
J Comput Electron (2007) 6:199–202

DOI 10.1007/s10825-006-0108-4

Transport calculation of semiconductor nanowires coupled
to quantum well reservoirs
Mathieu Luisier · Andreas Schenk ·
Wolfgang Fichtner · Gerhard Klimeck

Published online: 9 December 2006
C© Springer Science + Business Media, LLC 2007

Abstract Semiconductor nanowires are possible candidates

to replace the metal-oxide-semiconductor field-effect tran-

sistors (MOSFET) since they can act both as active devices

or as device connectors. In this article, the transmission co-

efficients of Si and GaAs nanowires with arbitrary transport

directions and cross sections are simulated in the nearest-

neighbor sp3d5s∗ semi-empirical tight-binding method. The

open boundary conditions (OBC) are calculated with a new

scattering boundary method where a normal eigenvalue prob-

lem of reduced size is solved. Two different types of contacts

are studied. In the ideal case, semi-infinite reservoirs (the

source and the drain) that are the prolongation of the de-

vice are assumed. In a more realistic configuration, the ac-

tive nanowire is embedded between two quantum well (QW)

reservoirs. The electrical properties of the device are obtained

by a non-equilibrium Green’s function (NEGF) calculation.
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1 Introduction

Recently, nanoscale field-effect transistors (FET) have been

realized with an individual nanowire (NW) and reported in

the literature [1]. To properly describe and model the ballis-

tic current flow in such devices, classical concepts should be
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abandoned. It is necessary to include quantum transport phe-

nomena such as the two-dimensional confinement of the elec-

trons (or holes) in the channel. In a first approximation, this

effect strongly depends on the choice of the effective masses

used in the directions of confinement. A more accurate treat-

ment consists in taking the full bandstructure into account

and not only points of high symmetry in the Brillouin Zone

(BZ). In this work, therefore, an atomistic treatment of Si

and GaAs nanowires based on the nearest-neighbor sp3d5s∗

semi-empirical tight-binding method is chosen.

As the metallic contacts (Ti for example) of such devices

are often much wider than the device itself, they are modeled

as quantum well (QW) reservoirs with charge confinement in

one direction only. As a first approximation, the contacts are

made of the same semiconducting material as the nanowire.

The resulting transmission coefficients are compared to the

ideal case, where the contacts are semi-infinite prolongation

of the device. The open boundary conditions (OBC) are cal-

culated for both applications with a new scattering boundary

method [2] that is summarized in the next Section. Results are

shown in Section 3 for Si and GaAs nanowires whose trans-

port direction is arbitrarily chosen. A conclusion is given in

Section 4.

2 Theory

In this Section, the computational procedure to obtain

open boundary conditions in two-dimensionally confined

nanowires with perfect and with more realistic QW contacts

is outlined, followed by its coupling to a NEGF solver. The

perfect contacts case was already described in [2] and can be

generalized to other contact types such as QW. More alge-

braic details will be published elsewhere.
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Fig. 1 Schematic top view of a Si nanowire embedded between two
quantum well reservoirs. x is the transport direction ([100]), y has con-
finement in the nanowire and is open in the quantum wells ([010]),
and z is a direction of confinement everywhere ([001]). Injection in the
nanowire occurs from all the allowed (kx , ky) combinations at a given
energy E

A top view of a Si nanowire (x = [100], y = [010], and z
= [001]) embedded between two QW reservoirs (same crys-

tal orientations as the wire) is depicted in Fig. 1. Although

strain, surface reconfiguration, and surface passivation could

play an important role for wires of such large surface-to-

volume ratio, they are not considered in this study. In the

nanowire (labeled 1D), the electrons are free only in their

transport direction x , but are confined in the y and z direc-

tions. In the two QW reservoirs (labeled 2D), the electrons

can freely move along x and y, but are confined in z direction.

Consequently, transitions between a one-dimensionally con-

fined electron gas (1DEG) and a 2DEG exist at the QW-wire

interfaces.

In any scattering boundary method [2–4] with ideal con-

tacts, at a given energy E , states φn(E) are injected from

the reservoirs into the device for all the authorized wave

vectors kx (E) aligned with the wire transport direction x .

QW reservoirs add a third variable ky related to possible

displacements in the y direction for the 2DEG. Instead of

depending on the injection energy E only, the reservoir

states φn(E, ky) and wave vectors kx (E, ky) are also cal-

culated for all the possible ky in the first two-dimensional

QW Brillouin Zone. In Fig.1, different injection directions

are shown on the left and possible output trajectories on the

right.

Figure 2 describes how to compute the kx (E, ky) and

φn(E, ky) in the QW reservoirs. First, the QW unit cell must

be determined. For a wire with the same crystal orientations

as in Fig. 1, its primitive unit cell (projected onto the (x, y)

plane) is shown in the upper part of Fig. 2. By translating it

with the vectors v1 and v2, the semi-infinite QW reservoirs
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Fig. 2 Projection of the quantum well unit cell onto the (x, y) plane
with the displacement vectors v1 and v2. The growth direction z is
aligned with [001] and the transport direction in the wire x with [100].
Top: primitive QW unit cell. The projection contains four atoms (gray
dots). Bottom: new QW unit cell with v1 and v2 aligned with x and
y (projection contains eight atoms). Both insets show the correspond-
ing two-dimensional Brillouin Zone drawn in a cut plane of the three-
dimensional one at kz = 0

can be totally spanned. Although this unit cell is the smallest

one, it is not well suited to be coupled to a nanowire. Since

the device transport direction is x , it is advantageous to have

v1 or v2 aligned with it and the other vector aligned with y.

For that purpose, a larger unit cell fulfilling this condition

is constructed in the lower part of Fig. 2. Note that the size

of the corresponding two-dimensional BZ is divided by two

and the QW bandstructure is folded.

For the nanowire in Fig. 1, the φn(E, ky)’s are the eigen-

states of the unit cell shown in the lower part of Fig. 2 and

comprising 8 × NLC atoms. NLC is the number of lattice

constants a0 composing the QW width Lz in the z direction.

For instance, if Lz = 3a0 then NLC = 3. The φn(E, ky)’s are

vectors of size N = 8 × NLC × tb, where tb is the number

of atomic orbitals taken into account. In the sp3d5s∗ tight-

binding method, tb = 10 without spin-orbit (SO) coupling

and tb = 20 with SO.

kx (E, ky) and φn(E, ky) can be obtained from the solution

of a generalized eigenvalue problem of size 2N [3,4]. How-

ever, simplifications in the structure of the involved matrices

lead to a more efficient algorithm based on a usual eigenvalue

problem with size ≤ N [2]. This approach works for all the

possible crystal orientations and not only for x = [100] and

y = [010].

From kx (E, ky) and φn(E, ky), a reservoir Green’s func-

tion gR(E) is evaluated and cast into a self-energy �R(E)
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[2,3]. Finally, a recursive atomistic NEGF scheme [5] is ap-

plied to calculate the ballistic nanowire electrical properties,

such as the transmission coefficient T (E).

3 Results

Simulations of Si and GaAs nanowires with different cross

sections and crystal orientations (see Fig. 3 for a (y, z) pro-

jection of the wire cross sections), but with almost the same

wire length Lw = 22.5 ± 0.5 nm are presented in this

Section. The width of the QW reservoirs Lz corresponds

to the maximal height of the nanowire embedded between

them. Thus Lz =1.6 nm for the Si rectangular wire (x =
[100], y = [010]), 1.2 nm for the Si triangular wire (x =
[111], y = [1̄10]), 1.7 nm for the Si circular wire (x = [100],

y = [011]), and 1.2 nm for the GaAs rectangular wire (x =
[113], y = [1̄10]). In fact, as long as Lz is equal or larger to

the maximal height of the nanowire cross section, there is no

restriction for its choice. However, the more atoms the QW

unit cell has, the more expensive the computational effort to

obtain φn(E, ky) becomes.

The sp3d5s∗ tight-binding parameters were optimized by

T.B. Boykin et al. to reproduce Si [6] and GaAs [7] bulk

bandstructures. They are assumed unchanged for the QW

and nanowire structures simulated in this work. Spin-orbit

coupling is neglected because electron transmission is con-

sidered and its effects are small on the conduction band [2].

Figure 4 shows the transmission coefficients T(E) for the

four unbiased nanowires in Fig. 3. E = 0 eV is the top of

the bulk valence band. For each different cross section, two

curves are calculated. The bright lines illustrate the ideal case,

i.e. the semi-infinite source and drain are the prolongation of

the nanowire. Since the reservoirs and the central device they

are connected to form a uniform infinite nanowire, each step

in T(E) corresponds to the turn-on of a new band in the NW

bandstructure [8].

The dark lines in Fig. 4 result from the transmission cal-

culation in nanowires with two quantum well reservoirs.

These curves exhibit strong interference effects caused by the

2DEG-1DEG transitions. Thus the nanowires behave like a

resonant cavity delimited by two large areas, the source and

the drain. The ideal case forms a kind of upper limit that

cannot be exceeded. For the Si rectangular wire (x aligned

with [100], subplot(a)), the transmission calculated with QW

reservoirs converges towards the bright line. If a plateau

is large enough, the T (E) oscillations become smaller and

smaller and their peaks closer to the upper limit.

Although the trends given by the bright lines are also fol-

lowed by the nanowires (b), (c), and (d), one sees that the

differences are bigger and the oscillation amplitudes larger,

especially for the rectangular GaAs device with an exotic

transport direction x = [113]. The rapid changes in the ideal

(a) (b)

(c) (d)

Fig. 3 Projection onto the (y, z) plane of the cross section of the
different nanowires simulated in this work: (a) Si rectangular wire
(1.6 nm × 1.6 nm, transport x = [100], y = [010]), (b) Si triangu-
lar wire (base = 1.6 nm, height = 1.2 nm, transport x = [111], y =
[1̄10]), (c) Si circular wire (radius r = 0.85 nm, transport x = [100], y
= [011]), and (d) GaAs rectangular wire (1.2 nm × 1.2 nm, transport
x = [113], y = [1̄10], Ga atoms are dark, As atoms are bright)
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Fig. 4 Electron transmission through the nanowires described in
Fig. 3 calculated without spin-orbit coupling. The bright lines corre-
spond to nanowires with two perfect wire contacts, the dark lines to
nanowires embedded between two QW reservoirs
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T (E), characterized by the multiple appearance and disap-

pearance of subbands in the nanowire device, can only be

reproduced with difficulty when QW reservoirs are inserted.

4 Conclusion

In this work, the transmission coefficient of Si and GaAs

nanowires with different crystal orientations, cross sections,

and contact types (perfect or quantum well) has been sim-

ulated in the sp3d5s∗ semi-empirical tight-binding method.

The open boundary conditions are treated with a new ef-

ficient method and are then coupled to a NEGF solver.

As a next step, strain and surface reconfiguration should

be included in a self-consistent treatment (transport and

electrostatics) of nanowires with ideal or quantum well

reservoirs.
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