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Abstract The influence of the cutting edge micro geometry
on cutting process and on tool performance is subject to
several research projects. Recently, published papers mainly
focus on the cutting edge rounding and its influence on tool
life and cutting forces. For applications even more impor-
tant, however, is the influence of the cutting edge radius on
the integrity of the machined part. Especially for titanium,
which is used in environments requiring high mechanical
integrity, the information about the dependency of surface
integrity on cutting edge geometry is important. This paper
therefore studies the influence of the cutting edge radius on
surface integrity in terms of residual stress, micro hardness,
surface roughness and optical characterisation of the surface
and near surface area in up and down milling of the titanium
alloy Ti—6Al-4V. Moreover, the influence of the cutting
edge radius on burr formation is analysed. The experiments
show that residual stresses increase with the cutting edge
radius especially in up milling, whereas the influence in
down milling is less pronounced. The influence of the
cutting edge radius on surface roughness is non-uniform.
The formation of burr increases with increasing cutting edge
radius, and is thus in agreement with the residual stress tests.
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Symbols and acronyms
ae Width of cut

a, Depth of cut

d Diameter

1, Feed per tooth

h(miny (Minimum) uncut chip thickness

n Number of cutting edges

P Pressure

o Cutting edge radius

t Thickness

4 Indentation time

Ve Cutting velocity

Ve Feed speed

F Force

1 Current

HV  Vickers Hardness

Ragq,  (Theoretical) arithmetic mean roughness
(Theoretical) kinematic surface roughness
Voltage
Clearance angle
Rake angle

Half diffraction angle

Wave length

Cutoff frequency
Coefficient of friction
Friction angle

Residual stress

XRD measurement direction
Incident angle
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1 Introduction
Rounded cutting edges are known to positively influence

tool performance in several machining processes. The radius
of a cutting edge affects the stability of the edge [1, 2], the
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forces occurring on the cutting edge [3, 4] and the cutting
temperature [5]. Besides having an impact on tool life time
[1, 6-8], the edge radius also influences the surface state
of the machined workpiece, also referred to as surface
integrity [9—17]. Broadly, surface integrity is defined as the
metallurgical, mechanical, topographic and chemical state
of the machined surface [18].

The surface state may significantly influence the mechan-
ical properties and thus the fatigue life of a component. It is
therefore important to not only know the influence of round-
ed cutting edges on tool performance but, and for the prod-
uct even more important, also the influence on the surface
state. Surface integrity is generally assessed using micro-
hardness measurements, residual stress measurements or
microstructural analyses which reveal microcracks, phase
transformations, melted and redeposited layers or similar
features [19, 20].

Further economically important to know is how the cutting
edge geometry influences the formation of burr. Burr results
from deformation of material in the near surface area. It is
therefore closely related to the impact of the cutting edge
geometry on surface integrity. Burr is generally undesirable.
It has a negative impact on tool wear as it can cause strong
abrasive groove wear when hitting the cutting edge. Due to its
sharpness, burr is potentially dangerous for operators handling
workpieces. Burr also hinders subsequent assembly opera-
tions. Therefore, burr generally needs to be removed in sub-
sequent deburring operations.

The fact that titanium is typically used in applications
which require high workpiece integrity makes it even more
important for this material to identify the impact of the edge
micro geometry on surface integrity. For the milling of titani-
um, no such information is available yet. For this reason, this
paper experimentally analyses the influence of the cutting
edge geometry on surface integrity and also burr formation
in milling the titanium alloy Ti-6Al4V.

2 Experimental setup and procedure

To evaluate the influence of the cutting edge micro geome-
try on surface integrity in milling Ti—6Al-4V, tests were
accomplished on a Mikron VC1000 3-axis machining cen-
tre. The chemical composition of the work material is given
in Table 1. The machining setup is illustrated in Fig. 1.

An 8 % Motorex Swisscool Magnum UX 200 emulsion
was used as coolant, which was supplied externally and

Table 1 Chemical composition of Ti-6Al-4V

Element Fe Al V (6] C N Ti

Content (wt%) 0.19 6.27 4.01 0.18 0.002 0.005 Remainder
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through the tool at a pump pressure of p=40 bar. The surfaces
were generated in a free orthogonal slot milling process,
meaning that the corner was not engaged. The tests were
carried out using a cutting speed of v.=70 m/min, a feed per
tooth of £,=0.08 mm and a cutting width of a.,=d=25 mm.
The cutting depth a, was given by the sheet thickness of
t=4 mm. The machining parameters correspond to values
typically used in the machining of titanium. To keep dy-
namic effects low and to eliminate influences of simulta-
neous edge engagement and disengagement, the tool was
equipped with one insert only. In slot milling, the main
cutting edge generates two surfaces of which one is pro-
duced by up milling and the other one by down milling. In
up milling, the cutter enters the cut at a minimum chip
thickness, whereas in down milling the tool disengages the
cut at a minimum chip thickness. This difference in kine-
matics is expected to influence the surface properties.
Therefore, the analyses were performed for both generated
surfaces of the titanium sheet.

The cutting edges were made of medium grain-sized
straight cemented carbide. The cutting edge roundings were
generated by edge-focused micro abrasive jet machining
using a six-axis robot to guide the jet nozzle. The process
is presented in [21]. The cutting edge radius was varied
between r,,=6+2 um (not jet treated after grinding) and
r,=50+1 um, which represents a range typical for rounded
cutting edges. The edges had a rake angle of v=10° and a
clearance angle of «=8°. The cutting edges were character-
ised using the method proposed in [22]. The inserts and tool
holder were specially manufactured for the experiments.

3 Measuring equipment

Macroscopic residual stresses were analysed using a Sie-
mens Bruker D5000 X-ray diffractometer. The stresses were
determined by the sin*p method. The method is based on
the determination of elastic lattice strains which are con-
verted to stresses by the 3D form of Hooke’s law [23, 24].
Macrostresses cause a distortion of the crystal lattice, which
results in an angular shift of the diffraction peak selected for
residual stress measurement. As the X-ray beam penetrates
only to depths of approximately 5 um, those measurements
give information on the residual stress in a very shallow
surface zone [25].

Peaks at large diffraction angles react more sensitive to
stresses [26]. For that reason, strains were measured from
the {213} lattice plane, which corresponds to a peak position
of 20p=141.7° when using Cu K« radiation (A=0.154 nm)
[25]. Furthermore, this peak gives a good signal to noise ratio
and is not superimposed by other peaks. An overview of
diffraction peaks detected when irradiating the Ti-6Al-4V
sheet material with Cu K« radiation is given in Fig. 2.
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Fig. 1 Schematic of setup used
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The peak shift was determined at ten incident angles in
minimum, in a range of at least —51.3°<t<18.2°. Measure-
ments were performed in two directions longitudinal and
lateral to the cutting directions (p=0°, 90°). All measurements
were performed at a tube voltage of U=40 kV and a tube
current of /=35 mA. A nickel filter in combination with a 1-
mm divergence, a 1-mm anti-scatter and a 0.1-mm detector
slit was used as focus setup.

Microhardness measurements were carried out according
to DIN EN ISO 14577 using a Fischerscope HM2000. The
instrument allows indentations with forces between 0.4 and
2000 mN and has a force uncertainty of 40 uN.

The microstructural analysis of the surfaces was carried
out using a Carl Zeiss DSM962 scanning electron micro-
scope (SEM). Polished and etched cross sections were ana-
lysed using an Alicona InfiniteFocus microscope.

Surface roughness measurements were performed with the
Form Talysurf Series 2 surface profiler from Taylor Hobson
Ltd. The surface profiler is equipped with a diamond stylus
having a tip diameter of d=2.5 um. The surface profiles were
evaluated using the Taylor Hobson software Ultra v4.6. The
arithmetical mean roughness Ra and the ten point mean
roughness Rz were determined according to [27] using a
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Fig. 2 Diffraction peaks and corresponding lattice planes {hkl} of Ti—

6A1-4V detected using Cu K« radiation; lattice plane mapping accordant
to [45, 46]

cutoff frequency of \.=0.8 mm. Burr was observed using an
optical Leica MZ16 A microscope.

4 Experimental results

The following paragraphs evaluate and discuss the influence
of the cutting edge radius on surface integrity by means of
residual stress measurements, micro hardness measure-
ments, SEM surface analyses, roughness measurements
and texture examination of polished and etched cross sec-
tions. Moreover, the influence of rounded cutting edges on
burr formation is discussed. For all parameters determined
experimentally and depicted in diagrams, the actually ob-
served error including measurement uncertainty is given by
the error bars.

4.1 Residual stress

Residual stress is generally caused by mechanical and thermal
loads. Mechanical loads induce compressive stresses, whereas
thermal loads cause tensile stresses. In machining, material is
plastically deformed until material failure occurs in front of
the cutting edge, separating the chip from the workpiece. The
deformation and failure process is strongly influenced by the
tool geometry and process kinematics [28].

The cutting edge radius influences the forces in the cutting
process. The force that acts directly on the cutting edge is also
referred to as ploughing force [29].

It is thus the force which also directly influences the surface
being generated. With increasing cutting edge radius, espe-
cially the feed force component of the ploughing force
increases [3]. This indicates that an additional material defor-
mation in front of the cutting edge, respectively between the
cutting edge and surface being generated, occurs, which con-
sequently generates compressive stresses. Hence, an increase
in mechanical deformation and thus compressive residual
stress with increasing cutting edge radius can be expected
for both processes up and down milling. Compressive residual
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stresses are favourable as they improve workpiece fatigue
strength and resistance to stress corrosion cracking [28].

Plastic deformation involves the generation of heat. With
increasing deformation, caused by a larger cutting edge radius,
it is thus to expect that cutting temperatures increase. Further-
more, the contact area and thus frictional area increases
with increasing cutting edge radius. Investigations made
by [5], however, have shown that in turning steel cutting
temperatures increase by less than 1 °C per pm increase in
cutting edge radius.

In up milling, the uncut chip thickness increases within the
cut. Before chip formation occurs, a friction and material
compression process starts, inducing elastic—plastic deforma-
tion into the workpiece surface [30]. The affected area—cut-
ting edge entry until minimum chip thickness is reached—
increases with increasing cutting edge radius as the minimum
chip thickness is influenced by the cutting edge radius [31].
The larger the radius, the higher are the forces on the
surface to be generated. At cutting edge entry, the edge
temperature is assumed to be low. The generated surface
is thus expected to be mostly influenced by mechanical
induced compression processes.

In down milling, however, the tool exit condition is
characterised by a continuously decreasing chip thickness
until no cutting action occurs due to under-running the
minimum chip thickness. The properties of the generated
surface are mainly determined by the separation processes
involved in chip formation [30]. Moreover, tool temperature
in down milling can be expected to have a higher effect on
residual stress as the edge which is in contact with the new
surface is heated up by the foregoing cutting action.

Caused by elastic deflections, the newly generated sur-
face might be compressed again when being in contact with
the cutting edge during the following tool rotation. The area
which is repeatedly in contact with the rotating cutting edge
depends on system stiffness, tool diameter and feed rate.

Fig. 3 Residual stress

Figure 3 shows the results of residual stress measure-
ments on surfaces generated in up milling (left) and down
milling (right) with different cutting edge radii. The angle ¢
denotes the measurement direction in residual stress analy-
sis. An angle of ¢=0° denotes measurements in the direc-
tion of cutting, whereas ¢=90° stands for measurements
orthogonal to the direction of cutting. The directions of feed
and cutting speed were parallel to each other at tool entry
and exit.

Polished reference samples showed an average residual
stress of =12 N/mm?”. Both up and down milling induce
residual stresses of compressive type. The compressive
stresses measured in the direction orthogonal to the cutting
velocity are generally higher than those determined in the
direction of cutting, which is in agreement with residual
stress measurements made by [30, 32].

In up milling, the maximum induced residual compres-
sive stresses on the surface increase with increasing cut-
ting edge radius from around 6=-310 N/mm? when using
a non-rounded cutting edge (r,~6+2 um) to approximately
0=—600 N/mm” when machining with edges rounded to a
radius of 7,=50+1 um. Including measurement uncertainty,
the scattering of residual stresses averages £32 N/mm? for
machined surfaces.

In down milling, the maximum detected compressive
stresses react less sensitive to a change in cutting edge radius.
Compressive stresses on the surface remain roughly at an
average value of c=—400 N/mm®. This behaviour might be
caused by opposite effects of mechanical and thermal load
when using rounded cutting edges. The mechanical deforma-
tion increases with increasing cutting edge radius, causing a
specific elastic—plastic deformation on the machined surface.
At the same time, process temperatures increase, which shift
the surface stress towards the tensile direction. Especially in
the machining of titanium, known for its poor thermal con-
ductivity that causes high temperatures which effect only
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small subsurface areas, this effect might be stronger pro-
nounced than for other metals. However, in up milling, this
effect is assumed to have only little influence as a cooled
down cutting edge is entering the workpiece. No explanation
can be given for the strong variation of the residual stress
measured in the direction of cutting (¢=0°).

4.2 Micro hardness

Hardness is the measure for the resistance of a material
against plastic deformation caused by an indenter. Hardness
measurements are generally suited for cross-checking the
results of residual stress measurements [33]. The higher the
compressive stress, the larger is typically the resistance
against plastic deformation. The opposite is the case for
residual tensile stresses [34, 35].

Vickers hardness measurements were carried out on the
identical surfaces as used for the residual stress measure-
ments. At an indentation time of #=20 s, an indentation
force of F=300 mN was used. The results are depicted in
Fig. 4. Each data point is the average of at least nine
measurements randomly distributed over the generated
surface.

The polished reference surface has an average hardness of
roughly HV420. As expected from the residual stress meas-
urements, the hardness values of milled surfaces are generally
higher. The average slope of hardness values against cutting
edge radius is in agreement with the maximum compressive
residual stresses from the X-ray diffraction measurements in
Fig. 3. On the surfaces that were machined by up milling,
hardness increases slightly with increasing cutting edge radi-
us, whereas no significant influence of cutting edge radius on
hardness was detected on the down milled surfaces. Thus,
rounded cutting edges have a positive influence on residual
compressive stresses, with a more significant effect in up
milling than in down milling.

Fig. 4 Results of micro

rounded cutting edge radius r, [um]

4.3 Surface and near surface characterisation

The effect of the cutting edge radius on surface finish was
analysed using scanning electron microscopy. Figure 5
shows images of surfaces generated by up and down mill-
ing. Horizontal traces are caused by notchedness of the
edge, whereas vertical marks are caused by the tool feed.
Independent of process kinematics, feed marks become
more pronounced at larger cutting edge radii.

In up milling, the following mechanism is assumed: the
feed marks result from elastic material deflections that occur
when the cutting edge enters the cut, and successive separa-
tion of material at the point when minimum chip thickness is
reached. At this point, the chip builds up and is separated by
the progressing cutting edge from the elastically and plastical-
ly deformed material, which partly springs back after the edge
has passed. The larger the cutting edge radius, the later this
point is reached. Thus, the feed marks become more pro-
nounced. Moreover, workpiece material which is adhered to
the cutting edge is rubbed off at cutting edge re-entry and
sticks to the surface produced in the previous cut.

A similar mechanism is proposed in down milling:
while cutting, material is continuously being separated
from the workpiece surface until the minimum chip
thickness is reached. At this point, the chip is torn off
from the workpiece surface, leaving a tear-off edge and
voids, comparable to those found on fretted surfaces. For
both up and down milled surfaces, roughness peaks
resulting from uncut material might be rubbed over by the
cutting edge and smeared into the surface during the succes-
sive rotations of the tool.

Polished and etched cross sections of the subsurface areas
of samples machined with different cutting edge radii are
presented in Fig. 6. Samples were etched by immersing
them for 3.5 min into a mixture of 0.3 ml hydrogen fluoride,
0.5 ml nitric acid and 100 ml water.
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Fig. 5 SEM images of surfaces
machined with different cutting
edge radii r,
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While no noteworthy deformation is visible for surfaces
generated with small cutting edge radii, a considerable de-
formed area can be observed for samples generated with
larger cutting edge radii. The maximum visible depth of
deformed area approximates 20 pm for a cutting edge radius
of 7,=50 um. The findings are thus in agreement with the
expected behaviour described above.
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4.4 Surface roughness

The theoretical kinematic surface roughness Rz; in up and
down milling can be obtained by
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in which £, is the feed per tooth, n stands for the number of
cutting edges and d is the diameter of the cutter [36]. For up
milling (+) has to be used, whereas (—) is used for down
milling operations. The theoretical arithmetic mean rough-
ness Ra, can be approximated by [37]:
2

Ra; =~ 0.064 % (2)

With a tool diameter of =25 mm and a feed per tooth of
f,=0.08 mm, the following roughness values are expected:

Rz, ~ QO 064 1im

Ra, ~ 0.064 - LEM° _ 0 0164 um

(3)

The experimentally determined kinematic surface rough-
ness values Ra and Rz are depicted in Fig. 7. Each data point
is the average value of nine individual measurements carried
out on the surfaces of two different workpieces. The values
of Ra and Rz generally lie above the theoretical surface
values given in Eq. (3). For both up and down milled
surfaces, roughness is minimal when using a rounded cut-
ting edge radius of 7,=30 pm. Moreover, the roughness is
not in agreement with the visual surface appearance given in
Fig. 5, from which an increase in roughness would be
expected with increasing edge radius for both up and down
milled surfaces.

Unfortunately, Egs. (1) and (2) only consider the geomet-
rical contact conditions given by tool diameter and feed.
According to these equations, the radius of the cutting edge
has no influence on the surface roughness. To account for the
effect of the cutting edge radius, its impact on elastic defor-
mation before cutting must be taken into account, which
influences the minimum uncut chip thickness. [38] stated for
turning operations that the achievable surface roughness is

influenced by the geometrical contact conditions and the
minimum uncut chip thickness 7,

fz hmin d'hmin
Rz ~ 22— 1 4
! 4~d+ 2 +2,fzz (4)

The additional term compensates for residual material that
is left on the surface due to under-running the minimum uncut
chip thickness. Similar effects are expected at tool entry in up
milling, respectively tool exit in down milling. [39] proved the
validity of this relation for micromilling.

For the relationship of cutting edge radius 7,, and minimum
uncut chip thickness, [31] gives the following relationship,
without information on workpiece or tool material:

Banin = 0.293 - 7, (5)

[40] takes the cutting edge radius 7, as well as the friction
angle p into consideration for determining the minimum uncut
chip thickness:

Rimin = T [1 — cos (% - g)} with p = arctan(u) (6)

According to Eq. (4), and assuming a linear relation
between cutting edge radius and minimum uncut chip
thickness, the surface roughness increases by a power
law with increasing cutting edge radius. The left side of
Fig. 8 shows the theoretical influence of rounded cutting
edge radius on achievable surface roughness Rz for the
approach given in Eq. (4) and considering different rela-
tionships for the minimum uncut chip thickness 7%,,;,. The
influences of constant as well as cutting edge radii-dependent
minimum uncut chip thicknesses are depicted. Results that
consider Eq. (5) are not shown in Fig. 8§ as orthogonal turning
tests conducted by the authors with a cutting edge radius of
r,=50 um showed chip formation at an uncut chip thickness
of 7=10 um. Thus, it can be expected that the ratio of

Fig. 7 Roughness up milling down milling
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To determine the influence of cutting edge radius on
minimum uncut chip thickness with the relation given in
Eq. (6), the dependency of the cutting edge radius on aver-
age observed friction needs to be known. By using the
friction values derived in [3] and a least square algorithm,
this relation is linearly approximated to:

= 0.0024 - r,[pum] + 0.298 (8)

As illustrated on the left side of Fig. 8, the theoretical
surface roughness Rz drastically increases when considering
minimum uncut chip thickness that depends on the cutting
edge radius. This, however, was not observed in the exper-
imental investigations.

The major increase in surface roughness with cutting
edge radius is owed to the fact that Eq. (4) is obviously
invalid for feed rates which lie below the optimum value
fminwhere a minimum surface roughness is expected. Con-
sidering Eq. (4), a tool diameter of d=25 mm and different
minimum uncut chip thickness values, the influence of feed
per tooth on surface roughness is depicted on the right side
of Fig. 8. According to this model, the surface roughness
increases drastically at values below the optimum feed per
tooth. If the feed per tooth is much smaller than its optimum
value (which is the case for the conditions considered), the
roughness peaks resulting from uncut material, may on the
one hand overlap, and on the other hand, the material
residua are plastically deformed during the successive tool
revolutions, which in reality causes a surface smoothening
[38]. In Eq. (4), these effects are not considered. The feed
below which the equation results in a strong increase of

@ Springer

feed per tooth f, [mm]

roughness, and can therefore be considered as invalid, is
given by [38]:

ﬁnin =V d- hmin (9)

Further reasons for a deviation of theoretical and ob-
served surface roughness are tool vibration, material adhe-
sion, as well as workpiece properties, which in turn are
influenced by the machining parameters. Therefore, no def-
inite relation can be given for this influence.

Even though the amount of deformed but uncut material
between two successive milling cuts increases with increas-
ing cutting edge radius (see Fig. 5), its contribution to the
total roughness is insignificant. A general increase in surface
roughness with the cutting edge radius was not detected.

4.5 Burr formation

Machining burrs are generally classified by the cutting edge
concerned and the mechanism of their formation [41, 42]. In
the underlying free orthogonal milling experiments, only the
main cutting edge was engaged, producing a sideward burr,
also referred to as Poisson burr or top burr [41-43]. The
sideward burr is a result of a material’s tendency to bulge at
the sides when it is compressed until permanent plastic
deformation occurs [42]. This tendency is caused by high
biaxial compressive stress that pushes material towards the
free surface [44]. Burr formation is therefore closely related
to the stress state and thus integrity of the generated surface.

The size of burr is a function of the material properties,
the effective cutting edge radius and the pressure at the
effective radius and flank of the tool. The pressure and thus
the tendency to form burr is especially high on materials
with low thermal conductivity and low Young’s modulus
[42]. Both are properties that titanium and its alloys are
known for.
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[42] compares the effect of the cutting edge radius to a thin
cylinder pushed into the workpiece. Bulging occurs at the
ends of this cylinder, resulting in burr. The effect increases
with increasing cutting edge radius.

Figure 9 depicts surfaces and resulting burr in milling
titanium with different cutting edge radii. The left side shows
surfaces generated by up milling. The right side shows down
milled surfaces. Burr formation occurs on both top and bottom
edge as the surfaces were generated in free orthogonal milling.

The burr produced in up milling is frayed (ruptured type).
This results from the repeated entrance of the cutting edge
into the workpiece. Every time the cutting edge enters the
cut, new material is bulged at the free surfaces, pushing out
the burr from the previous cut. On the one hand, this leads to
an increase in burr height. On the other hand, it causes a
partial separation of burr from the machined edge. Below a
certain cutting edge radius, it can be assumed that burr of the
previous cut is partly removed by the successive cut. With
increasing cutting edge radius, however, the burr formed at
the beginning of chip formation is not removed by a suc-
cessive cut, but only pushed away, leading to burr with long
fringes. Especially for cutting edge radii of »,=40 pum or
larger, this effect seems to take place.

In down milling, no significant burr formation was ob-
served for cutting edge radii of »,=10 pm or smaller. As
expected, burr formation increased when the cutting edge
radius became larger. The burr formation is generally much
more pronounced in up milling than in down milling.

Burr formed in up milling is generated before chip for-
mation occurs or at the onset of chip formation respectively,
whereas in down milling, burr is generated at the separation
of the chip from the surface. This causes the burr to be
removed with the chip. In most cases, only the root of the

burr remained on the machined edge, resulting in a rather
small and uniform burr in down milling when compared to
the one produced in up milling. Nevertheless, an increase of
burr with increasing cutting edge radius was also observed
in down milling. Thus, the increase in burr with increasing
cutting edge radius is generally in agreement with the mea-
surement results of residual stress of machined surfaces.

5 Summary and conclusions

To understand the influence of the cutting edge radius on
surface integrity in milling Ti—6Al-4V, slot milling tests
were carried out with different cutting edge radii. The tests
exhibit high residual stresses of compressive type, which are
generally favourable for fatigue properties of workpieces. In
up milling, the compressive residual stresses increase with
the cutting edge radius, whereas no uniform trend was
observed in down milling. The difference in up and down
milling is potentially caused by the influences of process
kinematics and cutting temperature. Experiments focusing
on the effect of the cutting edge radius on cutting tempera-
ture could help to further explain the effects observed. Since
the cutting temperature is assumed to cause differences in
the surface stress state, the results may change when using
for example different cutting speeds, cutting materials or
coolant conditions. To separate the individual influences,
further analyses are required.

In this experimental study, the residual stress measure-
ment results were cross-checked and verified by micro hard-
ness indentation tests. Cross sections of surfaces generated
by up and down milling revealed an increase in plastically
deformed surface layer with increasing cutting edge radius.

Fig. 9 Burr formation when
milling Ti-6Al-4V with
different cutting edge radii
7y (Ve=70 m/min, f,=0.08 mm, E
ae=d=25 mm) unrounded

Vi, Ve
=S

up milling (tool entry)

unrounded

down milling (tool exit) |

<V, Vo—>
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The roughness is not uniformly influenced by the cutting
edge radius.

The positive influence of the cutting edge radius on com-
pressive residual surface stress comes with a negative influence
on burr formation, which is caused by strong plastic deforma-
tion of material in front of the cutting edge. The formation of
burr is thus in agreement with the residual stress meas-
urements. Burr formation increases with the cutting edge
radius and is especially pronounced in up milling. It is
less pronounced in down milling as burr is partly removed
with the chip.

The results of these experiments can be specifically used
to improve the quality of the machined surface. Especially
in aerospace applications, where the integrity of the ma-
chined surface often is of major importance, or also in high
precision machining applications the results give a further
decision basis for selecting the right process conditions.
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