebra. The proof
is complete. 
�

3 The Subalgebra of Bounded Elements in Real O∗-algebras

It is known [12, 13] that in a complex O∗-algebra the set of bounded elements forms
an O∗-subalgebra and with respect to a certain norm it becomes a C∗-algebra. In this
section we consider a similar notion in real O∗-algebras.

Definition 3 An element a in a real O∗-algebra E is said to be order bounded if
a∗a ≤ λ1I for an appropriate λ ≥ 0, λ ∈ R.

Proposition 3.1 Let E be a real O∗-algebra. Then

(1) An element a ∈ E is bounded if and only if a∗ is bounded;
(2) If the elements a, b ∈ E are bounded, then the elements λa, a + b , ab are also

bounded, λ ∈ R.

Proof

(1) Let a∗a ≤ λ1I. Since the element aa∗ − λ1I is hermitian, one has (aa∗ − λ1I)2 ≥ 0,
i.e.,

a(a∗a)a∗ − 2λaa∗ + λ21I = (aa∗)2 − 2λaa∗ + λ21I ≥ 0.

From a∗a ≤ λ1I follows that a(a∗a)a∗ ≤ a(λ1I)a∗ = λaa∗ in view of positivity
of the map x → axa∗ (see the note after Theorem 2.2). Therefore λ(aa∗) −
2λaa∗ + λ21I ≥ 0, i.e., −aa∗ + λ1I ≥ 0 so aa∗ ≤ λ1I, i.e., the element a∗ is also
bounded.
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(2) If a ∈ E is bounded then λa is also bounded for any λ ∈ R. Suppose now that
a, b are bounded, i.e., a∗a ≤ λ1I, b ∗b ≤ μ1I, λ, μ ∈ R, λ, μ ≥ 0. The axiom (4)
of real O∗-algebras implies that (a − b)∗(a − b) ≥ 0, i.e., a∗a + b ∗b − a∗b −
b ∗a ≥ 0, i.e., a∗b + b ∗a ≤ a∗a + b ∗b . Therefore

(a + b)∗(a + b) = a∗a + a∗b + b ∗a + b ∗b ≤ a∗a + a∗a + b ∗b + b ∗b

≤ 2λ1I + 2μ1I = 2(λ + μ)1I,

i.e., a + b is bounded. Further (ab)∗(ab) = b ∗a∗ab ≤ b ∗(λ1I)b = λb ∗b ≤ λμ1I,
i.e., ab is also bounded. The proof is complete. 
�

Corollary 3.2 The set A of all bounded elements in a real O∗-algebra E is a real
∗-subalgebra in E, and a solid O∗-subalgebra.

Indeed A is a real ∗-subalgebra and is solid in E, i.e., 0 ≤ a ≤ b , b ∈ A, a ∈ E
implies that a ∈ A. Therefore the axioms (a), (b) of real O∗-algebras as well as (1)–
(4) are inherited from E.

Remark From [13, Ch. IV, §3, Proposition 1] it follows that for complex O∗-algebras
our notion of bounded elements agrees with a similar notion in [12, 13].

Theorem 3.3 In the O∗-algebra A of all bounded elements in an arbitrary real
O∗-algebra E there exists a norm ‖ · ‖ with the following properties:

1) ‖1I‖ = 1;
2) ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A;
3) ‖x∗‖ = ‖x‖ for all x, y ∈ A;
4) ‖x∗x‖ = ‖x‖2 for all x, y ∈ A;
5) Ah is complete in the norm ‖ ‖.

Proof Consider the hermitian part Ah of A. For a hermitian x ∈ Eh boundedness
means that 0 ≤ x2 ≤ λ1I for some λ ≥ 0, that is −√

λ 1I ≤ x ≤ √
λ 1I, i.e., x is bounded

in the OJ-algebra Eh. Therefore (see [13, Ch. III, §3, Theorem 1]) Ah is an order-unit
space with respect to the norm

‖a‖1 = inf {λ > 0 : −λ 1I ≤ a ≤ λ 1I}.
Moreover (Ah, ‖ · ‖1) is a monotone complete JB-algebra (Jordan Banach alge-

bra) – i.e., OJB-algebra in terms of [3, 13].
Now let x ∈ A, x �= 0 be an arbitrary element and put y = −x∗x. The positive

cone K = {a ∈ Ah : a ≥ 0} is closed in the JB-algebra Ah with respect to the norm
‖ · ‖1 (see [13, Ch. III, §2, Theorem 1]). From the axiom (4) of real O∗-algebras one
has y �= 0, and from Hahn–Banach’s theorem we have that there exists a continuous
linear functional ϕ on Ah, which is positive on K, but ϕ(y) < 0. Let us extend ϕ

from Ah to the whole A putting ϕ(a) = ϕ
(

1
2 (a + a∗)

)
, a ∈ A, i.e., ϕ is zero on skew-

hermitian elements of A (i.e., ϕ(b) = 0 for b ∗ = −b). It is clear that ϕ is a linear
functional on A, ϕ(aa∗) ≥ 0 for any a ∈ A and ϕ(x∗x) = −ϕ(y) > 0 for x given above.

For the functional ϕ on A we have the following Schwarz inequality

ϕ(a∗b)2 ≤ ϕ(a∗a)ϕ(b ∗b), a, b ∈ A.
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Indeed, since a∗b − b ∗a is skew-hermitian, one has ϕ(a∗b − b ∗a) = 0, i.e.,
ϕ(a∗b) = ϕ(b ∗a). Further ϕ((a − λb)∗(a − λb)) ≥ 0 for an arbitrary λ ∈ R.

Therefore

ϕ(a∗a) − λϕ(a∗b + b ∗a) + λ2ϕ(b ∗b) ≥ 0,

i.e.

ϕ(a∗a) − 2λϕ(a∗b) + λ2ϕ(b ∗b) ≥ 0.

Thus the discriminant of this quadratic form is negative,
i.e.,

4ϕ(a∗b)2 − 4ϕ(a∗a)ϕ(b ∗b) ≤ 0,

i.e.,

ϕ(a∗b)2 ≤ ϕ(a∗a) ϕ(b ∗b).

In particular putting a = 1I, b = x∗x one obtains

ϕ(x∗x)2 ≤ ϕ(1I) ϕ(x∗xx∗x).

Since ϕ(x∗x) > 0 we have that ϕ(1I) > 0, and therefore without loss of generality
we may assume that ϕ(1I) = 1, i.e., ϕ is a state on the ∗-algebra A. Now let us construct
a representation of A by operators on a real Hilbert space associated with the state ϕ

(a real GNS-construction). Consider on A the bilinear form (a, b)=ϕ(b ∗a), a, b ∈ A.
As it was showed above ϕ(a∗b) = ϕ(b ∗a), i.e., (a, b) = (b , a) for any a, b ∈ A,

i.e., this bilinear form is symmetric. Put J = {a ∈ A : (a, a) = ϕ(a∗a) = 0} and let us
prove that J is a left ideal in A. If a ∈ J, b ∈ A then by the above Schwarz inequality
ϕ(ba)2 ≤ ϕ(bb ∗)ϕ(aa∗) = 0. Therefore given any a1, a2 ∈ J we have ϕ((a1 + a2)

∗(a1 +
a2)) = ϕ(a∗

1a1) + ϕ(a∗
1a2) + ϕ(a∗

2a1) + ϕ(a∗
2a1) = 0, i.e., a1 + a2 ∈ J. If λ ∈ R, a ∈ J

then it is clear that λa ∈ J, i.e., J is a linear subspace in A. Moreover if a ∈ J, b ∈ A
then from above we have

ϕ((ba)∗(ba)) = ϕ(a∗b ∗ba) = ϕ((a∗b ∗b)a) = 0,

i.e., ba ∈ J, which means that J is a left ideal in A.
Denote by Dϕ the factor space A/J. If ξ, η ∈ Dϕ and a, b are representatives of

these classes respectively, then putting

(ξ, η) = (a, b) = ϕ(b ∗a)

we obtain a well-defined inner product on Dϕ , i.e., Dϕ becomes a pre-Hilbert space.
Taking the completion of Dϕ by the norm ‖ξ‖ϕ = √

(ξ, ξ) = √
ϕ(a∗a), a ∈ ξ , we

obtain a Hilbert space Hϕ .
Further in the standard way we construct a regular representation 
ϕ of the

algebra A on this Hilbert space such that 
ϕ(x) �= 0 for the fixed element x �= 0,

x ∈ A, such that ϕ(x∗x) > 0. Now if � is the family of all states on A, then 
 = ⊕

ϕ∈�

ϕ

gives a faithful representation of A in the Hilbert space H = ⊕

ϕ∈�
Hϕ . Similarly to the

complex case [13, Ch. IV] one can define a new norm on A putting ‖x‖ = ‖
(x)‖,
where the latter norm denotes the operator norm in B(H), and show that ‖x‖1 = ‖ x‖
for all x ∈ Ah. Therefore Ah is complete in the norm ‖ ‖. The proof is complete. 
�
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Remark Unlike the complex case the whole O∗-algebra A of bounded elements
may not be complete as the following example shows.

Example 6 Put E = s + icf , where s is the algebra of all real sequences, cf –the
algebra of all real sequences with a finite number of non zero terms. Then E is a
real ∗-algebra: indeed for f1 + ig1, f2 + ig2 ∈ E, f1, f2 ∈ s, g1, g2 ∈ cf , we have

( f1 + ig1) + ( f2 + ig2) = ( f1 + f2) + i(g1 + g2) ∈ E

and

( f1 + ig1) · ( f2 + ig2) = ( f1 f2 − g1g2) + i( f1g2 + g1 f2) ∈ E

because f1 + f2, f1 f2 − g1g2 ∈ s, g1 + g2, f1g2 + g1 f2 ∈ cf . Since Eh = s the axioms
of real O∗-algebras are obviously satisfied by E. The O∗-subalgebra of bounded
elements of E coincides with the algebra A = m + icf , where m is the algebra
of all bounded real sequences. The algebra A is not complete in sup −norm.
Indeed if we consider the sequence xn = (

1, 1
2 , 1

3 , ..., 1
n , 0, 0, ...

) ∈ cf then the se-
quence {0 + ixn} is fundamental because ‖xn − xm‖ = 1

m → 0, n > m → ∞. But
xn → (

1, 1
2 , 1

3 , ..., 1
m , ...

) �∈ cf , i.e., {0 + ixn} does not converge in A = m + icf . There-
fore A is not complete.

4 Commutation in Real O∗-algebras

In this section we shall consider more deeply commutation properties in terms of
symmetrizes (i.e., Jordan) products.

Proposition 4.1 Let E be a real O∗-algebra, a, x ∈ E and suppose that a is hermi-

tian (i.e., a∗ = a ) and x is skew-hermitian (i.e., x∗ = −x). And let a =
+∞∫

−∞
λdeλ

be the spectral resolution of the hermitian element a. Then [a, x] = 0 if and only
if [eλ, x] = 0 for all eλ, λ ∈ R (the spectral projections of a).

Proof It is known that the spectral projections {eλ} of any hermitian element a ∈
E, belong to each maximal abelian subalgebra of E which contains a [13, Ch.III].
Suppose that [a, x] = 0. Then since a = a∗ and x = −x∗, we have that all elements
a, a∗, x, x∗ pair-wise commute, i.e., the ∗-subalgebra A(a, x) generated by a and x is
abelian. Consider a maximal abelian ∗-subalgebra Ẽ containing A(a, x). Then eλ ∈ Ẽ
for all λ ∈ R and therefore [eλ, x] = 0 for all λ ∈ R. Conversely, if [eλ, x] = 0 for
all λ ∈ R then as above there exists a maximal abelian ∗-subalgebra Ẽ containing
x and all el, λ ∈ R, because [eλ, eμ] = 0 for all λ, μ ∈ R. But then a ∈ Ẽ, therefore
[a, x] = 0. The proof is complete. 
�

The following corollary strengthens Proposition 2.1.

Corollary 4.2 Let E be a real O∗-algebra, Eh its hermitian part. For a, b ∈ Eh the
following conditions are equivalent

α) {a, c, b} = 0 for all c ∈ Eh;
β) {a, a, b} = 0;
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β ′) {a, b , b} = 0;
γ ) [a, b ] = 0,

where {a, c, b} = (a ◦ c) ◦ b − a ◦ (c ◦ b) is the associator in the Jordan product x ◦
y = 1

2 (xy + yx), and [a, b ] = ab − ba is the commutator in the associative product.

Proof In view of the identity {a, c, b} = 1
4 [c, [a, b ]] the implication γ ) ⇒ α) is

obvious. Also it is clear that α) ⇒ β) and α) ⇒ β ′). Therefore it is sufficient to
prove that β) ⇒ γ ), i.e., [a, [a, b ]] = 0 ⇒ [a, b ] = 0.

First suppose that a is a projection, i.e. a = a2 = a∗. Then [a, [a, b ]] = ab − aba −
aba + ba = ab − 2aba + ba = 0. Multiplying this equality by a from the right side we
obtain aba − 2aba + ba = 0, i.e., ba = aba.

Similarly ab = aba, i.e., ab = ba, so [a, b ] = 0 and the assertion is proved in this
case.

Turning to the general case put d = [a, b ]. Then since a, b ∈ Eh, we have d∗ = −d

and, by the assumption, [a, d] = 0. If a =
+∞∫

−∞
λdeλ is the spectral resolution of a the

Proposition 4.1 implies that [eλ, d] = 0 for all λ ∈ R. Therefore [eλ, [a, b ]] = 0 for any
λ ∈ R.

From the Jacobi identity we have

[[a, b ], eλ] + [[b , eλ], a] + [[eλ, a], b ] = 0.

Since [[a, b ], eλ] = 0 and [eλ, a] = 0 it follows that [[b , eλ], a] = 0. But the ele-
ment [b , eλ] is also skew-hermitian. Applying Proposition 4.1. once more we have
[[b , eλ], eλ] = 0. But eλ is a projection and from above we obtain that [b , eλ] = 0 for
all λ ∈ R. Again Proposition 4.1 implies that [b , a] = 0. The proof is complete. 
�

The set ZE = {x ∈ E : xy = yx,∀y ∈ E} is called the center of the real O∗-algebra
E. It is clear that elements of the form λ1I, λ ∈ R, are in the center of E.

Definition 4 A real O∗-algebra E is said to be a real O∗-factor, if ZE = {λ1I, λ ∈ R},
i.e., the center of E consists of real multiples of the identity element.

Note that a complex O∗-algebra F is called O∗-factor if ZF = {λ1I, λ ∈ C}.
Therefore O∗-factors are real O∗-algebras, but not real O∗-factors!

Corollary 4.3 In a real O∗-algebra E non zero central elements can not be repre-
sented as a commutator of hermitian elements. In particular there is no Heisenberg
representation of canonical commutation relations by hermitian elements of complex
O∗-algebras (i.e., there is no a, b ∈ Eh, such that [a, b ] = i1I).

Proof If [a, b ] ∈ ZE, then in particular [[a, b ], a] = 0, therefore [a, b ] = 0. 
�

In order to obtain a criterion for an element of a real O∗-algebra to be central we
need the following technical result. Recall that an element u of a real O∗-algebra is
called a unitary element, if u∗u = uu∗ = 1I.

Proposition 4.4 In a real O∗-algebra each bounded skew-hermitian element is a
linear combination of two unitary elements.
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Proof Let x∗ = −x be a bounded element, i.e., 0 ≤ −x2 = x∗x ≤ λ1I for some λ ∈ R,

λ > 0. Passing if necessary to the element λ−1x, we may suppose that x∗x = −x2 ≤ 1I.
Then 1I + x2 ≥ 0 and therefore there exists a positive square root h = √

1I + x2,

commuting with x (in fact h =
1∫

0

√
λ deλ, where 1I + x2 =

1∫

0
λdeλ is the spectral

resolution of 1I + x2).
Put u1 = x + h, u2 = x − h, then it is clear that x = 1

2 (u1 + u2) and

u∗
1u1 = (x∗ + h)(x + h) = (h − x)(h + x) = h2 − x2 = 1I + x2 − x2 = 1I,

and similarly u1u∗
1 = 1I.

Also u∗
2u2 = (x∗ − h)(x − h) = −(x + h)(x − h) = −x2 + h2 = −x2 + 1I + x2 = 1I

and similarly u2u∗
2 = 1I, i.e., u1 and u2 are unitaries. The proof is complete. 
�

Proposition 4.5 An element x in a real O∗-algebra E belongs to the center ZE if and
only if u∗xu = x for any unitary u ∈ E.

Proof If x ∈ ZE then it is clear that u∗xu = x for any unitary u ∈ E.
Conversely, suppose that u∗xu = x for each unitary u ∈ E. Applying the involu-

tion to this equality we obtain u∗x∗u = x∗ and thus

u∗(x + x∗)u = x + x∗, u∗(x − x∗)u = x − x∗

for any unitary u ∈ E. Consider the hermitian element a = x + x∗. If e ∈ E is a
projection then 1I − 2e is a unitary, because (1I − 2e)∗(1I − 2e) = 1I − 2e − 2e + 4e = 1I.
Therefore (1I − 2e)a(1I − 2e) = a, i.e., a − 2ea − 2ae + 4eae = a, i.e., 2eae = ea + ae.
Multiplying this by e from the right, one has 2eae = eae + ae, i.e., ae = eae. Simi-
larly eae = ea, i.e., ea = ae. Therefore a commutes with every projection e ∈ E
and by the spectral theorem a commutes with each hermitian element in E. Now
consider a skew-hermitian element y ∈ E and take the hermitian element 1I + y∗y =
1I − y2 ≥ 1I. Then it is clear that 1I − y2 is invertible and its inverse (1I − y2)−1 belongs
to any maximal abelian ∗-subalgebra, containing 1I − y2. From the above we have
that both (1I − y2) and (1I − y2)−1 commute with a. Put t = y(1I − y2)−1. This element
is skew-hermitian and

t∗t = −t2 = −y2

1I − y2
≤ 1I − y2

1I − y2
= 1I,

i.e., t is bounded. By Proposition 4.4 t is a linear combination of two unitaries.
Therefore a commutes with t (since u∗au = a multiplying by u from the left side we
obtain au = ua) i.e.,

ay(1I − y2)−1 = y(1I − y2)−1a.

Multiplying this from the right side by the element 1I + y2 and noting that 1I − y2

commutes with a, we have

ay = ya.

Thus the element a = x∗ + x commutes with any skew-hermitian y ∈ E. But any
element in E is the sum of a hermitian and a skew-hermitian elements. Therefore
a ∈ ZE. Similarly applying the Proposition 4.1 we prove that the skew-hermitian
element x − x∗ is in ZE. Therefore x ∈ ZE. The proof is complete. 
�
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We conclude this section by a description of so called discrete real O∗-factors. Let
E be a real O∗-factor, i.e., ZE = {λ1I, λ ∈ R.}

Definition 5 E is said to be discrete or type I, if its lattice of projections is atomic, i.e.,
given any projection e ∈ E there exists an atom (minimal projection) p such p ≤ e.

Theorem 4.6 Let E be a real O∗-factor. If E contains at least one atom, then E is
a discrete real O∗-factor and isomorphic to the algebra B(H) of all bounded linear
operators on a real or quaternionic Hilbert space H. In particular all elements are
bounded.

Proof Consider the O∗subalgebra B of all bounded elements of E. Then

Bh = {x ∈ B : x∗ = x}
is an OJB-factor in the sense of [13, Ch.III]. If p is an atom in E (and thus in Bh)
then pBh p contains only two projections 0 or p, i.e., pBh p ∼= Rp (real multiples
of p). Thus given any x ∈ Bh, we have pxp = λp for an appropriate real λ = λ(x),
i.e., pxp = λp(x)p. It is easy to see that the functional λp : Bh → R is a state on Bh

and it is normal, since the map x → pxp is normal. Therefore the OJB-factor Bh

admits a normal state λp. By [13, Ch.III, §9, Corollary 1 of Theorem 3] it follows
that Bh is a JW-factor – a weakly closed Jordan algebra of self-adjoint bounded
operators on a complex Hilbert space [3, 5, 16], with a trivial center. Further since
Bh contains a minimal projection p, it is a JW-factor of type I, and therefore by
[5, Ch.II, Theorem 2.1] (see also [3, 16]), Bh is isomorphic to the algebra B(H)SA

of all bounded self-adjoint operators on a real (H = HR), complex (H = HC) or
quaternionic (H = HQ) Hilbert space. But then by [13, Ch.III, §4, Theorem 4.2]
Eh can be embedded into the OJ-algebra S(B(H)SA) of all locally measurable
operators affiliated with B(H)SA. For JW-factors A of type I, it is known that
S(A) = A, therefore Eh = Bh i.e., all hermitian elements of the real O∗-factor E
are bounded. From the definition it follows that all elements of E are also bounded,
i.e., E = B. Therefore we have proved that E = B and Eh

∼= B(H)SA, and by
GNS−construction for the O∗-algebras of bounded elements (see Theorem 3.3)
E can be embedded into B(H) i.e., E ⊂ B(H). If H = HC then E = Eh + Ek =
B(HC)SA + iB(HC)SA = B(HC), (Ek denotes the skew-hermitian part of E). But
B(HC) is not a real O∗-factor, therefore the case H = HC is impossible. For H = HR

or HQ any skew-hermitian operator from B(H) is a finite sum of commutators of
hermitian elements from B(H)SA = Eh [9] and thus B(H)k ⊂ Ek. Therefore B(H) =
B(H)SA ⊕ B(H)k ⊂ Eh + Ek = E, i.e., E = B(H), where H = HR or HQ. The proof
is complete. 
�

Corollary 4.7 (Analogue of Frobenius’ theorem). Let a real O∗-algebra E have only
two projections 0 and 1I. Then E is ∗-isomorphic to R, C, or Q.

Proof One can obtain the proof from the theorem above and from the description
of complex discrete O∗-factors [13]. But here we suggest a straightforward proof. By
the spectral theorem we have that any hermitian element a ∈ Eh is a real multiple
of 1I, i.e., a = λ1I, λ ∈ R. Let us prove that E is a division algebra, i.e., any non-zero
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element is invertible in E. Let x ∈ E, x �= 0. By the axiom 4) of real O∗-algebras
x∗x ∈ Eh, x∗x �= 0, i.e., x∗x = λ1I, λ ∈ R, λ �= 0. Similarly xx∗ = μ1I, μ ∈ R, μ �= 0.
Multiplying this from the right side by x, we obtain xx∗x = μx, i.e., x(λ1I) = μx, i.e.,
λx = μx. Since x �= 0 one has λ = μ, i.e., x∗x = xx∗ = λ1I, i.e., λ−1x∗ is the inverse
of x, i.e., E is a division algebra over R. By the classical Frobenius’ theorem E is
isomorphic to either R, C or Q. The proof is complete. 
�

5 O∗-algebras of Locally Measurable Operators and Representations of Real
O∗-algebras

It is known that in the complex case under some natural conditions an abstract
O∗-algebra can be embedded into the concrete O∗-algebra of all locally measurable
operators affiliated with a von Neumann algebra (see e.g., [13, Ch.IV]). In this
section we are going to obtain a similar result for real O∗-algebras. For this sake
it is necessary to define the algebras of measurable and locally measurable operators
affiliated with a real von Neumann algebra [8, 11]. It is somewhat routine if we follow
step by step the complex case. Therefore we shall choose a shorter way and apply the
method of complexification of given real algebras.

Recall [5, 8] that a real ∗-subalgebra � of linear bounded operators on a complex
Hilbert space H (i.e., � ⊂ B(H)) is called a real von Neumann algebra, if it is closed
in the weak operator topology, contains the identity operator 1I and �⋂

i� = {0}.
The smallest (complex) von Neumann algebra generated by the real von Neumann
algebra � coincides with its complexification: U(�) = � + i�.

In this case � generates the canonical involutive ∗-anti-automorphism of U(�) as

α�(x + iy) = x∗ + iy∗,

for x + iy ∈ U(�) = � + i�, x, y ∈ �. Moreover � = {x ∈ U(�) : α�(x) = x∗} (cf.
Section 3). Conversely if α is an involutive ∗-anti-automorphism of a von Neumann
algebra U , then the set {x ∈ U : α(x) = x∗} forms a real von Neumann algebra,
generating U .

We recall some definitions and notions from non commutative integration theory
[15, 17]. Let H be a complex Hilbert space, and let T denote a closed linear operator
(not necessary bounded) with a dense domain D(T). An operator T is said to be
positive (denoted as T ≥ 0) if (Tξ, ξ) ≥ 0 for all ξ ∈ D(T). It is known that T∗T ≥ 0
for any closed T. We say that T commutes with the bounded operator S ∈ B(H), if
ST ⊂ T S, S(D(T)) ⊂ D(T) and STξ = T Sξ for all ξ ∈ D(T).

Given any self-adjoint operator T there exists a spectral family of projec-

tions E(λ), −∞ < λ < +∞ such that Tξ =
+∞∫

−∞
λdE(λ) for all ξ ∈ D(T) (Spectral

Theorem).
An operator T in H is said to be affiliated with a von Neumann algebra M (denoted

TηM), if it commutes with each unitary operator U from the commutant M′ of M in
B(H). It is clear that if T is bounded (i.e., T ∈ B(H)) then TηM and only if T ∈ M,
since in this case T ∈ M′′ = M (bicommutant theorem). Further, if T is self-adjoint,
then TηM and only if M contains all spectral projection E(λ) of T.
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Definition 6 Let T be a closed operator affiliated with M, i.e., TηM. T is said to be
measurable (with respect to M) if the projection 1I − E(λ) is finite in M for some
λ > 0, where {E(λ)} is the spectral family of the positive operator |T| = (T∗T)

1
2 .

Measurable operators were studied by Segal in [15], where in particular he has
proved that the set C(M) of all measurable operators affiliated with M forms a
complex ∗-algebra with respect to natural algebraic operations.

Definition 7 An operator T in H is called locally measurable (with respect to M), if
there is a sequence of central projections {Pn} in M increasing to 1I such that PnT is
measurable for all n = 1, 2, ....

The set S(M) of locally measurable operators was considered by Yeadon [17], who
has proved that S(M) forms a monotone complete ∗-algebra. In the monograph [13]
it is proved that S(M) is a complex O∗-algebra and C(M) is a solid O∗-subalgebra
in S(M) (i.e., 0 ≤ X ≤ Y ∈ C(M), X ∈ S(M) implies x ∈ C(M)). Moreover the
O∗-subalgebra of bounded element both of C(M) and S(M) coincides with the von
Neumann algebra M.

Now let � be a real von Neumann algebra in B(H), M = � + i� its enveloping
von Neumann algebra, α – the corresponding involutive ∗-anti-automorphism of M,
generated by �. A natural question arises:

Can the ∗-anti-automorphism α be extended to a ∗-anti-isomorphism of C(M) or
S(M)?

In order to give an answer to this question we need the following theorem which
extends the Theorem 1 from [13, Ch.IV, §7] for ∗-anti-isomorphisms.

Theorem 5.1 Let E, Ē be complex O∗-algebras, A, Ā− the OC∗-algebras of
bounded elements of E and Ē respectively. And suppose that � : A → Ā a ∗-anti-
isomorphism between A and Ā satisfying the following condition:

(∗) given any a ∈ Eh with the spectral family of projections {eλ} the integral
+∞∫

−∞
λ d�(eλ) converges in Ēh.

Then � can be uniquely extended to a ∗-anti-isomorphism �̄ of E onto a solid
O∗-subalgebra of Ē.

Proof One can follow step by step the proof of Theorem 1 from [13, Ch. IV,
Section 7] replacing the word “∗-isomorphism” by the word “∗-anti-isomorphism”.


�

Corollary 5.2 Let E be a complex O∗-algebra with the subalgebra A of all bounded
element. Suppose that α : A → A is an involutive ∗-anti-automorphism of the
OC∗-algebra A. Then α can be uniquely extended to an involutive ∗-anti-
automorphism ᾱ of the solid O∗-subalgebra

Eα =
⎧
⎨

⎩
x ∈ E :

+∞∫

0

λdα(eλ) exists

⎫
⎬

⎭
,

where eλ is the spectral family of the element | x |.
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Now turning to the above question consider the O∗-algebras C(M) and S(M)

and the involutive ∗-anti-automorphism α : M → M generated by the real von
Neumann algebra �.

Given an operator T ≥ 0 in H it is clear that TηM if and only if its spectral projec-

tions E(λ) are in M. But then α(E(λ)) are also in M and therefore
+∞∫

0
λd(E(λ))ηM,

i.e.,

T =
+∞∫

0

λdE(λ) ηM ⇔ ᾱ(T) =
+∞∫

0

λdα(E(λ)) ηM.

Further a projection e ∈ M is finite if and only if α(e) is finite in M. Therefore T ∈
C(M) ⇔ ᾱ(T) =

+∞∫

0
λ dα(E(λ)) ∈ C(M).

Finally, if {Pn} is an increasing sequence of central projections in M with
sup Pn = 1I and PnT ∈ C(M), then {α(Pn)} is also a sequence of central projections
which increases to 1I and α(Pn)ᾱ(T) = ᾱ(PnT) ∈ C(M). Therefore

T ∈ S(M) ⇔ ᾱ(T) =
+∞∫

0

λ dα(E(λ)) ∈ S(M).

The above implications show that in the cases of the complex O∗-algebras C(M)

and S(M) the corresponding solid O∗-subalgebras Eα coincide with the whole
O∗-algebras C(M) and S(M) respectively. Therefore we obtain the following

Theorem 5.3 Any involutive ∗-anti-automorphism α of the (complex) von Neumann
algebra M can be uniquely extended to the involutive ∗-anti-automorphism ᾱ of the
O∗-algebras C(M) and S(M).

Remark The assertion of the above theorem does not hold for arbitrary O∗-algebras
with the bounded part M. Indeed, consider the abelian O∗-algebra E = m ⊕ s−
the direct sum of the abelian O∗-algebras m (of all bounded sequences of real
numbers) and s (of all sequences of real numbers). Then the ∗-subalgebra of bounded
elements in E coincides with the abelian von Neumann algebra m ⊕ m. Consider the
involutive ∗-anti-automorphism (which is simply a ∗-automorphism in view of the
commutativity of M) α : M → M, defined by

α : (a, b) → (b , a), (a, b) ∈ M = m ⊕ m.

Then it is clear that the O∗-subalgebra Eα from above coincides exactly with M,
i.e., α can not be extended to any unbounded part of E = m ⊕ s. This example
can be extended to the non abelian cases, e.g., considering O∗-algebras of the form
E = M ⊕ S(M).

Now let � be a real von Neumann algebra. We are going to introduce the notions
of measurable and locally measurable operators with respect to �. To this end
consider the complexification M = � + i� of the given real von Neumann algebra
� and the corresponding involutive ∗-anti-automorphism α = α� of M, i.e., � = {x ∈
M : α(x) = x∗}.
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Applying Theorem 5.3 let us extend α to an involutive ∗-anti-automorphism
ᾱ : S(M) → S(M), which restricted to C(M) gives an involutive ∗-anti-automorphism
of C(M).

Consider the real ∗-subalgebras

S(�) = {x ∈ S(M) : ᾱ(x) = x∗} in S(M)

and

C(�) = {x ∈ C(M) : ᾱ(x) = x∗} in C(M).

It is clear that

S(M) = S(�) + iS(�) and C(M) = C(�) + iC(�).

Since S(M) and C(M) are (complex) O∗-algebras, Theorem 2.3 from Section 2
implies that both S(�) and C(�) are real O∗-algebras, with respect to the partial
order induced from S(M).

Definition 8 Operators from C(�) (resp. from S(�)) are called measurable (resp.
locally measurable) operators affiliated with the real von Neumann algebra �.

Thus we have the following result

Theorem 5.4 The algebras S(�) of all locally measurable operators and C(�) of
all measurable operators affiliated with the real von Neumann algebra � are real
O∗-algebras and the ∗-subalgebra of all bounded elements in both S(�) and in C(�))

coincides with �.

Now we are in position to prove the main result of this paper – a representation
theorem for abstract real O∗-algebras.

Theorem 5.5 Let E be a real O∗-algebra such that its complexification F = E + iE is
a (complex) O∗-algebra. Suppose also that the real ∗-subalgebra BE of all bounded
elements in E possesses a separating set of normal states. Then E is ∗-isomorphic to
a solid O∗-subalgebra of the real O∗-algebra S(�) of all locally measurable operators
affiliated with an appropriate real von Neumann algebra �.

Proof Consider the involutive ∗-anti-automorphism α : a+ib → a∗+ib ∗, a, b ∈E,
of the complex O∗-algebra F = E + iE. Then it is clear that the ∗-subalgebra
BF of all bounded elements of the O∗-algebra F coincides with the complexification
of BE, i.e., BF = BE + iBE and BE = {x ∈ BF : α(x) = x∗}. Let us prove that the
OC∗-algebra BF has a separating family of normal states. Let ρ be a normal state on
the real ∗-algebra BE. For x ∈ BF , x = x∗, put

ρ̄(x) = ρ

(
x + α(x)

2

)
;

since x + α(x) ∈ BF , ρ̄ is well defined.
It is clear that ρ̄ is a real linear functional on (BF)h, and if x ≥ 0 then ρ̄(x) ≥ 0.

Therefore by the complex linearity ρ̄ can be uniquely extended to a state on
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the whole BF . Moreover if xλ ∈ (BF)h, xλ ↘ 0, then xλ + α(xλ) ↘ 0 and by the
normality of ρ we have

ρ̄(xλ) = ρ

(
xλ + α(xλ)

2

)
→ 0

so ρ̄ is a normal state on BF .
Thus given any normal state on the real O∗-algebra BE there is a corresponding

normal state ρ̄ on the OC∗-algebra BF (note that ρ̄ is not necessarily the extension
of ρ). If x ∈ BF , x ≥ 0, and ρ̄(x) = 0 for all normal states ρ on BE, then in view of
the positivity of x and α(x) this implies that x + α(x) = 0 and hence x = α(x) = 0.
Therefore {ρ̄} gives a separating family of normal states on the OC∗-algebra BF . By
[13, Ch.IV, §7] the OC∗-algebra BF is ∗-isomorphic to a (complex) von Neumann
algebra M, and F is ∗-isomorphic to a solid O∗-subalgebra of the O∗-algebra S(M)

of all locally measurable operators affiliated with M. Now (identifying BF with M) if
we put

� = {x ∈ M : α(x) = x∗}
then we obtain a real von Neumann algebra �, which is ∗-isomorphic to BE.
Therefore the real O∗-algebra

E = {x ∈ F : α(x) = x∗}
is ∗-isomorphic to a solid real O∗-subalgebra of the real O∗-algebra

S(�) = {x ∈ S(M) : ᾱ(x) = x∗}
where ᾱ is the unique extension of α to an involutive ∗-anti-automorphism of S(M)

(see Theorem 5.3). The proof is complete. 
�

Remark The additional condition that F = E + iE is an O∗-algebra is crucial. As
we can see from the Example 6 in Section 3 in general the ∗-subalgebra BE of all
bounded elements in a real O∗-algebra E may be not complete (i.e., BE is not even
a real C∗-algebra) though it has a separating family of normal states. Therefore BF

is not a real von Neumann algebra, so E can not be a solid real O∗-subalgebra in the
real O∗-algebra of the form S(�) for some real von Neumann algebra �, because in
this case BF

∼= � – a contradiction.
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