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Abstract The Minimum Power Multicast Problem arises in wireless sensor net-
works and consists in assigning a transmission power to each node of a network in
such a way that the total power consumption over the network is minimized, while a
source node is connected to a set of destination nodes, toward which a message has
to be sent periodically. A new mixed integer programming model for the problem,
based on paths, is presented. A practical exact algorithm based on column generation
and branch and price is derived from this model. A comparison with state-of-the-art
exact methods is presented, and it is shown that the new approach compares favorably
to other algorithms when the number of destination nodes is moderate. Under this
condition, the proposed method is able to solve previously unmanageable instances.

Keywords Minimum power topology · Wireless networks ·
Mixed integer linear programming · Column generation · Branch and price

1 Introduction

Wireless sensor networks are composed of a set of devices that communicate by
transmitting radio signals, without using any permanently installed infrastructure.
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328 R. Montemanni, V. Leggieri

The devices, also referred to as the nodes of the network, generally use omni-direc-
tional antennae and their transmission range is determined by the power they employ
in the transmission of the messages.

A device communicates directly with all the other devices located within its trans-
mission range (single-hop communication), but it can also reach terminals located out
of its range using a multi-hop communication that consists in making use of interme-
diate devices, acting here as routers, that relay the data packets. The devices, thus, are
not only responsible for sending and receiving its own data, but they possibly forward
the traffic of other terminals (see e.g. Oliveira and Pardalos 2005).

Since the very beginning of research in the area of wireless sensor networks, one
of the major issues has been saving power. Such a high attention for this factor is
easy to identify: the nodes of the network are usually equipped with low capacity, tiny
batteries, and they have to stay alive for the longest possible time in an environment
usually characterized by reduced accessibility. Wireless sensor networks are often
used in commanding actuators, monitoring events or measuring values at locations
difficult to be reached by people, or where a long term sensing task is required. A tight
management of the power budget is imposed by all these factors. Examples of applica-
tions are habitat monitoring Mainwaring et al. (2002), civil structural monitoring Kim
et al. (2007), environmental monitoring Doolin and Sitar (2005), light monitoring and
control applications Li (2006) and irrigation system control in agriculture Martinez
et al. (2008). Nodes (terminals) are usually characterized as low cost devices, and
are expected to be deployed in a potentially inaccessible area. Recharging the sensors
after the deployment might therefore not be an option, both for logistic and economical
reasons. In this context, energy-efficiency becomes perhaps the most important design
criterion for sensor networks, since it directly impacts on the time the network itself is
kept in operation. Many sensor networks—like those we deal with—are intrinsically
about dissemination of information from a well-identified source node. An example
are those networks where a central unit has to command remote actuators, and to do
this it has to rely in the wireless nodes in between. The same wireless nodes often play
the double role of sensing data and routing information to the actuators, switching
between the roles in a synchronous fashion, and maintaining different topologies for
the two roles. Usually actuators correspond to a small subset of the wireless nodes. In
this kind of applications it is critical to identify energy efficient network topologies,
optimized according to the type of communications that has to be supported. In this
paper, then we will concentrate on general multicasting topologies, where a piece of
information has to be periodically sent from a source node to a set of target nodes of
the network, called destinations.

The total power consumption of a network is the sum of the powers assigned to
all devices and thus the Minimum Power Multicast (MPM) problem consists in mini-
mizing this sum subject to the constraint that messages originated from the source are
received by all the destinations. The MPM problem is NP-hard (see e.g. Cagalj et al.
2002; Clementi et al. 1999, 2001). It differs from the Minimum Steiner Tree problem by
the so called Wireless Multicast Advantage (WMA) property (see Sect. 2 and Wieselth-
ier et al. 2000). A particular case of MPM problem is represented by the Minimum
Power Broadcast (MPB) problem, where all the nodes of the network have to receive
the message transmitted from the source (all the nodes are destinations). Both the MPB
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and the MPM problem have attracted a wide attention in the scientific literature. Inter-
esting approaches for the MPB and the MPM problem are discussed in Wieselthier
et al. (2000, 2001), where an Incremental Power algorithm and three greedy heuristics
are proposed, and in Das et al. (2003), where three different integer programming mod-
els are introduced. Contributions to the MPB problem have been given in Althaus et al.
(2003), Montemanni and Gambardella (2004a,b), Montemanni et al. (2006) and Yuan
(2005). Specific studies for the MPM problem have been carried out in Guo and Yang
(2004), where a flow-based mixed integer program has been proposed. In Leggieri
et al. (2008) (see also Leggieri 2007) the MPM problem has been expressed in terms
of a set covering model and in Altinkemer et al. (2005), Bauer et al. (2008) multi-
commodity flow models and cut-based models have been considered. A further mixed
integer programming model, the relaxation of which is used to produce lower bounds,
is discussed together with some heuristic algorithms in Yuan et al. (2008).

We propose a new mixed integer linear programming formulation for the MPM
problem (Sect. 3) and an exact algorithm based on column generation and branch and
price (Sect. 4). Computational results of the new algorithm are reported in Sect. 5.
Conclusions are drawn in Sect. 6. We start by formally defining the problem in Sect. 2.

2 Problem definition

A static wireless sensor network can be modeled as a graph. Let G = (V, A) be a
directed complete graph, where V represents the set of the devices and A the set of
directed arcs which connect all the possible pairs (i, j), with i, j ∈ V and i �= j .
A cost qi j is associated with each arc (i, j): qi j represents the minimum amount of
power that has to be assigned to node i in order to establish a direct connection with
node j . Following a simple signal propagation model proposed in Rappaport (1996),
this value is proportional to the power of the distance di j with an environment-depen-
dent exponent α whose value belongs to the interval [2, 5]. Therefore, in the sequel
qi j := (di j )

α . We observe that all the presented results remain valid with any other
signal propagation model. A node s is selected to be the source of the communication,
while a set R ⊆ V \{s} contains all the destination nodes. These nodes have to receive
the messages periodically generated in s. Let n = |V | and r = |R|. Notice that the
nodes belonging to V \ (R ∪{s}) may act either as routers or they may remain isolated
(unused). The target is to optimally allocate a transmission power to each node, in such
a way that the reception of a message forwarded by the source to all the destinations
is guaranteed. We define a range assignment function ρ, which assigns to each node
i ∈ V a transmitting power ρ(i). We aim at minimizing the amount

∑
i∈V ρ(i) while

fulfilling the constraint that the topology resulting from the range assignment function
ρ connects the source to all the destinations. Note that in any optimized solution, ρ(i)
must be either zero or equal to qi j for some j (i.e., either node i does not transmit or
uses exactly the amount of power necessary to reach a target node j).

An interesting property is that, with our settings, any signal transmitted by a node
i ∈ V to a node j ∈ V is also received by all the nodes that are in the transmission range
of i i.e., if ρ(i) = qi j then every node l ∈ V such that qil ≤ qi j also receives the signal.
This is the so-called Wireless Multicast Advantage (WMA) property Wieselthier et al.
(2000).
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Note that when r = 1 (one destination node only), the problem boils down to the
Minimum Power Unicast problem, that is, to find the shortest path from the source to
the destination over the graph G. In this special case the MPM is solvable in poly-
nomial time (see Dijkstra 1959) and the WMA property is of no effect. We will take
advantage of this property in the approach we will discuss in Sect. 4.

3 Problem formulation

The basic idea of the formulation we propose for the MPM problem is the follow-
ing one: for each source-destination pair s − h, with h ∈ R, we have to identify a
path (sequence of transmission links, i.e. arcs) on which messages will be routed (in
a multi-hopping fashion). The selection of the paths toward every destination has to
be made in such a way that the combination of these paths induces a multicasting
structure with the minimum possible cost. Due to the WMA property, this structure
is an augmented Steiner arborescence and it corresponds to an optimal solution to the
original MPM problem.

We introduce binary variables xi j associated with the arcs. In particular, for each
arc (i, j) ∈ A the variable xi j has the following interpretation:

xi j :=
{

1 if ρ(i) = qi j

0 otherwise,

that is, xi j = 1 if the node i is assigned enough power to reach exactly node j .
For each destination h ∈ R, we consider Ph as the set of all the paths connecting

the source s with h. Moreover, we introduce binary variables z associated with paths
connecting the source with each destination h as follows:

zh
K :=

{
1 if path K ∈ Ph is selected to connect s with h

0 otherwise.

We can now formulate the MPM problem as:

(M) min
∑

(i, j)∈A
qi j xi j (1)

s.t.
∑

(i, j)∈A
xi j ≤ 1 ∀i ∈ V (2)

∑

K∈Ph

zh
K = 1 ∀h ∈ R (3)

∑

(i,l)∈A:qil≥qi j

xil ≥ ∑

K∈Ph :(i, j)∈K

zh
K ∀(i, j) ∈ A, ∀h ∈ R (4)

xi j ∈ {0, 1} ∀(i, j) ∈ A (5)

zh
K ∈ {0, 1} ∀h ∈ R, ∀K ∈ Ph (6)
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Constraints (2) guarantee that there is at most one non-zero x variable for each
node i . Constraints (3) force exactly one path to be selected for each destination. Con-
straints (4) bind x variables with z variables, indeed if a path K is selected (that is
if zh

K = 1) then the transmission power of each node involved in the path has to be
adequate. Constraints (5) and (6) define the domain of variables.

As already observed in Sect. 1, there is an immediate advantage in using paths
instead of more complex structures working on wireless network problems: when
dealing with a single path it is not necessary to consider directly the WMA.

4 An exact algorithm

It is impractical to generate all possible paths from the source s to any possible desti-
nation, as requested in formulation M . For this reason, formulation M as it is, is only
interesting from a theoretical point of view. It is however possible to develop a practical
exact algorithm, based on branch and price and column generation, using formulation
M . The remainder of this section is devoted to the description of such an approach. We
assume the reader is familiar with branch and price and column generation techniques
(see Lúbbecke and Desrosiers 2005).

One can notice that in formulation M the integrality of z variables is induced by
that on x variables. Therefore, if we relax the formulation substituting constraints (6)
with constraints

0 ≤ zh
K ≤ 1 ∀K ∈ Ph, ∀h ∈ R (7)

because of the integrality requirement for variables x , there exists an optimal solution
of this relaxed problem with all the variables z assuming binary values.

Constraints (4) can be strengthened as follows:

∑

(i,l)∈A:qil≥qi j

xil ≥
∑

K∈Ph
i j

zh
K ∀(i, j) ∈ A, ∀h ∈ R (8)

where Ph
i j = {

K ∈ Ph : ∃ (i, l) ∈ K such that qil ≥ qi j
}
. The basic idea of these still

valid constraints is that having more z variables allows dual variables to provide more
precise information during the pricing phase (see Sect. 4.1). Moreover we notice that
since in each optimal solution there is exactly one path selected for each destination,
then the right hand side of constraints (8) is (as before) at most 1.

Moreover, constraints (3) can be relaxed to the following covering version of them:

∑

K∈Ph

zh
K ≥ 1 ∀h ∈ R (9)

This relaxation is a common practice when designing column generation algorithms.
The replacement is introduced because set covering formulations are preferable to set
partitioning formulations (like the original M). Indeed, when integrality requirements
(5) are relaxed, dual variables have a smaller domain. Thanks to the combination of
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the objective function (1) with constraints (9) it is always possible to find an optimal
solution using exactly one path for each destination.

It can finally be observed that constraints (2) can be removed from the formulation,
since they are implicitly implied by the objective function (1). All these changes are
implemented in the remainder of the paper.

Since the set covering model has a number of variables which is exponential in the
size of the instances, to compute a valid lower bound, we may use a column generation
technique. In particular, integrality conditions are relaxed and the following restricted
set covering master problem (RM) is considered:

(RM) min
∑

(i, j)∈A
qi j xi j (10)

s.t.
∑

K∈Ph

zh
K ≥ 1 ∀h ∈ R (11)

∑

(i,l)∈A:qil≥qi j

xil ≥ ∑

K∈Ph
i j

zh
K ∀(i, j) ∈ A, ∀h ∈ R (12)

0 ≤ xi j ≤ 1 ∀(i, j) ∈ A (13)

0 ≤ zh
K ≤ 1 ∀h ∈ R, ∀K ∈ Ph (14)

where Ph is a subset of Ph , and Ph
i j = {K ∈ Ph : ∃ (i, l) ∈ K such that qil ≥ qi j }.

Initially RM includes only |R| columns from z variables, one for each destina-
tion, with a coefficient 1 in the corresponding covering constraint, and 0 elsewhere.
These columns correspond to the s-h paths of a heuristic solution of the problem (see
Sect. 4.3). Such a solution can be obtained by any algorithm. Notice that in the most
trivial case, it can be represented by the direct connection of the source with each des-
tination in a single-hop fashion. The presence of these columns ensures that a feasible
solution always exists for RM independently of the columns generated dynamically.

For each destination h ∈ R, given a current solution of the restricted master problem
RM , the reduced cost of each column K ∈ Ph is the following one:

ch
K :=

∑

(i, j)∈Ah
K

−νh
i j − λh (15)

where νh
i j is the non-positive dual variable associated with the constraint (12) defined

for destination h and arc (i, j), λh is the non-negative dual variable associated with the
covering constraint (11) defined for destination h and Ah

K = {(i, j) ∈ A : ∃ (i, j) ∈
K such that qil ≥ qi j }. At each column generation iteration the linear relaxation of
RM is solved, and we search for new columns with negative reduced costs (15). Instead
of explicitly computing the reduced cost of all the variables in the problem at each
iteration, we solve each time several pricing problems, one for each destination h ∈ R,
in order to identify one or more columns with negative reduced costs. If columns with
negative reduced cost are found, they are inserted into RM and the process is iterated;
otherwise, the optimal fractional solution of the linear relaxation of the RM is also an
optimal solution of the linear relaxation of the original formulation M .
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The main elements of the algorithm are analyzed in details in the remainder of this
section.

4.1 The pricing subproblem

Each pricing problem is a special case of shortest path problem with resource con-
straints (SPPRC) formulated on a modification of the original graph G, with nonneg-
ative costs −νh

i j and resources qi j (the original costs) on the arcs. For a destination
h ∈ R the problem is to find the shortest path(s) from s to h such that the sum of
the resources on the arcs belonging to the path is less than or equal to U B, where
U B is the best upper bound available so far for the original multicasting problem.
The rationale is that we are only interested in paths that might produce an improving
global solution. The algorithm discussed in Irnich and Desaulniers (2006) is adopted
to solve the SPPRC.

4.2 The column generation subproblem

In this section we present the column generation algorithm and its components. This
algorithm is executed at each node of branch and price search-tree (see Sect. 4.3).

4.2.1 Initialization

At each non-root node of the search-tree, our algorithm initializes RM with the set
of columns considered so far during the execution of the branch and price algorithm,
except for those that have become infeasible because of the branching.

4.2.2 Columns management

At each iteration of the column generation algorithm we solve a pricing problem for
each destination h ∈ R, and all columns with negative reduced cost that have been
found (see Sect. 4.1) are inserted into the RM . Notice that following this strategy,
up to |R| new columns are added at each iteration. Preliminary tests suggested that
this strategy is a good tradeoff between solving the pricing problem for just a few
destinations at each iteration (less new columns), and adding more than one column
for each destination at each iteration (more new columns).

4.2.3 Lower bounding and termination

It is well known that one of the drawbacks of column generation is the so-called tail-
ing-off effect. In our case it corresponds to the situation when a lot of iterations that
do not significantly modify the optimal value of RM are necessary to prove optimal-
ity. Alternative techniques that allow an earlier termination of column generation by
providing enhanced valid lower bounds have been proposed. By linear programming
duality, it is possible to obtain the following classic lower bound:
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lb = γ̃ +
∑

h∈R

c̃h ≤ γ ∗ (16)

where γ̃ is the cost of the last solution of RM, c̃h is the reduced cost obtained by solv-
ing the pricing subproblem for destination h [see (15)] and γ ∗ is the optimal solution of
the subproblem associated with the current node of the branch and bound tree. When
lb is greater than or equal to the best incumbent feasible solution, the current node is
fathomed. In our implementation we also consider an early termination technique that
stops the computation when there is no improvement for a given number of consecu-
tive iterations, regulated by parameter UI (in this case the node is not fathomed, but
eventually reconsidered later). This technique, coupled with the branching strategy
discussed in Sect. 4.3, helps to speed up the branch and price algorithm, by eliminat-
ing the tailing-effects locally present at the nodes of the tree-search, even if it might
postpone the fathoming of some nodes. If column generation is terminated because
the limit on the number of consecutive non-improving iterations has been reached,
the best lower bound encountered during the column generation process [according
to (16)] is kept as the final lower bound of the node. For our experiments, according
to some preliminary tests, we set U I = 300.

4.2.4 Upper bounding

At each iteration of the column generation procedure, with probability (|V |−set)/|V |
(where set is the number of variables set to 1 at the current search tree node) we produce
a feasible (but typically overestimated) multicasting structure, by assigning to each
node i the maximum transmission power qi j such that the corresponding xi j is greater
than 0 in the last solution of RM . Then we run the Sweep local search (see Wieselthier
et al. (2001) for a detailed description of the method) from this starting solution. In
this way we obtain a heuristic solution which is often of good quality. The rationale
behind the probability is to run the upper bounding procedure not too often, and only
when convenient. If a new best solution has been retrieved (new U B), we also insert
the corresponding paths into RM as new columns (if not already there). Notice that
the use of such a heuristic upper bound strongly contribute to the performance of the
overall algorithm we propose, which would otherwise converge more slowly. On the
other hand, it might appear that such a strategy introduces a certain computational
overhead, being the Sweep method run many times. However, experiments suggest
that—in the economy of the whole algorithm— it is convenient to run Sweep often,
because of its extremely short running times.

4.2.5 Stabilization

In the current implementation of the algorithm we do not embed any stabilization
technique (see Rousseau et al. 2007). The algorithm might benefit from the imple-
mentation of such an approach. Namely, the tailing effects might be further reduced.
However we reputed that the (marginal) speed-up would not change the ranking of the
algorithms clearly emerging from the computational experiments reported in Sect. 5.2.
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4.3 The branch and price algorithm

The column generation algorithm described in Sect. 4.2 is executed at every node of
the search-tree in a branch and price framework. In this section we describe the search
strategy, the upper bounding technique, and the branching strategies we employed
within the branch and price framework.

4.3.1 Initial heuristic solution

An initial heuristic solution (providing an upper bound) is calculated as follows:

– A shortest path from source s to each destination node in R is calculated (see Dijk-
stra 1959), where costs are given by power requirements.

– An initial solution corresponds to the topology composed by all the arcs involved
in the shortest paths, with the related transmission powers.

– The Sweep local search (see Wieselthier et al. 2001) is run to improve the topology.

The whole process runs in polynomial time and is extremely fast. Notice that the proce-
dure is intuitively effective especially for problems with a few destinations, where the
union of the shortest paths is a good approximation of the topology. As we will observe
in Sect. 5.2, our branch and price approach is naturally suitable for these problems,
therefore also the initial heuristic method is designed along the same direction.

4.3.2 Search strategy

We explore the search-tree according to a best-first policy, where subproblems to be
expanded are ranked in non-decreasing values of the lower bounds generated during
the column generation phase (see Sect. 4.2). Some preliminary experiments clearly
highlighted that this strategy dominates other heuristic branching strategies (e.g. a
classic depth-first search), both in terms of computation time and number of visited
nodes.

4.3.3 Upper bounding

The generation of heuristic solutions is delegated to the inner column generation solver
(see Sect. 4.2). Such an approach is probably not the usual one, but it is shown to be
particularly efficient in our case.

4.3.4 Branching

The branching strategy we implemented in the final version of the algorithm is the
most intuitive one. When the column generation problem has been solved at a node,
the fractional variable xi j with the highest power requirement qi j is identified, and two
new search-tree nodes are created. In the first one the fractional variable xi j is forced to
1, in the second to 0. Usually such a strategy is regarded as not very fruitful in a branch
and price framework, since intuitively tend to produce unbalanced search trees: setting
a variable to 1 means to set the power of a node (strong decision), while by setting a
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variable to 0 we simply reduce by one the feasible transmission levels of a node (weak
decision). However, after having experimented more complex branching strategy, our
conclusion was that this simple strategy was the most effective for the problem under
investigation. An explanation for this might be that, in our problem, setting a variable
to 0 is not such a weak decision: good heuristic solutions tend to be available since
the very first levels of the search tree (thanks to the upper bounding strategy imple-
mented), and forbidding a power level for a node often leads to suboptimal Steiner
arborescences with high lower bounds, that can be therefore pruned.

5 Computational results

The branch and price algorithm we propose has been coded in ANSI C, CPLEX 12.1
has been used to solve linear programs. All the experiments have been carried out on a
computer equipped with an Intel Core 2 Duo 2.4GHz processor and 4GB of memory.

Section 5.1 is devoted to the description of the benchmark instances. In Sect. 5.2 we
compare the branch and price algorithm we propose with a strong flow-based compact
model presented in Altinkemer et al. (2005) (it is the second compact model among
those discussed in Altinkemer et al. (2005), and can be regarded as a strong model
in general) and with the set covering approach described in Leggieri et al. (2008)
(see also Leggieri 2007), which can be regarded as a state-of-the-art method for the
problem considered in this paper. The aim is to identify those situations in which the
proposed algorithm is promising with respect to other methods previously discussed
in the literature.

5.1 Benchmark instances

The experiments have been performed on a set of random test instances, derived
according to Leggieri et al. (2008). The n nodes of the network are generated at
random over a 10, 000 × 10, 000 grid. The source node s and the destination nodes in
R are selected at random among the nodes generated. Parameter α—regulating signal
propagation, see Sect. 2—is finally set to 2 (this choice is the most common in the
literature).

5.2 Experimental results

We have run experiments with an increasing total number of nodes and, given a total
number of nodes, with an increasing number of destination nodes. The impact of
these two factors on the performance of the method we propose is estimated, and
compared with the impact on the approach discussed in Leggieri et al. (2008) and on
the adaptation to multicasting of the compact version of the second model discussed
in Altinkemer et al. (2005), here used as references.

In Tables 1 and 2 we present the results of the proposed branch and price approach
and of the methods described in Leggieri et al. (2008) and Altinkemer et al. (2005)
for some significant combinations of |V | and |R| (first column). For each statistic
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indicator considered we present average and standard deviation over 10 runs, where
a maximum computation time of 1 h is allowed for each run. Namely, the indicators
are the computation time in seconds (for all the methods) and, for the branch and
price, the total number of linear programming solved, the total number of nodes of the
search-tree visited and the ratio between the lower bound produced at the search-tree
root and the optimal solution cost. The first column of each group of results contains
the number of instances that were not solved to optimality in the given maximum
computation time (over the 10 instances considered).

A first conclusion from the results presented in Table 1 can be drawn about the sca-
lability of the method we propose when the number of destination nodes is increased,
while the total number of nodes is kept constant. All the numbers of destination nodes
between 5 and 29 are considered when |V | = 30 (in steps of 2). It emerges that the
branch and price method is the fastest one for problems with a small/medium num-
ber of destination nodes. The situation is different for larger destination sets. After
a certain threshold (11 in our case) the set covering method discussed in Leggieri
et al. (2008) becomes the fastest method. The compact model presented in Altinkemer
et al. (2005) is always dominated by the other approaches, and it fails to conclude
the computation for many problems in the given time. It is however interesting to
comment about the computation times of the compact model discussed in Altinkemer
et al. (2005). It appears that for large values of |R| the method consistently either fails
or is able to compute the optimal solution in a rather short time. This indicates that
the performance of the method becomes significantly instance-dependent.

A second study about the scalability of the method when the number of destination
nodes is kept constant while the total number of nodes of the network is increased is
presented in Table 2. The number of destination nodes (|R|) is kept constant at 5, 9
and 13 respectively, while the total number of nodes is increased from 20 to 100 (in
steps of 10). Taking into account the failures of the different approaches, it is possible
to have a clear ranking on the approaches on these problems with a moderate num-
ber of destination nodes: the compact model discussed in Altinkemer et al. (2005) is
dominated by the set covering method discussed in Leggieri et al. (2008), which in
turn is dominated by the brach and price approach we propose.

From Tables 1 and 2 it can be observed that the lower bounds produced at the root
of the search-tree are always extremely tight (notice that the linear relaxation of the
strongest model discussed in Bauer et al. (2008) is able to provide equally strong lower
bounds). Moreover, it can be observed that the number of linear programs solved and
the number of nodes visited by the branch and price method are both directly propor-
tional to the computation times. On the other hand, the standard deviation is always
high for all the indicators and methods considered: the difficulty of each instance
seems to be extremely related to the topology of the instance itself. This deserves a
deeper analysis in a future study.

6 Conclusion

A new mixed integer linear model based on paths has been proposed for the minimum
power multicast problem in wireless sensor networks. The model has an impractical
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number of variables, but an efficient exact algorithm, based on column generation and
branch and price, can be derived. Computational results show that this new algorithm
compares favorably with state-of-the-art methods for a moderate number of destina-
tion nodes, therefore, under these settings, it becomes a reference approach for the
considered problem.
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