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Abstract. The method of self-similar factor approximants is applied to calculating the critical exponents
of the O(N)-symmetric ϕ4 theory and of the Ising glass. It is demonstrated that this method, being much
simpler than other known techniques of series summation in calculating the critical exponents, at the same
time, yields the results that are in very good agreement with those of other rather complicated numerical
methods. The principal advantage of the method of self-similar factor approximants is the combination of
its extraordinary simplicity and high accuracy.

PACS. 05.70.Jk Critical point phenomena – 02.30.Lt Sequences, series, and summability – 02.30.Mv
Approximations and expansions

1 Introduction

The knowledge of critical exponents, characterizing crit-
ical phenomena, provides us with basic information on
the behavior of thermodynamic quantities in the vicinity
of critical points [1–3]. This is why so much efforts have
been devoted to the experimental measurements as well
as to theoretical calculations of these exponents.

Because of the complexity of realistic theoretical mod-
els, critical exponents can usually be represented by power
series obtained with the help of some perturbation the-
ory. Such series are practically always divergent, which
requires to use resummation techniques allowing for the
determination of effective limits of divergent series. The
standard approach applied to the summation of series,
associated with critical indices, is based on the Padé-
Borel-Leroy transformation and its variants [4]. Another
approach is based on optimized perturbation theory [5],
where the resummation is due to control functions trans-
forming divergent series into converging ones. Introducing
control functions through the change of expansion vari-
ables, it is possible to resum the field-theoretic expan-
sions for critical exponents [6,7]. The convergence of the
optimized perturbation theory can be greatly accelerated
by invoking the self-similar approximation theory [8–16],
as has been done for calculating critical exponents [17].
All these approaches, mentioned above, require quite com-
plicated numerical calculations. A purely numerical pro-
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cedure of calculating critical exponents is due to Monte
Carlo simulations [18–29].

In the present paper, we suggest a new approach for
the summation of series related to critical exponents. This
approach uses the method of self-similar factor approxi-
mants [30–33], whose mathematical foundation is based
on the self-similar approximation theory [8–16]. The con-
struction of the factor approximants is very simple and
straightforward. We recall the main definitions in Sec-
tion 2. Then, in Section 3, we apply these approximants
for the summation of the ε-expansions for the critical ex-
ponents of the N -vector ϕ4 field theory. Our very simple
method yields the results that are in perfect agreement
with the most complicated numerical procedures. In Sec-
tion 4, we demonstrate that the suggested method is ap-
plicable even for such a notoriously difficult problem as
finding the critical indices from the high-temperature se-
ries expansions for spin glasses. Finally, Section 5 is con-
clusion.

2 Self-similar factor approximants

Suppose that our aim is to reconstruct a real function f(x)
of a real variable x, when the function is represented by
its asymptotic expansion at x → 0 as a power series

fk(x) =
k∑

n=0

anxn, (1)
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where k = 0, 1, 2, . . . Without the loss of generality, we
may assume that a0 = 1 in expansion (1). This is be-
cause if instead of form (1) we would have a more general
expression

f (k) = f (0)(x)
k∑

n=0

a′
nxn,

with a given function f (0)(x), then we could return to
expansion (1), with a0 = 1, by defining

fk(x) ≡ f (k)(x)
f (0)(x) a′

0

.

The sequence {fk(x)} is usually divergent for any finite x.
The method of self-similar factor approximants [30–

33] makes it possible to extrapolate the asymptotic ex-
pansion (1), valid only for x → 0, to the whole region of
the variable x ≥ 0. When k = 2p is even, with p being an
integer, then the even-order factor approximant is

f∗
2p(x) =

p∏

i=1

(1 + Aix)ni . (2)

The parameters Ai and ni are obtained from the re-
expansion procedure, that is, by expanding approximant
(2) in powers of x up to the kth order and equating the
latter expansion with the initial one given by form (1).
This re-expansion procedure yields the set of 2p equations

p∑

i=1

niA
n
i = Bn (n = 1, 2, . . . , 2p) (3)

for 2p parameters ni and Ai, with the right-hand sides

Bn ≡ (−1)n−1

(n − 1)!
lim
x→0

dn

dxn
ln fk(x).

As is evident, the quantities ni, Ai, as well as Bn, depend
on the considered order k. But for avoiding excessively
cumbersome notations, we do not use here the double la-
belling. When k = 2p + 1 is odd, the odd-term factor
approximant is

f∗
2p+1(x) =

p+1∏

i=1

(1 + Aix)ni , (4)

with the parameters Ai and ni defined by the re-expansion
procedure yielding the set of equations

p+1∑

i=1

niA
n
i = Bn (n = 1, 2, . . . , 2p + 1), (5)

with the scaling condition A1 = 1.
In this way, for any given expansion (1), the construc-

tion of self-similar factor approximants (2) or (4) is rather
simple and straightforward. It has been shown [30–33] that
the factor approximants are more general and accurate
than Padé approximants, having, in addition, a principal

advantage of being uniquely defined. This means that for
each given order k of expansion (1) there is just the sole
factor approximant, while for each k there exists a table of
k different Padé approximants P[M/N ], with M + N = k.
There is no general recipe for choosing one of the k avail-
able Padé approximants. One often chooses the diagonal
ones, but, as is easy to show, the latter are not always the
most accurate ones. Such a problem of multiple possibili-
ties does not arise for factor approximants: for each k, of
the expansion fk(x), there is just one factor approximant
f∗

k (x).

3 Exponents for O(N)-symmetric theory

Let us consider the N -component vector ϕ4 field theory,
for which the critical exponents can be obtained in the
form of the ε-expansions, with ε ≡ 4 − d, and d being
the space dimensionality. The derivation of these dimen-
sional expansions can be found in the book [6]. In the
Appendix A, we give the expansions that are considered
in the present section. As is known, such expansions are
divergent and require a resummation procedure. To illus-
trate more explicitly how the method of self-similar factor
approximants works, let us start with the scalar single-
component field (N = 1). Then we have

η � 0.0185ε2 + 0.0187ε3 − 0.0083ε4 + 0.0257ε5,

ν−1 � 2−0.333ε−0.117ε2+0.124ε3−0.307ε4+0.951ε5,

ω � ε − 0.63ε2 + 1.62ε3 − 5.24ε4 + 20.75ε5. (6)

We reduce each of these expansions to the form

fk(ε) = f0(ε)
k∑

n=0

anεn, (7)

where a0 = 1. According to Section 2, we construct the
factor approximants

f∗
k (ε) = f0(ε)

Nk∏

i=1

(1 + Aiε)
ni , (8)

in which

Nk =
{

k
2 , k = 2p = 2, 4, . . .
k+1
2 , k = 2p + 1 = 3, 5, . . .

and the parameters Ai and ni are obtained from the re-
expansion procedure. Setting ε = 1, we find the desired
approximation f∗

k (1) ≡ f∗
k . The error bar for the approxi-

mant f∗
k is given by

± 1
2

(
f∗

k − f∗
k−1

)
k = 2, 3, . . .

Reducing the series for η to form (7), we have η0(ε) =
0.0185ε2. Constructing the factor approximants (8), we
find for η∗

2(ε) the parameters

A1 = 1.898511, n1 = 0.532423,
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and for η∗
3(ε), we get

A1 = 1, n1 = 0.789878, A2 = 5.110862, n2 = 0.043228.

Setting ε = 1, we obtain

η∗
2 = 0.032602, η∗

3 = 0.034588.

Thus, we conclude that the factor approximants give

η = 0.035 ± 0.001.

In the same way, we proceed with the series for ν−1. In
the second order, we find

A1 = −0.869203, n1 = −0.191555.

For the third order, we have

A1 = 1, n1 = −0.152346, A2 = 0.023910, n2 = 13.335389.

In the fourth order, we get

A1 = 3.027805, n1 = −0.006791,

A2 = −0.440821, n2 = −0.424352.

And for the fifth order, we find

A1 = 1, n1 = −0.045336,

A2 = 4.168053, n2 = −0.001772,

A3 = −0.312951, n3 = −0.700494.

Setting ε = 1, for the factor approximants ν∗
k , we obtain

ν∗
2 = 0.738227, ν∗

3 = 0.616528,

ν∗
4 = 0.633852, ν∗

5 = 0.628417.

Hence, the result is

ν = 0.628 ± 0.003.

Finally, reducing the series for ω to form (7), we have
ω0(ε) = ε. Following the standard procedure, for the fac-
tor approximant ω∗

2(ε), we get

A1 = 4.512857, n1 = −0.139601.

For ω∗
3(ε), we find

A1 = 1, n1 = 0.006238, A2 = 4.547986, n2 = −0.137151.

And for ω∗
4(ε), it follows

A1 = 4.511659, n1 = −0.139637,

A2 = 107.494872, n2 = −0.7 × 10−7.

Setting ε = 1, we obtain

ω∗
2 = 0.787958, ω∗

3 = 0.787160, ω∗
4 = 0.787934.

Hence, we come to the value

ω = 0.788 ± 0.0004.

Other critical exponents can be obtained from the scaling
relations

α = 2− νd, β =
ν

2
(d−2+η) , γ = ν(2− η), δ =

d+2−η

d−2+η
,

(9)
which for the dimensionality d = 3 simplifies to

α = 2−3ν, β =
ν

2
(1 + η) , γ = ν(2−η), δ =

5 − η

1 + η
. (10)

Using here the found results for the factor approximants,
we have

α = 0.116 ± 0.009, β = 0.325± 0.002,

γ = 1.234± 0.005, δ = 4.797 ± 0.006.

Accomplishing in the same way calculations for the ar-
bitrary number of components N , we obtain the factor
approximants for the critical exponents using the general
series from the Appendix A. Our results are presented in
Table 1. It is worth emphasizing that in the two limiting
cases of N = −2 and N = ∞, where the exact critical ex-
ponents are known, our results coincide with these exact
values. For N = −2, the exact exponents are

α =
1
2
, β =

1
4
, γ = 1, δ = 5, η = 0, ν =

1
2

(N = −2)

in any dimension. And in the limit of large N , the exact
exponents are

α =
d − 4
d − 2

, β =
1
2
, γ =

2
d − 2

, δ =
d + 4
d − 2

,

η = 0, ν =
1

d − 2
, ω = 4 − d (N → ∞),

where d is dimensionality. In three dimensions, the latter
transforms to

α = −1, β =
1
2
, γ = 2, δ = 5, η = 0, ν = 1, ω = 1.

Since our results tend to the exact values when N → ∞,
the error bars diminish for N � 1, tending to zero, as
N → ∞. Thus, for N = 100, the error bar is 10−2, for
N = 1000 it is 10−3, and for N = 104, the error bar is
10−4. The error bars for N � 10 diminish as 1/N . The
error bars for the factor approximants, up to N = 10,
obtained from the expansions for η, ν, and ω, are shown
in Table 2.

Critical exponents have been calculated by Monte
Carlo simulations [18–29,34–39] and other compli-
cated numerical methods, as is reviewed in refer-
ences [6,17,40–42]. Our results in Table 1 are in very good
agreement with all these calculations. The advantage of
our method is its simplicity. We have used only the ex-
pansions from the Appendix A. We do not need to know
the large-order behavior of ε-expansions, which is required
for other methods.
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Table 1. Critical exponents for the N-component ϕ4 field theory, obtained by the summation of ε-expansions using the method
of self-similar factor approximants.

N α β γ δ η ν ω

−2 0.5 0.25 1 5 0 0.5 0.80118

−1 0.36844 0.27721 1.07713 4.88558 0.019441 0.54385 0.79246

0 0.24005 0.30204 1.15587 4.82691 0.029706 0.58665 0.78832

1 0.11465 0.32509 1.23517 4.79947 0.034578 0.62854 0.78799

2 −0.00625 0.34653 1.31320 4.78962 0.036337 0.66875 0.78924

3 −0.12063 0.36629 1.38805 4.78953 0.036353 0.70688 0.79103

4 −0.22663 0.38425 1.45813 4.79470 0.035430 0.74221 0.79296

5 −0.32290 0.40033 1.52230 4.80254 0.034030 0.77430 0.79492

6 −0.40877 0.41448 1.57982 4.81160 0.032418 0.80292 0.79694

7 −0.48420 0.42676 1.63068 4.82107 0.030739 0.82807 0.79918

8 −0.54969 0.43730 1.67508 4.83049 0.029074 0.84990 0.80184

9 −0.60606 0.44627 1.71352 4.83962 0.027463 0.86869 0.80515

10 −0.65432 0.45386 1.74661 4.84836 0.025928 0.88477 0.80927

50 −0.98766 0.50182 1.98402 4.95364 0.007786 0.99589 0.93176

100 −0.89650 0.48334 1.92981 4.99264 0.001229 0.96550 0.97201

1000 −0.99843 0.49933 1.99662 4.99859 0.000235 0.99843 0.99807

10000 −0.99986 0.49993 1.99966 4.99986 0.000024 0.99984 0.99979

∞ −1 0.5 2 5 0 1 1

Table 2. Error bars for the critical exponent of table 1. For
large N � 10, the error bars diminish with N as 1/N .

N η error bar ν error bar ω error bar
−2 0 0 0.0280
−1 0.0007 0.0008 0.0013
0 0.0010 0.0018 0.0110
1 0.0010 0.0027 0.0043
2 0.0009 0.0034 0.0016
3 0.0008 0.0038 0.0020
4 0.0007 0.0039 0.0016
5 0.0006 0.0038 0.0007
6 0.0005 0.0036 0.0005
7 0.0004 0.0034 0.0019
8 0.0003 0.0032 0.0032
9 0.0002 0.0030 0.0042
10 0.0001 0.0029 0.0048

4 Exponents for spin glass

Here we show that the method of self-similar factor ap-
proximants can be applied to such a notoriously difficult
problem as summing the high-temperature series of the
Ising spin glass. This model is described by the Hamilto-
nian

H = −
∑

(ij)

Jijσiσj , (11)

in which (ij) implies the summation over nearest neigh-
bors, σi takes values ±1, and Jij are independent random
variables, whose dimensionless forms J ij ≡ βJij , with β
being inverse temperature, occur with the probability

p(J ij) =
1
2

[
δ(J ij − J) + δ(J ij + J)

]
(12)

where J ij = βJ is a parameter. Monte Carlo simula-
tions [43,34,45] demonstrate the existence of the phase
transition in three dimensions.

The phase transition corresponds to a singularity in
susceptibilities. One considers two types of the latter, the
Edwards-Anderson susceptibility

χEA ≡ 1
N

∑

i,j

〈〈(〈σiσj〉2
)〉〉, (13)

and the auxiliary susceptibility

χ′ ≡ 1
N

∑

i,j

[〈〈(〈σiσj〉2
)〉〉]2

. (14)

Here N is the total number of lattice sites, single angular
brackets 〈. . .〉 refer to thermal averaging, and the dou-
ble brackets 〈〈. . .〉〉 refer to averaging with respect to the
distribution of interactions, defined by probability (12).
When temperature T approaches the critical temperature
Tc, susceptibilities (13) and (14) behave as

χEA ∝ (T − Tc)−γ , χ′ ∝ (T − Tc)−γ′
. (15)

High-temperature series expansions for susceptibilities
(13) and (14) are represented as series in powers of

w ≡ tanh2(βJ). (16)

Analyzing the series

χEA �
∑

n

anwn, χ′ �
∑

n

a′
nwn, (17)
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one aims at finding the critical exponents γ and γ′ char-
acterizing the critical behavior (15). These exponents are
connected with each other through the scaling relations

γ = (2 − η)ν, γ′ = (4 − d − 2η)ν, (18)

where η and ν are the critical exponent defining the be-
havior of the correlation function 〈〈(< σiσj >2)〉〉 and
the correlation length ξ ∝ (T − Tc)−ν , and where d is di-
mensionality. Therefore, the exponents γ and γ′ can be
expressed one through another by means of the scaling
relation

2γ = γ′ + νd, (19)

provided ν is known.
The analysis of expansions (17) turned out to be ex-

tremely difficult. This is because the first few terms of
the series contain little information on spin-glass order-
ing. Actually, the coefficients of the first three terms of
the series for χEA are identical to those for the suscep-
tibility series of the pure Ising model. In fact, one can-
not see any spin-glass behavior until one gets contribution
from higher orders. This happens because an essential fea-
ture of spin glass is frustration, which reveals itself only in
higher orders of the series. Hence, any analysis, depend-
ing sensitively on the first few terms in determining the
critical exponents γ and γ′, is not likely to give correct an-
swers. These difficulties have been described in detail by
Singh and Chakravarty [46,47], who found that more than
ten terms in expansions (13) and (14) are necessary to be
able to estimate the critical exponents γ and γ′. They de-
rived [46] in three dimensions expansions for χEA and χ′
up to 17th order and in four dimensions, an expansion for
χEA up to 15th order.

However, even having quite a number of terms in ex-
pansions (17), it is very difficult to find the related crit-
ical exponents. Since, as is stressed above, the effects of
frustration reveal themselves only in high orders of expan-
sions, so that the lower orders do not provide correct infor-
mation on spin glass behavior. The method that has been
found [47] to be most suitable to this problem is that of
inhomogeneous differential approximants, which is a gen-
eralization of the d-log Padé summation. A weak point of
this method is that the approximants, for each given or-
der k of an expansion, are not uniquely defined. Thus, for
an expansion of order k = 10, there are 42 variants of the
approximants, for the expansion of order k = 15, there are
96 variants, and for the order k = 17, one has 136 variants
of different approximants. All these various approximants
yield the results that are quite different from each other,
and it is not clear which of them are to be accepted as
correct and which as wrong, so that the problem arises of
a subjective, not strictly defined, choice of some of them
labelled as“well-behaved”.

Now let us apply to expansions (17) the method of
self-similar factor approximants of Section 2. In three di-
mensions (d = 3), both series for χEA as well as for χ′ are
known [47] up to seventeenth order. The effect of frustra-
tion, typical of spin glass, occurs in the series for χ′ much
earlier than in that for χEA. Therefore more accurate re-
sults can be obtained considering the series for χ′, which

are

χ′ = 1 + 6w2 + 102w4 − 192w5 + 1998w6 − 7584w7

+42822w8 − 221856w9 + 1147878w10 − 5980608w11

+32318910w12 − 167464128w13 + 906131742w14

−4849958304w15 + 25952889798w16 − 141648771168w17.
(20)

For these series, we construct the factor approximants fol-
lowing the standard procedure of Section 2. The closest
singularity to the origin defines the critical points wc and
the related critical exponents γ′. For the series of order
k = 15, we find wc = 0.42 and γ′ = 2.07; for k = 16, we
have wc = 0.39 and γ′ = 1.44; and for k = 17, we get
wc = 0.41 with γ′ = 1.82. Thus, for the critical exponent
γ′, we obtain

γ′ = 1.82 ± 0.19 (d = 3). (21)

This can be compared with the results of the Monte Carlo
simulations [45], which find the phase transition at Tc =
1.18 ± 0.03, with the critical exponent

γ′
MC = 1.87 ± 0.28 (d = 3). (22)

Using our result (21), the known value [40] of ν = 1.3±0.1,
and the scaling relation (19), we find the critical exponent

γ = 2.86 ± 0.24 (d = 3). (23)

From the Monte Carlo simulations [40] it follows

γMC = 2.89 ± 0.29 (d = 3). (24)

As is seen, the critical exponents in equations (21)
and (23) are close to the Monte Carlos values in equa-
tions (32) and (24), respectively.

In four dimensions (d = 4), only the series of fifteenth
order for χEA are available [47], which are

χ = 1+8w+56w2+392w3+2408w4+15272w5+85352w6

+508808w7 + 2625896w8 + 15111976w9 + 72067672w10

+421464680w11 + 1851603192w12 + 11810583208w13

+46346625320w14 + 347729503368w15. (25)

Constructing the factor approximants for these series, in
the highest orders we find wc = 0.20, with γ = 1.59, for
k = 14 and wc = 0.21, with γ = 2.35, for k = 15. There-
fore, for the critical exponent γ, we obtain

γ = 2.35 ± 0.38 (d = 4).

To our knowledge, Monte Carlo simulations for d = 4 are
not available. And the method of inhomogeneous differen-
tial approximants [47] estimates γ ≈ 2.0±0.4. Since there
is neither an expansion for χ′ nor information on other
indices, it is not possible to determine the exponent γ′ in
d = 4.

The example of the present section shows that the
method of self-similar factor approximants can be applied
to rather complicated series with very nontrivial behavior,
requiring the consideration of high-order terms.
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5 Conclusion

The method of self-similar factor approximants [30–33]
is applied to calculating the critical exponents of the N -
component vector ϕ4 field theory and of the Ising spin
glass. The first example is chosen because of the wide in-
terest to the O(N)-symmetric ϕ4 theory, which serves as
a typical model for characterizing the critical behavior of
a large variety of physical systems. We showed that the
application of the method to ε-expansions is very sim-
ple and straightforward at the same time providing the
accuracy comparable with that of other essentially more
complicated techniques.

The case of high-temperature expansions for the Ising
spin glass is taken as an example of series with a notori-
ously nontrivial structure, requiring the consideration of
high-order terms and making it very difficult an unam-
biguous determination of the exponents for susceptibilities
by other known methods. Our method allows us to find the
exponents that are in good agreement with Monte Carlo
simulations, when the latter are available.

In the present paper, we have concentrated on the cal-
culations of critical exponents. Of course, determining the
critical points is also of importance. For instance, recently
there has been a great interest to an accurate calculation
of the critical temperature Tc for interacting Bose gas (see
review articles [48,49]). The most accurate results have
been obtained so far by using the ideas of the optimized
perturbation theory [5] in references [50–55] and by em-
ploying Monte Carlo simulations [56–60]. These are rather
involved numerical techniques. The method of self-similar
factor approximants can also be applied to this problem,
which, however, is a topic for a separate investigation.

Appendix A

The derivation of the expansions for the N -component
field theory, considered in Section 2, can be found in the
book [6]. These expansions are

η(ε) =
(N + 2)ε2

2(N + 8)2

{
1 +

ε

4(N + 8)2
[−N2 + 56N + 272]

− ε2

16(N + 8)4
[
5N4 + 230N3 − 1124N2 − 17920N

−46144 + 384ζ(3)(N + 8)(5N + 22)]− ε3

64(N + 8)6
[
13N6

+946N5 +27620N4 +121472N3− 262528N2− 2912768N

−5655552− 16ζ(3)(N + 8)
(
N5 + 10N4 + 1220N3

−1136N2−68672N−171264
)
+1152ζ(4)(N+8)3(5N+22)

−5120ζ(5)(N + 8)2(2N2 + 55N + 186)
]
}

,

ν−1 = 2 +
(N + 2)ε
N + 8

{
− 1 − ε

2(N + 8)2
[13N + 44]

+
ε2

8(N + 8)4
[
3N3 − 452N2 − 2672N − 5312

+96ζ(3)(N + 8)(5N + 22)] +
ε3

8(N + 8)6
[
3N5 + 398N4

−12900N3 − 81552N2 − 219968N − 357120
+16ζ(3)(N+8)

(
3N4 − 194N3 + 148N2 + 9472N + 19488

)

+288ζ(4)(N + 8)3(5N + 22) − 1280ζ(5)(N + 8)2
(
2N2

+55N + 186)]+
ε4

128(N + 8)8
[
3N7 − 1198N6 − 27484N5

−1055344N4 − 5242112N3 − 5256704N2 + 6999040N

−626688− 16ζ(3)(N + 8)
(
13N6 − 310N5 + 19004N4

+102400N3 − 381536N2 − 2792576N − 4240640)
−1024ζ2(3)(N + 8)2

(
2N4 + 18N3 + 981N2 + 6994N

+11688) + 48ζ(4)(N + 8)3
(
3N4 − 194N3 + 148N2

+9472N + 19488) + 256ζ(5)(N + 8)2
(
155N4 + 3026N3

+989N2 − 66018N − 130608
)− 6400ζ(6)(N + 8)4

(
2N2

+55N + 186) + 56448ζ(7)(N + 8)3
(
14N2

+189N + 256)]

}
,

ω(ε) = ε − 3ε2

(N + 8)2
[3N + 14]

+
ε3

4(N + 8)4
[
33N3 + 538N2 + 4288N + 9568

+96ζ(3)(N + 8)(5N + 22)] +
ε4

16(N + 8)6
[
5N5

−1488N4 − 46616N3 − 419528N2 − 1750080N − 2599552
−96ζ(3)(N + 8)

(
63N3 + 548N2 + 1916N + 3872

)

+288ζ(4)(N + 8)3(5N + 22) − 1920ζ(5)(N + 8)2
(
2N2

+55N + 186)]+
ε5

64(N + 8)8
[
13N7 + 7196N6 + 240328N5

+3760776N4+38877056N3+223778048N2+660389888N

+752420864− 16ζ(3)(N + 8)
(
9N6 − 1104N5 − 11648N4

−243864N3 − 2413248N2 − 9603328N − 14734080
)

−768ζ2(3)(N + 8)2
(
6N4 + 107N3 + 1826N2 + 9008N

+8736)−288ζ(4)(N+8)3
(
63N3 + 548N2 + 1916N + 3872

)

+256ζ(5)(N+8)2
(
305N4 + 7386N3 + 45654N2 + 143212N

+226992)− 9600ζ(6)(N + 8)4
(
2N5 + 55N + 186

)

+112896ζ(7)(N + 8)3
(
14N2 + 189N + 256

)]
.

Here ε = 4 − d is assumed to be asymptotically small,
ε → 0.
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