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Abstract: 

The local influence method plays an important role in regression diagnostics 

and sensitivity analysis. To implement it, we need the Delta matrix for the 

underlying scheme of perturbations, in addition to the observed information 

matrix under the postulated model. Galea, Paula and Bolfarine (1997) has 

recently given the observed information matrix and the Delta matrix for a 

scheme of scale perturbations and has assessed of local influence for ellip- 

tical linear regression models. In the present paper, we consider the same 

elliptical linear regression models. We study the schemes of scale, predictor 

and response perturbations, and obtain their corresponding Delta matrices, 

respectively. To illustrate the methodology for assessment of local influence 

for these schemes and the implementation of the obtained results, we give 

an example. 
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1 I n t r o d u c t i o n  

During the last three decades, elliptical distributions-based linear models 

and multivariate analysis have been developed as stimulating and fruitful 

fields in statistics and econometrics, see, e.g. Fang and Anderson (1990), 

Fang and Zhang (1990) and Kollo and Neudecker (1993, 1997). Meanwhile, 

regression diagnostic techniques useful for many fields have been studied and 

applied extensively, see, e.g Chatterjee and Hadi (1988) and Pefia (1997). 

The local influence method originated with Cook (1986) has, along with 

other new methods, been paid considerable attention. We see that the local 

influence method has an advantage over other methods in several situations, 

see, e.g. Cook (1997). A comparison of the local influence method with the 

influence function method and the case deletion method can be found in, 

e.g. Jung, Kim and Kim (1997). For a useful discussion and some historical 

notes on the concept of influence, we refer to Farebrother (1992, 1999). 

For elliptical linear regression models, Galea, Paula and Bolfarine (1997) 

has recently assessed a local influence analysis. It establishes the observed 

information matrix under the postulated model, but deals with only one 

scheme of scale perturbations. The purpose of the present paper is to con- 

sider further studies on local influence for the same elliptical linear models 

treated in Galea et al. (1997), and to derive Delta matrices for schemes not 

only of scale perturbations but also of predictor perturbations and response 

perturbations. The structure of the paper is as follows: Section 2 introduces 

the elliptical linear models and Section 3 an outline of the local influence 

method; Sections 4, 5 and 6 each derive Delta matrices for a scheme of scale, 

predictor and response perturbations; Section 7 gives an example with Rup- 

pert and Carroll's (1980) data to assess local influence by using some of the 

obtained results. 
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2 E l l i p t i c a l  l i n e a r  m o d e l s  

For an introduct ion to elliptical linear models, we refer to Fang and Zhang 

(1990). We denote z ,.~ Eln(#, A), if z is an n x 1 random vector with density 

funct ion 

f ( z )  = IAl-1/2g[(z - # ) 'A- l ( z  - #)], (1) 

where # is an n x 1 location vector, A is an n x n positive definite scale 

matr ix ,  g = g() _> 0 is a scalar function (density generator) such that  

fo ~ u~-l g(u2)du < CO. 

In particular,  when # = 0  and A = r  we have the spherical family of densities 

z ~ EI~(O, $I) .  The class of symmetr ic  distr ibutions includes the normal,  

S tudent  t- and other  distributions. 

Consider the following elliptical linear model  (see, e.g. Fang and Anderson, 

1990 and Galea et al. 1997): 

y = x z  + ~, (2) 

where y is an n x 1 observation vector,  X = (xl, ..., xn)' is an n x p model 

mat r ix  of rank p, fl is a p x 1 unknown parameter  vector, e is an n x 1 

error vector  with elliptical distr ibution Eln(O, r  If g is continuous and 

decreasing, then the max imu m likelihood est imators /~ and 

: ( X t X ) - l X t y ,  

tt 9 

where e = y - X/~ and ug maximizes the function h(u) = un/2g(u),u > O. 

If g is continuous and decreasing, then its max imum ug exists and is finite 

and positive; moreover,  if g is continuous and differentiable, then ug is the 

solution to 

n 
w(u) + ~ = 0, (3) 
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where 

We know that W(u) = _1, W'(u) = 0 and ug = n for the normal distribu- 

tion. For 9(u), W(u) and W'(u) of several other elliptical distributions used 

in assessment of local influence, see Galea et al. (1997). 

3 Loca l  in f luence  

Local influence is a method of sensitivity analysis for assessing the influence 

of small perturbations in a general statistical model. Cook (1986, 1997) 

introduces the idea with key concepts to implement procedures for local 

influence analysis. Let w = (col, ..., wq)' denote a q x 1 vector of perturbations 

confined to some open subset Q of Nq. Let L(Olco ) and L(O) denote the 

log-likelihood functions of the perturbed and postulated (i.e. unperturbed) 

models respectively. Assume that the postulated model is nested within 

the perturbed one and there is such a vector COo that L(O) = L(Olcoo) for 

all values of 0 in the parameter space. Cook (1986) suggests the likelihood 

displacement 

LD(w) = 2[L(O) - L(t~)] 

to measure the difference between 0 and O~ by using the contours of the 

loglikelihood function L(O) for the postulated model, where 0 and t~ are the 

maximum likelihood estimates under the two models respectively. 

The geometric normal curvature C(l) can be used to characterize LD(wo + 

tl) around t = 0, where t is a scalar and l is a direction vector in Q of 

length 1. The direction of maximum curvature Im~ shows how to perturb 

the postulated model to obtain the greatest local change in the likelihood 

displacement. The curvature in direction l is computed as 

G(o) = 211 'Ng- lAl l ,  (4) 
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where Illll = 1, - H  = -Ho(O)is  the observed information matrix for the 

postulated model and A = A0(t?, ~o) is the Delta matrix evaluated at 0 = 

and w = Wo: 

02L(01 ) O L(O) zXo - (5) 
H o -  0000' '  O00w' 

Thus, Im~x is the eigenvector corresponding to the largest absolute eigen- 

value ~ , ~  of B = AIH-1A, which should be calculated. The scatter plot 

of [l~na~l may be helpful to indicate which observation is most influential. 

When 0 = (0~,0~)' and only 01 is of interest, we partition H according to 

the partition of 0 and let B22 = diag(O, H~I). Then 

C/(01) = 2II'A'(H -1 - B22)AI[, (6) 

and we have to examine the eigenvector Im~x of A ' (H -1 - B22)A instead. 

To obtain H and A, we first use the standard matrix differential method, 

see Magnus and Neudecker (1999), to derive d~L(O) = (dO)'HodO for the 

postulated log-likelihood and d~oL(Ola~ ) = (dO)'Aoda~ for the perturbed log- 

likelihood with Ho and A0 defined in (5). We then evaluate d~L(O) and 

d~L(Olw ) (rather than Ito and A0) at 0 = t} and w = wo. In Sections 4 

through 6, we focus on the elliptical linear models and derive Delta matrices 

A0 corresponding to the perturbed models of different schemes, respectively. 

4 Scale per turbat ions  

For model (2), we have the postulated log-likelihood function 

L(6) = - ~log r + log g(u), 

where 0 = (fl', r u = r ( = y _ Xfl and e ..~ Eln(O, r 

(7) 
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For case-weight per turbat ions,  Galea et al. (1997) present 

H = (2W(~)r 0 ) 
0 [~ + W'(~)u~ + 2 W ( ~ ) ~ 1 r  -~ ' (8) 

( -2W(~)r ) 
A = - [ W ' ( f i ) %  + W(~t)]r ' (9) 

and especially, for the normal distr ibution case 

: 0 )  
0 _ ~_~-2 ' ( 1 0 )  

2 

(~-lXrD(e) ) (11) 
A.o~ = �89  ' 

where ug = ~ = q~-le'e, e = y-Xfl = (el, ...,en)' and D(e)  = diag(el,...,e,~). 

Now, we s tudy  further cases. When  r is known, we have the relevant part  

of the pe r tu rbed  log-likelihood function 

L(OI~) = log g(u,~), (12) 

where  ~w = r 1 6 2  ~ = ~ -  X Z ,  r ~ E l n ( 0 , r  D ( ~ )  = 

diag(wl, ...,wn) and a~ = (wl, ...,w~)' with q = n, where wl is the weight of 

the  i- th case (i = 1, ..., n). Wi th  this scheme, the per turbed  model  reduces 

to the pos tu la ted  model  when w = 9o, where Wo = (1, ..., 1)' is of order n x 1. 

Taking the differential of L(~lw ) with respect to 13 (as r is known), we obtain 

d~L(Zlw) = Wdu~ 

= -2r (13) 

Then  

d~L(/31w) 

d~wL(DIw) 

= - 2 r  -1 W'du~e'D(w)Xdfl 
-t-2r -1 W(d~)'X'D(w)Xd/3, (14) 

= -2r 
- 2 r  -1 W(dl3)'X'D(c)dw, (15) 
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where e'D(w)Xd~ = (d3)'X'D(e)w is used. 

Evaluating (14) and (15) at (/3,w) = (/),wo) and noting that  D(wo) = I, 

e'X = 0, e = ~ and W = W(/t), we obtain 

d2~L(/3lw)lz=~ = 2(d3)'r (16) 

d~L(t3]w)I(z=~ . . . .  o) = - 2 ( d 3 ) ' r  (17) 

and therefore 

H = 2r (18) 

A = -2 r  -1W(fi)X'D(e). (19) 

If we consider individual cases where only the weight for the i-th case is 

perturbed,  we define D(w) = diag(1, ..., 1,w, 1, ..., 1) of order n x n. When 

only fl is of interest, H is given by (18) and 

A = - 2 r  (20) 

Furthermore, the curvature is found to be 

C,(3) = 4 t r  (21) 

In the normal distribution case (with W = 1 ) ,  replacing r by its unbiased 

estimator,  (21) becomes identical to (32) in Cook (1986), which shows the 

connection between the local influence and the Cook's distance in the simple 

mult iple regression case. 

5 Pred ic tor  per turbat ions  

First, consider the perturbations in the first column of the predictor matrix: 

X is replaced by X +wa's, where w = (COl ,  . . .  , O / n ) '  is of n • 1, a = (1,0, ..., 0)' 

is of p x 1 and s is the (scalar) scale factor. With this scheme, the per turbed 
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model  reduces to the postula ted model  when co = w0 = 0. The relevant par t  

of the  pe r tu rbed  log-likelihood is 

L(Olw) = log g(uw), (22) 

where uw = (~-1s  and r = y - Xfl - wa'sfl. 

Taking the differential of L(O[w) with respect to first 0 = (fl', r  and then 

to w, we have 

and 

do L(O Iw) = - Wr - 2 W r  -a (d~)'(X + wa's)'e, (23) 

d~L(O[~) = 4W'r + wa's)'ee'dcoa's/3 

+2Wr + wa's)'dwa's/3 

- 2 W r  -1 (d~)'ase'dco, (24) 

d2c~,n(o[r = 2W'C-3dCdeddwa' sj3 + 2WC-2dCe'dwa's/3. (25) 

Evaluat ing (24) and (25) at (O,w) = (O, wo) leads to 

( 2W(~)r  ) 
Z2k : 2[Wt(?~)u9 § W(?~)j~_2S~le ,  , (26) 

where e = y - X/) ,  X ' e  = O, ug = ~ = r  and a'/) =/)1.  

In the normal  case, (26) becomes 

n n o r = (  ~-18(ae ' -~lx ' )  . (27) 

Now, consider the per turbat ions  in all columns of the predictor matrix.  The  

pe r tu rbed  log-likelihood is constructed with X replaced by X + f~S, where 

f~ = (w,j) = (wl, ...,w a, ...,wv) is an n x p matr ix of per turbat ions ,  5' = 

diag(sl,..., sp) and s a (j = 1, ..., p) is the scale factor. The per tu rbed  model  

reduces to the pos tu la ted  model  when w = w0 = 0. We obtain 

Z~ = (A1 , . . . ,  Ap) , (28) 
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where 

Aj 
02L 

o~o~ 
( 2W(u)~-183(f13Xt-a~e') ) 

= 2[w'(~)~g + w ( ~ ) l & % ~ /  ' 

and a 3 is a p x 1 vector with one in the j - th  position and zeros elsewhere. 

Based on H in (8) and A in (26), or (28), we can find B = A'H-1A,  the cur- 

vature C~(O) and therefore the maximum direction l , ~ .  In particular, using 

H~o~ in (10) and A,~o~ in (27) we can get B, Ct(O) and 1 , ~  in the normal case. 

Again, consider the perturbations in the first column of X. By using (7), 

(8) and (26), we can write 

where 

B = /k 'H-1A = B1 + B2, (29) 

C~(r = 21/'B2/I 

= 21cllz'r162 

Then, for the largest curvature, lmax O( e, which means that the observations 

with large absolute values of r exercise the most influence on ~. 

B2 = Cee' 

c = 4[w'(~,)ug + w(~) ]24-2~2~  
~-2 + w,(~)u~ + 2w(~)ug 

Then the curvature is Cz(O) = 2]l'(B1 + B2)l I. In particular, if we are 

interested in only the vector fl, the curvature becomes Cl(fl) = 211'Bill. 
Similarly, the curvature for only the scale parameter q~ is 
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6 R e s p o n s e  p e r t u r b a t i o n s  

Consider the response perturbat ions in which y is replaced by the per turbed  

response y + ws. The per turbat ion vector w is of order n x 1, w0 = 0 and s 

is the  (scalar) scale factor. The relevant part  of the per turbed log-likelihood 

is 

L(OIw) = log g(u~,), (30) 

where u~ = r and e = y + ws - X/3. 

Taking the  differential of L(0[w) with respect to 0 = (/3', r we have 

doL(Olw ) = - W r  - 2Wr  -1 (d~)'X'e. 

Then  

d~oL(Olw) 

d L r ( 0 1 ~ )  

From evaluating (32) and (33) at (0, w) = (0, Wo) it follows that  

( ) 
zx : -2[w'(~)u. + w(~)]~-~'s ' 

where e = y -  X/) ,  X 'e  = 0 and ug = fi = r  

(31) 

= -4W'r  2wr (32) 

= -2W'r162 2Wr (33) 

(34) 

For the normal  case, (34) reduces to 

~-2et 8 

Based on H in (8) and A in (34) we can find B = A ' H - 1 A ,  the curvature 

Cl(O) and the m a x i m u m  direction lm=~. Using Hno~ in (10) and A,~o~ in (35) 

we can get B, Ct(O) and lma~ in the normal case. 
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7 Example 

The data  set of n = 28 observations on the salinity of water during the 

spring in Pamlico Sound, North Carolina is reported and studied by Rup- 

pert and Carroll (1980). It is also examined by Aiktson (1985), Davison and 

Tsai (1992) and Galea et al. (1997). To illustrate the methodology described 

and the results obtained in the current paper, we just examine the same data. 

The linear regression model for the data is assumed to be 

y = X~  + ~, (36) 

where X = (1, x2, xa, x4), 1 is an 28 x 1 vector of ones, x2 is salinity lagged 

two weeks, x3 is a dummy variable for the t ime period, x4 is river discharge, 

y is biweekly salinity, and e is assumed to follow a normal distribution or a 

t-distribution with 3 degrees of freedom. 

Both Aiktson (1985) and Davison and Tsai (1992) use the deletion method.  

Under the normal assumption of errors, Aiktson (1985) finds observations 

16 and 5 most influential. Under a t-distribution with 3 degrees of freedom, 

Davison and Tsai (1992) finds observations 16, 5 and 3 most influential. Us- 

ing the local influence method under both distributions Galea et al. (1997) 

specifies only observation 16 as most influential, and therefore comments  

that  the scatter plot of Ilm~xl for 0 may be helpfid in selecting the less sen- 

sitive model with respect to local perturbations in the elliptical linear family. 

Based on (29), (8) and (34) we compute C,(O) to obtain the corresponding 

l~=~ for two cases, both under a t-distribution with 3 degrees of freedom. 

We present two corresponding scatter plots of ]l~=xl. In the first case, we 

consider the scheme of perturbations of xl and find observation 16 most in- 

fluential, as shown in Figure 1. In the second case, we consider perturbations 

of y and find observations 16 and 5 most influential, as shown in Figure 2. 

These two figures suggest accordance with Oalea et al.'s (1997) comment .  
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