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Abstract We express the zeros of the Weierstrass g-function in terms of generalized
hypergeometric functions. As an application of our main result we prove the transcen-
dence of two specific hypergeometric functions at algebraic arguments in the unit disc.
We also give a Saalschiitzian 4 F3—evaluation.

1 Introduction

The Weierstrass g-function is defined for z € C and t € H, the upper half-plane, by

i, 1) = 24 Z((z + a))_2 — a)_2),
w#0

where o runs over the lattice Z + tZ. For t fixed, ¢ and its derivative g, are the
fundamental elliptic functions for Z + tZ. The fact that the zeros of g, in the torus
C/(Z + tZ) occur at the points of order 2, namely 1/2, /2 and (1 + 7)/2, is basic for
the theory. On the other hand, the zeros of g itself are not nearly as easy to describe.
Since g assumes every value in C U {oo} exactly twice in C/(Z + tZ), it follows that
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& has two zeros there which, g being even, can be written in the form %zg. Almost a
century after Weierstrass’ lectures on elliptic functions were published [14], Eichler
and Zagier [6] found the first explicit formula for zg.

This formula gives zg as a certain modular type integral of weight 3 in terms of <.
Here we will “deuniformize” their formula and express zp as a multi-valued function
of the classical modular invariant

J(O) =q " +744 4196884 + - (g =™, 0
although it is, in fact, better to work with

Along these lines, it was already understood in the nineteenth century that T can be
written as the ratio of two solutions of the second order hypergeometric equation
in x:

[8(6—3) —x(E+ {5+ $)1Y =0 where § = x4,

Similarly, we will show that zo can be expressed as the ratio of two solutions of the
third order hypergeometric equation in x:

B —5E -1 —x@+ 56+ 5@+ DY =0.

To be more specific, we will use (generalized) hypergeometric series defined for
[x] < 1by

- @ ... (@u)n x"
F =F(ai,...,am;b1,...,bp_ = —_— 3
(x) (a1 am; by 11x) ;:0 B0 o) 1l 3)

where (a), = I'(a + n)/T'(a) and no (br), = 0. It is well known that for any fixed
choice of b € {1, by, ..., by_1}, the function x®~! F(x) satisfies an m-th order hyper-
geometric equation and has an analytic continuation to a multi-valued function on the
Riemann sphere punctured at {0, 1, oo}. In terms of these functions it can be shown
using the classical method of Fricke [9, 1. p. 329] (see also [10, p. 159]) that

c1F<%,%;%|x) L (c 2/ ) 4)

1L = T@/m)r{aijn)

Our main result, proved in the following section, gives a similar expression for zg.
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Theorem 1 The zeros of the g-function are given by £zo, where

1 1 247.35
141 C2x“F(§s§vl7Zsz x) .
= + (2 =-52). )

Here t is given in (4) and x in (2).

In addition to its basic interest for the theory of elliptic functions, Theorem 1 has
some simple applications to hypergeometric series worth noting. One concerns the
transcendence of their special values. Suppose that all parameters a; and by of F(x)
given by (3) are rational. It is a well known problem to determine the set of algebraic
x with |x| < 1 for which the value F(x) of such an F is algebraic. When F is a Gauss
hypergeometric series (m = 2) this set is known to be finite unless F is an alge-
braic function or is one of a finite number of explicitly known exceptional functions
(see [1] and its references, particularly [5]). For generalized hypergeometric functions
(m > 3) there seem to be no nontrivial examples known where this question is settled.
It is shown in Sect. 3 that Theorem 1 together with a classical result of Schneider
provide two such examples.

Corollary 1 For algebraic x # 0 with |x| < 1 the values

are both transcendental.

Eichler and Zagier also gave an amusing corollary of their formula for t = i:

| 2

S}

n

i 0 zen _ 7~ log5 + 2./6)
n=1 72\/6

where A, = 1, 732,483336, ... are defined through the g-series

o] n\24
gLz (1—q" 3
An " = — s = ds
D T ) Sl R W

n=1

In the same spirit, in the limiting case Im v — oo we present a hypergeometric
counterpart.

Corollary 2 We have
F (%, 2 1,15%3,3.2] 1) = 1B 105026 - 4).

This curious Saalschiitzian 4 Fz—evaluation does not seem to follow easily from clas-
sical results [3]. It is derived in Sect. 4 from Theorem 1 and a delicate asymptotic
formula discovered by Ramanujan.
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2 The Eichler-Zagier formula

To state the Eichler—Zagier formula we need the Eisenstein series

E4(t) =1+240 > 03(n)q" and E¢(t) =1-504> o5(n)q",

n>1 n>1

and the normalized discriminant function

A(r) = (g (E3(0) — EZ(x) = q [ (1 — g™,

n>1
all familiar modular forms.

Theorem (Eichler—Zagier) The zeros of the Weierstrass g -function are given by

A(o)
z=m—+ % +nt + 10g(52<;12«/>) + 1447’[1\/_/(0' W do (6)

forall m,n € Z, where the integral is to be taken over the vertical line o = t + iR™
in'H.

They gave two Proofs of (6) in [6]. The first is based on the fact that if zo(7) is
a zero of g (z, 7), then z(j(7) is a modular form of weight 3 that can be determined
explicitly. The second proof uses elliptic integrals in a more direct manner.

Proceeding to the Proof of Theorem 1, by analytic continuation it is enough to
assume that T = iy with y > 1. Any fractional powers that occur are assumed to be
principal values. It is convenient to begin with the modular functiont = 1 — x =
1728/, where as before j = E i’ /A. We have the relations

E2 1 dt E
t=—, l—t=-% and - =2mi " @)
E4 tdrt E4

To obtain the last one we use the formulas of Ramanujan for derivatives with respect
tot [11, p. 142]:

Ey = ZN(EyE4 — Eg), Ef=mi(EyEe — E3), A =2miEA,
where

Ex@) =1-242 o1(n)g".

n>1

It is a classical fact that a pair of linearly independent solutions to the hypergeo-
metric equation
tA—0Y +(1=30Y — 3;Y =0 (8)
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is given by
Fi(t) = F({5. 5:111) and Fy(t) = t()Fi(1), )

where t(t) is the inverse of 7(7) [9, L. p. 336]. We need the remarkable identity of
Fricke [9] (see also [1, p. 256]):

Fi(t(0) = E)/* (7). (10)

Using (7) and (10) we obtain the Wronskian

‘Fl (1) Fa(t)

= (1) — Ty — L =11 _ 172
Flt) Fio| = ORO - ROFO =210 -0 (a0

2mi

as well as the identity

1728A(x) st
— =5t Fi(t)—. 12
Eg/z(r) 77 € ) 1( )dr (12)
Write u = t(t) and let
T(u)
) 1728 A (o)

ioco
Changing variables o > t and we get using (12) and (1) = 1;?—83 that

u

H(u) = 2mi / (Fi(t) Fa(u) — Fi(u) F> (1)) (1 — 1)™>/* d.
0

Now apply the differential operator

Ly=u(l -2 1 - ik -3
to this integral to get
Ly H(u) = 2miu(l —u)(Fi Fy — Fy F)(1 — u) /4,
where we are using that F| and F; satisfy (8). Thus by (11)
L,H=(1—u*

or, in other words, H (u) satisfies an inhomogeneous hypergeometric equation. Letting
x = 1 — u this equation can be written

x(L=0)Y" + G =307 — 23y =x/4 (14)
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By using the method of Frobenius (see [2, p. 201]), it is easy to find a particular solution
to (14) in the form

—1664F (4,31 3.5 1 %) = — 165" P (), (15)

say. Thus it follows from (13) that for some constants a and b we have

—_nl/4
F] (t)/(f _O)E (((;;’2/2 o = 4((112)212 F(l - t) +aTFl(t) +bF1(t)7

where t = 1(1) = %(AT()” and T = gf—gg, with Fi(t) = F(lz, 12,1 | ) from (9).
4

Finally we get from (6) with m = n = 0 and the minus sign that for some other
constants ¢ and d the zeros can be represented by

i _pnl/4
20 = 20(t) = “YUDE B (1 1) 4 cv +d. (16)

In order to compute the constant ¢, let T = iy and take y — oo. The first term
asymptotics of the zero-balanced hypergeometric series F' from (15) is easily obtained:

F(1—1) = —¥2@2rit) +0(1), asy— oco. (17)

When combined with (16) and (6) this shows that ¢ = 1/2. Taking d = 1/2 gives
z0(i) = (1 +1i)/2, known to be a (double) zero of g (z, i). Theorem 1 now follows.

We remark that Eichler and Zagier generalized their formula in [6] to equations of
the form ¢ (z, 7) = ¢ (r) for any meromorphic ¢ (t) and also to the zeros of Jacobi
forms in [7]. However, one finds in those cases where the above technique applies
that a solution to the resulting inhomogeneous hypergeometic equation is not usually
expressible in a simple way in terms of a hypergeometric function.

3 A theorem of Schneider

For arithmetic purposes it is best to define g for any full lattice A C C as the sum
over non-zero w € A

PR =p@@ AN =27+ (+w) > —o?).
w#0

As is well known, g satisfies
2 3
;7 =40 — g2 — 83, (18)
where ¢» = g2(A) = 603, o0 * and g3 = g3(A) = 1403, o0 C Itis a

fundamental fact that
@ —27g3 #0 (19)
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and that, given any pair of complex numbers g, g3 satisfying (19), there is a (unique)
lattice A whose go-function satisfies (18). Of course, g (z, A) = wl_zgo (z/w1, T) when
A = w1(Z + tZ) for a non-zero w; € C and v € H, which is always possible to
arrange. In this case we have the identities

4 6
g2 =T Ea(r) and g5 = 2 Eo(T). (20)

Turning now to the proof of Corollary 1, we need the following classical result of
Schneider [13].

Theorem (Schneider) If g» and g3 are algebraic, then, for any algebraic 7 # 0,
©(z, N) is transcendental.

A short proof of this result can be found in [4, Chap. 6]. Theorem 1 and (10) together
with (20) imply that

differs from a zero of g (z, A) by a point of order 2 in C/A. The duplication formula
for the p-function [9, II. p. 184] applied at this zero yields the evaluation

pQw) = ——=—.

Thus for the lattice A with invariants g = g3 = 2x—7 we have that
4 1 21.35 27
p(g —3x F(g, §71a Z’le)):_m
Schneider’s theorem now gives the first statement of Corollary 1.

A parallel treatment of the proof of Theorem 1, but starting with the modular func-
tion v = 1 — 1/x and the identity

1/6
F(d, L. 110@) = EJ/°),

(see [1, p. 256]) shows that

differs from a zero of ¢ (z, A) by a point of order 3 in C/A. Now the triplication
formula for e [9, II. p. 184] applied at this zero yields the evaluation
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Thus for the lattice with invariants go = g3 = 27x we see that
3 S 3x F(3.3. 1:04 5 28
@(E —3x F(3,3.1:03,3 |x)) ~ %
As before, the second statement of Corollary 1 now follows from Schneider’s Theorem.

4 A result of Ramanujan

Itis instructive to compare Theorem 1| with the corresponding result for the degenerate
g—function

2 7T2

. b4
lim ©(z, 1) =—5 - —.
Im t—o00 SIN“ 1wz 3

The zeros of this function are given by +z¢ + Z, where
20 = 4 + 5= log(5 +2v/6). Q1)

In order to compare this with Theorem 1, we need to determine explicitly the constant
term in the asymptotic formula (17). Such a result was discovered by Ramanujan and
appears in his notebook [12, p. 132] without proof.

Theorem (Ramanujan) Ifa + b + ¢ =d + e and Re(c) > 0 then

lirrll %{Z)&(")F(a,b,c;d,e | x) + log(1 —x) =L, where
xX—>1"

d n - n
L=2y(1)— ¥ —y®) + Z % (22)

with ¥ (a) = T'(a)/ T (a).

Evans and Stanton [8] proved Ramanujan’s claim in a more precise form; their proof
is rather intricate. To derive Corollary 2, specialize (22) to

lim 557 (4,313, 1 %) + 27t +1og 1728 = L, (23)

x—1-

after using (1), (2) and the duplication and triplication formulas

res)=2_T@rE+3%) and
I'z) =

2
3. (24)
By Theorem 1 and its proof we have from (23)

L =4mi(zo — %) + log 1728,
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The zeros of the Weierstrass go—function and hypergeometric series 905

where zg in (21) is the correct degenerate zero, as follows from the discussion above
(16). Thus
L = —2log(5 + 2v6) + 3log 12, (25)

By (24) we get easily that

29 (1) =¥ (1/3) = ¥(2/3) = 3log 3.

Now Corollary 2 follows from (25) after shifting indices n +— n + 1 in the sum in L
and using that 1/(n + 1) = (1),,/(2),,.
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