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Abstract. The radical anion of aceneazulenedione in which a benzoquinone is fused to ah azulene 
moiety was generated by electrolysis and by reduction with the alkali metals in ethereal solvents. 
The hypenŸ data could not be reproduced by standard Hª calculations whieh usually give 
reliable predictions for the spin distribution in radical ions such as azulene quinones a n d a  variety 
of extended n systems. However, PPP and, preferably, ab initio geometry optimisations followed by 
single-point calculations of the Fermi contact interaction with density functional theory, led to a 
straightforward assignment of the hyperf'me coupling constants. 

1. Introduction 

Molecules being composed of donor and acceptor moieties are of interest as 
rechargeable optoelectronic devices in material science. Even in nature many 
processes are guided by interactions between donor and acceptor domains. One 
of the most prominent examples is photosynthesis where the electron transfer 
takes place between a porphyrine donor anda  benzoquinone acceptor. 

One-electron reduction is the predominant reaction pathway of the acceptor 
moieties. ESR spectroscopy including the multiple resonance techniques like 
ENDOR and TRIPLE are the methods of choice to establish the structure of 
the radical anions formed as the primary intermediates [1]. Comparison of the 
experimental hyperfine data with their theoretical counterparts often leads to an 
unambiguous identification of the geometry and structure of the species giving 
rise to the ESR signal. 
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Fig. 1. Compound 1. 

A vast palette of quantum chemical methods have been utilised for the calcula- 
tion of isotropic hyperfine coupling constants. As far as delocalised rt systems 
are regarded, the Hª MO method, including various sets of perturbation 
parameters [2], and rarely the Pariser-Parr-Pople (PPP-SCF) [3] method, have 
been applied with considerable success. 

For systems in which the electron-transfer reaetion leading to the desired radi- 
cal induces particular changes of the molecular geometry, the predictive quality 
of these two methods decreases significantly. 

The application of density functional theory (DFT) [4, 5] for the calculation of 
the Fermi contact interaction was shown to be rather efficient. However, mostly 
small systems have been studied hitherto [6-9]. In line with the findings by 
Gauld, Eriksson and Radom [7] we have shown that the three-parameter hybrid 
exchange functional with HF (Hartree-Fock) suggested by Becke [10] using the 
correlation functional by Lee, Yang and Parr [11], B3LYP, is a useful method 
for the calculation of  hyperfine coupling constants of large systems [12]. More- 
over it was found that geometry optimisations can be favorably performed with 
the ab initio Hartree-Foek method using the 3-21G* basis set because of conve- 
nient CPU times when the Gaussian [13] program package is used [12]. 

Only rarely has DFT been applied to calculate the hyperfine coupling constants 
of extended organic n systems [14] and, to our knowledge, DFT has not yet been 
tested for its applicability for non-altemating r~ systems. 

The aim of this contribution is to inspect ir the combination of ab initio and 
DFT procedures helps to gain insight into the radical anion of molecule 1 which 
consists of a 1,4-benzoquinone acceptor fused to a (non-alternating) azulene 
moiety (Fig. 1). 

2. Resu l t s  

It has been established that 1 is a very efficient electron acceptor [15-18]. The 
reduction potential for the formation of  the radical anion 1"- is -0.61 vs. SCE 
(solvent, DMF; supporting salt, tetrabutylammoniumperchlorate; working electrode, 
platinum disk). 
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Fig. 2. ESR spectrum of 1"- (top) and its computer simulation (bottom). The inset shows the corre- 
sponding ENDOR spectrum (temperature: 243 K; solvent DME; counterion K+); a a (mT)= 0.261 
(3 H), 0.014 (3 H), 0.392 (1 H), 0.329 (1 H), 0.165 (1 H), 0.015 (1 H), 0.027 (1 H); g = 2.00409; 

microwave power for ESR: 2 mW, for ENDOR: 12 mW. 

Owing to their thermodynamical stability rather persistent radical anions of  1 
could be generated by in situ electrolysis [19] or metal reduction (K) in 1,2- 
dimethoxyethane (DME), and mixtures of DME with N,N,N',N',N",N"-hexamethyl- 
phosphoricacid triamide (HMPA). Figure 2 shows the ESR spectrum of  1"- in 
DME with K § as the counterion as well as its computer simulation. The analy- 
sis of the ESR spectra and their simulation was only rendered possible with the 
help of  the ENDOR and general TRIPLE techniques [1]. 

In Table 1 the experimental hyperfine coupling constants of  1"-, formed by K- 
metal reduction in a mixture of DME/HMPA 5 : 1 are compared to their calcu- 
lated counterparts. 

To assign of  the experimental a H to individual positions in 1"-, quantum me- 
chanical calculations at different levels of  theory were performed. The regularly 
applied procedure for the prediction of  a H of  radical ions of  delocalised ~ sys- 
tems is to use the Hª model (HMO). Consequently, the a n of  1"- were de- 
termined by the HMO-McLachlan [20] procedure. The Pariser-Parr-Pople (PPP) 
[21] method, like HMO only takes into account the Ÿ orbitals, and has also been 
successfully used for the calculation of  hyperfine coupling constants [3]. Recent 
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Table 1. Experimental a n of 1"- and the corresponding calculated values by Hª MO, PPP, and 
DFT/ab initio. 

Position (3 H) a n exp a (mT) a n HMO ~ (toT) ah pppb (mT) a n DFT c (mT) 

2 + 0.034 -0.12 -0.092 + 0.045 
3 +0.202 -0.31 -0.138 +0.202 
5 -0.436 -0.15 -0.376 -0.415 
6 +0.113 -0.02 -0.001 +0.164 
7 -0.361 -0.14 -0.350 -0.359 
8 +0.013 -0.04 -0.074 +0.019 
9 -0.170 -0.12 -0.222 -0.180 

10 +0.013 -0.21 -0.054 +0.025 

a Values according to Hª procedure 
quinone O atoms: a o = a + 2,3, tico = 1.5,3. 

b Based on PPP-SCF ealculations, conversion factor 
c UB3LYP/6-31G'/UHF/3-21G'. 

[20] (2 = 1.2), perturbation parameters for the 

Q = -2.7 mT. 

studies indicate that the calculation of the Fermi contact interaction, being re- 

sponsible for the aH, with the use of  density functional  methods (DFT) often 

reveals a very good agreement with the expe¡  data [9, 12, 14, 22]. There- 

fore the geometry of  1"- was determined by  ab initio calculations at the unre- 

stricted Hartree-Fock level of  theory. With this geometry a single point  ealeula- 
t ion with the Becke [10] three parameter h y b ¡  method with HF using the cor- 

relation functionals o f  Lee, Yang and Parr [11] and the local correlation func- 

tional by Vosko, Wilk and Nusair  [23] (B3LYP) was performed. The results of  

the calculations are compared with the experimental  data in Table 1. 

3. Discussion 

The Hª model has been shown to offer valuable predictions for hyperfine 
coupling constants of  radical ions derived from Ÿ systems [2] and although no 
geometrical constraints are accounted for by  the graph-type cognit ion of struc- 
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Fig. 3. LUMO of azulene according to the Hª model; the same shape is also indicated by PPP 
and ab initio/DFT calculations. 
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tures rather complicated systems have been desc¡ with this model [24-26]. 
It is therefore not astonishing that the azulene radical anion has been described 
in terms of its HMO defived lowest unoecupied molecular orbital (LUMO). The 
expe¡ data are in line with the prominent hyperfine coupling constants 
stemming from protons (or methyl groups) at the positions with even numbe¡ 
(Fig. 3) [27]. The same shape of  the azulene LUMO is also corroborated by PPP 
or DFT calculations. 

But, when the benzoquinone moiety is fused to the azulene yielding the parent 
compound 1, the HMO prediction for the corresponding LUMO indicates a shape 
in which the spin and the charge are predominately localised in the quinone moiety 
(Fig. 4). Such a spin distribution can not be correlated to the experimental an 
established for 1"-. From the simulation of the ESR spectra it can clearly be re- 

LUMO 
+1 

LUMO 

HOMO 

I I  9 10 ~ 2 

7 8 ~  3 

6 

HMO 

c~ 

PPP 

Fig. 4. Frontier orbitals of 1 (HOMO, LUMO and LUMO + 1 aecording to Hª (left) artd PPP 
(right) ealculations. The shape of the LUMO indicated by PPP is in accord with the UB3LYP/ 

6-31G*/UHF/3-21G" calculated a~. 
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solved that the three-proton a H of the methyl groups in the 2,3 positions of  I have 
distinctly differing values (by one order of magnitude). In contrast, the HMO- 
LUMO of 1 (Fig. 4, left) these coefficients differ by the factor of ca. 2.5. More- 
over, no coefficient of  considerable size exists in the seven membered ring and 
the only position which carries a conspicuous a H is that at C(10) in the five ring 
of  the azulene moiety. Such an electron distribution does not correlate with the 
experimental observations (Table 1). On the Hª level, the LUMO + 1 (Fig. 
4) indicates a fair agreement with the experimental a n. The major coefficients are 
localised in the azulene moiety and the spin population at C(10) is almost zero. 
It is, however unlikely that an alkali-metal reduction of 1 immediately leads to 
the occurrence of a radical trianion which is represented by the LUMO + 1. 

Application of the PPP model [21] which is a self-consistent-field (SCF) proce- 
dure brings about a distinctly different type of LUMO. The electron is distrib- 
uted among both the azulene and the quinone constituents of 1" . The spin popu- 
lation in the azulene moiety closely resembles that of  the parent unsubstituted 
azulene (Fig. 4, right, compare to Fig. 3). Indeed the a H derived from the PPP 
ealculated LUMO with the conversion factor Q = 2.7 mT [3] indicate a satis- 
factory agreement with the experimental data (Table 1). Ir is noteworthy that this 
PPP LUMO is very similar to the LUMO + 1 in the Hª model (Fig. 4) 
whereas the HOMOs have identical shapes. 

The two related methods Hª and PPP give distinctly differing descriptions 
for the a H of 1"-, therefore a third procedure which has been shown to gire rather 
reliable predictions of  hyperfine coupling constants in several classes of  radicals 
and for different atoms was utilised [12]. The a H obtained the combination of 
a b  in i t io  (Hartree-Fock) and DFT (B3LYP) ate in very good agreement with the 
experimental data (Table 1) and closely eorrelate with the shape of  the PPP-cal- 
culated LUMO (Fig. 4). The geometry of 1"- calculated by UHF/3-21G ~ is shown 
in Fig. 5. The lengths of  the benzoquinone C=O are ea. 1.27 A long. For a 
semiquinone radical anion a significant shortening of the C=O bond (ca. 1.35 
A in the neutral molecule) would be expected [28]. The second particularity is 

Fig. 5. Bond lengths (A, bold-italic) and bond angles (in degrees) of 1"- according to UHF/3-21G" 
calculation. 



Non-Alternant n Radicals: Calculation of Hyperfine Data 411 

H o 7 2 -  
eH3 

H O 

7 ~ o  cHz 
CH~ 

0 0 
CH3 H3C 

H~C 

Fig. 6. Dimerization of 1 after one-electron reduction according to cyclovoltammetric measurements. 

the bond connecting the seven and the five ring of the azulene moiety which 
amounts to 1.52 A, i.e., a formal C-C single bond. 

Thus the failure of  the Hª model in the case of 1"- can be traced back to 
the non standard bond length of  1"- exhibited by the ab initio calculated geom- 
etry. Moreover the typical perturbation parameters of the Hª model overes- 
timate the electronegativity of the O atoms and presumably underestimate the 
inductive effect of  the methyl groups. Consequently, following the Hª cal- 
culation the entire negative charge resides at the benzoquinone part of 1"- whereas 
the azulene moiety possesses only positive charges. According to the ab initio 
structure, the azulene atoms C(5)-C(10) carry negative charges. This behaviour 
verifies that caution has to be taken when heteroatoms or substituents are mod- 
elled by perturbation parameters in the Hª treatment. 

The shape of  the LUMO with the highest amount of spin population residing at 
the C(5) and C(7) of 1"- corresponds favorably with the reactivity established 
for 1 by cyclovoltammetric measurements. After the first electron transfer, the 
radical anion formed tends to undergo a dimerisation reaction [29]; the forma- 
tion of  the new bond occurs at the seven membered ¡  of  the azulene moiety 
where position C(7) sectas to be the preferred position (Fig. 6). 

In this respect, further studies involving more derivatives of 1 seems worthwhile. 
Moreover, ir will be interesting to inspect in how lar ion-pairing effects can 
influence the structure and reactivity of  azulene containing electron acceptors. 

4. Experimental 

ESR spectra were recorded on a Varian E9 o r a  Bruker ESP 300 spectrometer. 
ENDOR measurements were performed on a Varian E9 instrument equipped with 
an ENDOR unit or on the Bruker ESP 300. The latter instrument was also used 
for the general TRIPLE technique. The field frequency lock for the ENDOR 
spectra was set at the most intense high field line of  the ESR signals. For the 
TRIPLE measurements, typically three different lines of  the ENDOR spectrum 
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were pumped to achieve an unambiguous assignment of  the relative signs of  the 

a H. For the determination of  the absolute sign, the major a H stemming from the 

5 and 7 positions of  the seven membered ring were taken as negative (in line 
with the predictions of  the DFT calculations). ESR spectra were simulated with 

the program Winsim [30]. 

The syntheses of  the aceneazulenediones were described in [18, 31]. 

Hª calculations were done with the program MacHMO [32] and PPP was 

performed with the program PPPinput/PPPcalc [33]. The ab initio and DFT cal- 
culations were performed with Gaussian 94 [13] using a modified treatment of 

the B3LYP hybrid functional  [34]. The HF and the DFT calculations were per- 

formed at the unrestricted level of theory. 
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