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Abstract The photosensitizing perylenequinone toxin
elsinochrome A (EA) is produced in culture by the
bindweed biocontrol fungus Stagonospora convolvuli
LA39 where it apparently plays a pathogenicity re-
lated role. We investigated the fate of EA with ref-
erence to its stability under different temperature and
light conditions. EA remained stable when boiled in
water at 100°C for 2 h. Similarly, exposing EA to
3-27°C in the dark for up to 16 weeks did not affect
its stability either in dry or in aqueous form. However,
results from irradiation experiments indicate that direct
photolysis may be a significant degradation pathway for
EA in the environment. EA either in dry form or dis-
solved in water was degraded by different irradiation
wavelengths and intensities, with degradation plots fit-
ting a first order rate kinetics. EA degraded faster if ex-
posed in aqueous form, and at higher quantum flux den-
sity (jsmol s F m-2). Sunlight was more effective in de-
grading EA than artificial white light and ultraviolet ra-
diations (UV-A or UV-B). Exposing EA to natural sun-
light, particularly, during the intense sunshine (1,420-
1,640 ismol s 2) days of 30 July to 5 August 2004
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in Zurich caused the substance to degrade rapidly with
half-life under such condition only 14 h. This implies
that should EA gets into the environment, particularly
on exposed environmental niches, such as on plant
surfaces through biocontrol product spray, or released
from shed diseased leaves, it may have no chance of ac-
cumulating to `level of concern'. Furthermore, a toxic-
ity assay using Trichoderma atroviride P1 as biosensor
showed that photo-degraded EA was not toxic, indicat-
ing that no stable toxic by-products were left.
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1. Introduction

Man has increasingly become conscious of effects of
chemicals in his environment, particularly, since the
publication of Rachel Carson's `Silent Spring' (Carson,
1962). The growing public sensitivity to environmental
pollution by chemical pesticides is compounded by the
problem of pest resistance to these chemicals. This has
led to increased interest in the search for environmen-
tally benign crop protection strategies such as the use of
microbial Biological Control Agents (BCAs) as alter-
natives to synthetic chemical pesticides in agriculture.
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However, this `deliberate introduction' of microbes
into the environment as plant protection agents has also
suffered from the increasing public awareness of the
risk of pesticides in the food-chains. This is particularly
due to the fact that some microbes have been proven
to produce chemicals (as secondary metabolites) that
are highly toxic to man and his livestock (Bove,
1970; Shotwell et al., 1969, 1971; Joffe, 1986; Chu
and Li, 1994; Lubulwa and Davis, 1994; Abramson,
1998).

The ever-increasing public awareness and sensitiv-
ity has continued to put pressure on both the academic
and industrial plant protection scientists to become
more `environmentally responsible' as they work to-
wards providing solutions to pest and disease prob-

lems in agriculture. This has indeed given birth to a
recently emerged and expanding field of plant protec-
tion science called `Risk Assessment'. Determination
of the environmental fate of pesticides or of major
toxic metabolites of fungal BCAs has become an es-
tablished step in the development and commercializa-
tion of plant protection products, particularly, in Eu-
rope. While progress made in recent years in the de-
velopment and commercialization of fungal BCAs is
in accordance with the European Commission (EC)
common agricultural policy and the global consensus
to reduce synthetic chemicals in the environment, one
of the major limitations to the registration and sub-
sequent commercialization of fungal BCAs has been
the requirement of risk assessment of their secreted

metabolites (Strasser et al., 2000). This article reports
on the potential environmental fate of elsinochrome
A (EA), a major toxic metabolite produce in culture
by the field and hedge bindweeds biocontrol fungus,
Stagonospora convolvuli LA39 (Nicolet and Tabacchi,
1999; Ahonsi et al., 2005). Even though, in planta pro-
duction of this metabolite by the fungal BCA has not
been detected, the ability to produce the substance in
certain artificial growth media seems to be an innate
characteristic of isolates of Stagonospora which are
aggressive on field and hedge bindweeds (Ahonsi et
al., 2005). EA is a photosensitizing perylenequinone
toxin typically produced by Elsinoe (and its anamorph
Sphaceloma) spp. (Chen et al., 1966; Weise et al.,
1987; Meille et al., 1989). Among photosensitizing
perylenequinones, cercosporin which is closely related
to EA (Table 1) (Weise et al., 1987; Meille et al.,
1989) and is a pathogenicity determinant in Cercospora
spp. (Daub and Ehrenshaft, 2000) is the most stud-
ied. These substances absorb light energy and become
energetically activated, reacting with molecular oxy-
gen to form both radical and non-radical species of
activated oxygen, which have near-universal toxicity
(Daub and Ehrenshaft, 1993; 2000). Cercosporin has
been shown to generate both singlet oxygen ( 0 02) and
superoxide (02- ) in vitro when illuminated, but the for-
mer is primarily responsible for its high toxicity (Daub
and Hangarter, 1983). Cercosporin is known to be al-
most universally toxic to living cells, with toxic ef-
fects well documented against mice, many bacteria and

Table 1 Chemical properties of elsinochrome A and the closely related perylenequinone photosensitiz-
ing fungal toxin cercosporin

Chemical	 Molecular
Fungal toxin	 Chemical structure	 formula	 weight	 UV-Spectrum
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fungi, plants, and human cells at micromolar concentra-
tions (Balls and Payne, 1971; Daub, 1982; Tamaoki and
Nakano, 1990; Ballio, 1991; Batchavora et al., 1992;
Daub and Ehrenshaft, 1993; 2000). Toxicity of EA is
less documented. However, elsinochromes (such as B 1,
B2, Cl and C2) have been shown to have photodynamic
inhibitory effects on proteinkinase C (Arnone et al.,
1993). The closeness in structure of EA to cercosporin
(Table 1) suggests a possible similarity in function and
mode of action. Indeed, the phototoxic effect of EA on
human cells was recently reported (Ma et al., 2003).
These authors found EA concentrations as low as I
µM and 10 ttM.to induce up to 41% and 53% apop-
tosis on the human cell line Hce-8693 after 20 min
irradiation.

The study described in this article aimed to deter-
mine the potential importance of irradiation and tem-
perature on the degradation of EA, and to determine
if degraded EA is potentially toxic compared with the
non-degraded substance.

2. Materials and methods

2.1. Test substance and organic solvents

EA (Table 1) used in this study was of >98% pu-
rity grade and was purchased in small screw-capped
vials from Specs BV (Delft, The Netherlands) in
granular form. Once it was received from the com-
pany, it was stored in the dark at —20°C in a frost-

free refrigerator. Organic solvents used included ace-
tonitrile (CH3CN) [HPLC gradient grade >99.9%
(GC); Fluka Chemie AG, Buchs, Switzerland]; tetrahy-
drofuran ((C2H4)20) [HPLC purity grade 99.9+%;
Sigma-Aldrich, D-8955 Steinheim Germany]; and
ethyl acetate (CH3COOC2H5) [Erne AG, Dallikon,
Switzerland].

2.2. High performance liquid chromatography
(HPLC) analysis

For all experiments, analysis of EA samples by HPLC
was done in a Hewlett Packard 1090 liquid chromato-
graph equipped with a diode-array detector. A reverse
phase column, CC 250 x 4 mm Nucleosil 120-5 C18
(Macherey-Nagel, Germany) was used, and the temper-
ature of the column was 28°C. Injection volume was 25
Al, and the samples were eluted with 80% acetonitrile,
20% ddH2O (acidified with 0.045% H3PO4) for 10 min
at a flow rate of I ml min — t. Detection of EA was ini-
tially viewed at 217, 230, 242, and 254 nm at 4.9-5.1
min after injection (retention time), but quantification
was done at 230 nm (Fig. 1).

2.3. Effect of temperature on the stability of EA

Three separate experiments were conducted to evaluate
the effect of temperature on the stability of EA, and
each of these experiments was replicated three times
and repeated once, giving two runs (experimental runs)
per experiment.

100 1
	 Wavelength {nm)m

10

Retention time (min)

Fig. 1 High performance liquid chromatography peak and UV absorption spectrum of elsinochrome A. A reverse phase nucleosil -
Cl 8  column was used. 14.7 nmol of pure elsinochrome A was analysed, and detection at 230 nm is presented

t Springer



186
	

Environmentalist (2006) 26:183-193

2.3.1. Effect of high temperature on the stability
of EA

The first temperature experiment was conducted to de-
termine the stability of EA at high temperatures of 40°C
to 100°C (in boiling water) on short time exposure in
the laboratory. From a 183.8 pM stock solution of EA
made in acetonitrile containing 1.8% tetrahydrofuran
(THF), 50 s1 each were distributed in 1.1 ml conical
bottom glass vials (Infochroma AG, Zug, Switzerland).
The solvent was evaporated under argon gas stream,
leaving the dried EA in the vials before closing the
vials with crimp caps. The treatments in the first ex-
perimental run were vials kept for 30 min or I h in a
water-bath adjusted to 40, 60, and 80°C, and in boil-
ing water maintained at 100°C (by addition of NaCI).
In the second experimental run, durations of exposure
were increased from 30 min and 1 h to 1 h and 2 h
respectively. After the heat treatment, the dry EA in
the vial was re-dissolved in 100 sl of acetonitrile/THF
(4:1) for analysis by HPLC. Controls were EA samples
in vials dried under argon gas stream, but without any
heat treatment.

2.3.2. Effect of temperature on stability of EA in
dry form

The second temperature experiment was conducted to
determine the stability of EA in dry form in the dark
at 3 to 27°C. Glass vials containing dried EA prepared
as described previously in Section 2.3.1, were kept in
the dark at 3, 8, 15, 20 and 27°C. After 1 day, 3 days,
1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks and 16
weeks, three vials (replicates) each were taken from the
various temperatures and the EA was dissolved in 100
/A of acetonitrile/THF (4:1) for HPLC analysis. The
control samples were similarly prepared as those kept
at various temperatures, but were analysed by HPLC
immediately (day 0).

2.3.3. Effect of temperature on the stability of EA
dissolved in water

The third temperature experiment was conducted to test
the effect of temperature on stability of EA dissolved in
water and kept in the dark at 3°C-27°C. Since pure EA
is not readily soluble in water, aqueous solution of the
substance was made by initially dissolving 4 mg of the
pure substance in 400 µl THF, then gradually in water

through series of mixing and centrifugation to a final
20 ml aqueous solution (pH 6.5) containing 2% THF.
100 sl of EA solution was distributed into sterile 0.6
ml clear microtubes (MCT-060-C, Genuine AXYGEN
Quality, Axygen Scientific, Inc. 33170 Central Ave.
Union City, CA 94587, USA), and kept in the dark at 3,
8, 15,20 and 27°C for I day, 3 days, 1 wk, 2 wks, 4 wks,
8 wks, and 10 wks before HPLC analysis. The control
tubes were analyzed by HPLC immediately. For HPLC
analysis, 20 p1 of THF and 80 µl of acetonitrile were
added to the EA solution in microtube directly, mixed
by pipetting and vortexing, followed by centrifugation
at high speed for 3 min. The supernatant was transferred
into HPLC glass vials for analysis.

2.4. Effect of white light on stability of EA

Two separate experiments were conduct to test the ef-
fect of white light on the stability of EA in dry and in
aqueous forms respectively, and each of the two exper-
iments were replicated three times and repeated once.

2.4.1. Effect of white light on stability of EA in
dry form

This experiment was conducted to determine the sta-
bility of EA exposed to continuous white light. The
two white light sources tested were, cool white light
(TL 20WI55, DE LUXE, Philips, France) at 20°C and
incandescent white light (TL D 18W/82, Philips, Hol-
land) at 27°C. Using a photometer model LI-185B
(LI-COR Inc. USA), for each of these two light treat-
ments, the illuminance (on the samples) was measured
in lux. Quantum Flux Density (QFD) (the number of
photons in the 400-700 nm waveband incident per
unit time on a unit surface) (in Amol 5 on
the EA samples was estimated using the relationship:
1000 Lux = 1 Klux = 19.5 .tmol s -1 m-2 (Bigs,
1985). The estimated QFD values were 35.1 µmol
s-1 m-2 and 54.6 µmol s -1 m-2 at 20 and 27°C, re-
spectively. Glass vials containing dried EA were pre-
pared as described in Section 2.3.1. At I day, 3 days,
1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks and 16
weeks, three vials (replicates) each were taken from
the various temperatures and dissolved in 100 µl of
acetonitrile/THF (4:1) for HPLC analysis. There were
two sets of control, samples of which were prepared
the same way as those exposed to white light at 20
and 27°C. One control consisted of vials kept at the
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same temperatures (20 and 27°C) in dark which were
analysed at I day, 3 days, 1 week, 2 weeks, 4 weeks,
8 weeks, 12 weeks and 16 weeks as those of the light
treatments. The second control consisted of vials which
were analysed by HPLC immediately (at day 0).

2.4.2. Effect of white light on the stability of EA
dissolved in water

Preparation of microtubes of EA solution for expo-
sure to light and for HPLC analysis after exposure
time, were the same as described previously in Sec-
tion 2.3.3. The microtubes containing EA solution were
kept in continuous white light at 20 and 27°C for 1
day, 3 days, 1 wk, 2 wks, 4 wks, 8 wks, and 10 wks
before HPLC analysis. The two white light sources
tested were, warm white light (TL 20W/29, Philips,
Holland) at 20°C and incandescent white light (TL
D 18W/82, Philips, Holland) at 27°C, both with the
same illuminance as measured by photometer. Using
the same procedure described before in Section 2.4.1,
the QFD of both light treatments at 20 and 27°C was
54.6 µmol s There were two sets of control,
samples of which were prepared the same way as those
exposed to white light at 20 and 27°C. One control
consisted of microtubes kept at the same temperatures
(20 and 27°C) in dark for 1 day, 3 days, 1 wk, 2 wks,
4 wks, 8 wks, and 10 wks before HPLC analysis. The
second control consisted of microtubes of EA solution
analysed by HPLC immediately (at day 0).

2.5. Effect of natural sunlight on the stability of
EA dissolved in water

Microtubes of EA solution prepared as described pre-
viously in Section 2.3.3 were placed either directly
(sunlight-illuminated) or rapped in aluminium foil
(non-illuminate or in the dark) in the open (daylight and
night darkness) on the terrace of LFW building, ETH-
Zentrum. Zurich. The illuminance (in lux) of sunlight
on the microtubes was measured with a photometer
at mid-day daily during the experiment. From these
data, the QFD values in smol s -1 m-2 were estimated
as described previously in Section 2.4.1. In the first
experimental run (30 July-5 August, 2004), the micro-
tubes were kept for 1-5 days and three tubes (replicates)
were taken per treatment daily and prepared for HPLC
analysis as described previously in Section 2.3.3. In

the second experimental run (24 August-1 September,
2004), the microtubes were kept up to 10 days in the
open.

2.6. Effect of ultraviolet lights (UV-A and UV-B)
on the stability of EA

From a 919 1sM stock solution of EA made in ace-
tonitrile/THF (4:1), samples of 50 µl were placed onto
glass slides with dents (diameter: 1.5 cm, depth 1 mm).
After the solvent had dried completely, the slides were
exposed to UV-A light (315-400 nm) at 20°C or UV-B
light (280-315 nm) at 24°C. Controls were kept in the
dark at the same temperatures. After 1, 3, 7, 14, 21, 28
and 56 days, samples were taken, the EA in the glass
slide dent was dissolved in 250 sl ethyl-acetate, the
solution transferred to eppendorf tubes and the solvent
completely evaporated under argon gas stream. The
dry probes were dissolved in 200 µl acetonitrile/THF
(4:1), transferred to HPLC vials for immediate HPLC
analysis.

2.7. Bioassay of photo-degraded EA for toxicity

Toxicity of photo-degraded (sunlight illuminated)
EA was performed using a highly EA-sensitive
biocontrol fungus Trichoderma atroviride strain P1
described in another study conducted in our laboratory
(unpublished data) as biosensor. Four-day old freshly
grown fungus on malt agar was used. EA solution
used for this bioassay was prepared as described
previously in 2.3.3, but contained 7% acetonitrile
instead of 2% THE as initial dissolving solvent. Three
1.5 ml clear eppendorf tubes each containing 600
µl EA solution were placed either directly (sunlight-
illuminated) or rapped in aluminium foil (non-
illuminate) in the open (daylight and night darkness)
on the terrace of LFW building, ETH-Zentrum, Zurich
for 10 days (until the red EA solutions exposed to
sunlight were completely bleached to clear solutions).
After the exposure period, EA solutions in the three 1.5
ml tubes were pooled in a 14 ml eppendorf tube. Four
treatment samples were made by dilution as undiluted,
2x diluted, 4x diluted and 8x diluted from the illumi-
nated EA, non-illuminated EA and the 7% acetonitrile
solution included as control. Small Petri dishes (6 cm
diameter) were poured with 3 ml of malt agar contain-
ing 5% (150 µl/plate) of the appropriate EA treatment
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sample solution. The controls were plates poured with
3 ml malt agar containing 5% of the corresponding
dilution of 7% acetonitrile solution. The amount of EA
contained per Petri dish was estimated by HPLC anal-
ysis of three replicate samples each of the undiluted
illuminated and non-illuminated EA solutions. The
bioassay agar plates were inoculated with the fungus,
by placing a 5 mm agar plug of the fresh 4 days grown
culture at the centre of the 6 cm diameter agar plate.
There were three replicates for each treatment sample,
with each replication made from a different fungal
culture plate but the same plate for all the treatments.
The plates were incubated at 20°C in continuous white
light (35 µmot s -1 m-2 ). After two days and three days
of incubation, fungal mycelia growth in diameter was
measured.

2.8. Statistical analysis

For all HPLC analysis data, percentage relative peak
areas (relative to average peak area for the respec-
tive control) were used in comparing treatment effects
on amount of EA detected by HPLC. All data were
analysed in SAS (Statistical Analysis Software ver-
sion 8, SAS Institute Inc., Cary, NC, USA. For the
repeated experiments, data were combined in the anal-
ysis if initial analyses showed the same pattern of varia-
tion and no significant difference between experimental
runs, otherwise, they were analyzed separately. Treat-
ments means with their standard deviations were ob-
tained by Mean Procedure in SAS and used to construct
scatter grams fitted with regression lines and equa-
tions in Microsoft Excel. From the regression equa-
tions, half-lives were calculated, taken y-intercept as
50%. Data from the effect of high temperature exper-
iments were analyzed by MIXED PROCEDURE in
SAS, taken replication and experimental run as ran-
dom variables. Similarly, toxicity data (mycelia growth
in cm) were subjected to analysis of variance using
the MIXED PROCEDURE in SAS, taken replication
as a random effect variable and treatment as fixed ef-
fect. Single-degree-of-freedom contrasts were made to
test the differences between treatments and their ap-
propriate solvent controls. Percentages of the contrast
estimates were then calculated as percentage mycelial
growth inhibitions resulting from the respective
treatments.

Fig. 2 Effect of temperature on the stability of elsinochrome A
(EA) in dry form or dissolved in water

3. Results

3.1. Effect of temperature on stability of EA

Exposure of dry EA to temperature as high as 100°C
(by boiling) for up to 2 It did not result in any signifi-
cant reduction in the amount of EA detected by HPLC
compared with the substance to which no treatment was
applied. Similarly, the amount of EA detected as HPLC
peak area did not change significantly when exposed
to temperatures of 3-27°C in the dark either in the dry
form for up to 112 days or in aqueous solution for up
to 70 days (Fig. 2).

3.2. Effect of white light on the stability of EA

When dry EA was exposed to continuous white light of
35 µmol s -1 m-2 at 20°C and 55 µmol s -1 m-2 at
27°C, amount of the substance detectable by HPLC
gradually declined with an estimated half-life of 165
days and 130 days, respectively (Fig. 3). When aque-
ous solution of EA was exposed to continuous white
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Fig. 3 Effect of white light on the stability of elsinochrome A
(EA) in dry form or dissolved in water

light of 55 Amol s 	 at 20 and 27°C, a more rapid
degradation with an estimated half-life of 32 days and
34 days respectively, was observed (Fig. 3). In con-
trary, EA samples kept in the dark either in dry form
or in solution at the same temperatures of 20 and 27°C
remained unchanged (Fig. 3).

3.3. Effect of natural sunlight on the stability of
EA

On exposure to the intense sunshine (1,420-1,640
rmol s-t m"2) days of 30 July to 5 August, 2004

(Fig. 4), EA was rapidly bleached (changed from red so-
lution to colourless solution) and degraded with a short
half-life of only 14 h (Fig. 5). However, EA samples
kept under the same weather conditions but sheathed
from sunlight by rapping in aluminium foil remained
unchanged (Fig. 5). In the second experimental run con-
ducted during the less intense sunshine days of 25 Au-
gust to 1 September, 2004 (Fig. 4), the half-life of EA
exposed to sunlight was 99 h, while the control sam-

Fig. 4 Intensity of mid-day sunlight reaching elsinochrome A
(EA) samples during first experimental period (30 July-5 Au-
gust) and second experimental period (24 August-12 September)
of investigation on effect of sunlight on EA stability

ples sheathed from sunlight also remained unchanged
(Fig. 5).

3.4. Effect of UV-A and UV-B on the stability
of EA

On exposure to UV-A and UV-B, the amount of EA de-
creased with half-lives of 78 days and 12 days respec-
tively compared with samples that were not exposed
(Fig. 6). In contrary, amount of EA samples kept under
the same temperatures but sheathed from UV-A and
UV-B remained unchanged throughout the 56 days of
the experiment (Fig. 6).

3.5. Bioassay of photo-degraded EA for toxicity

HPLC analysis of the EA samples after exposure
to sunlight for 10 days or sheathed from sunlight
for the same length of time, showed that there was
an estimated amount of 3.8 AM EA in the sam-
ples exposed to sunlight compared with an estimated
amount of 66.1 AM EA in control samples sheathed
from sunlight (Table 2). The mycelial growth of the
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Fig. 5 Effect of natural sunlight (daylight) on the stability of
elsinochrome A (EA) dissolved in water in an experiment con-
ducted at two different periods in the summer of 2004 in Zurich

fungus Trichoderma atroviride P1 was significantly
(p < 0.0001) inhibited even by the 8x diluted non-
illuminated EA compared with the respective 7% sol-
vent dilutions used as controls (Table 2). In contrary,
mycelial growth of T atroviride PI was the same on
agar plates incorporated with even the undiluted EA
solution that was exposed to and degraded by sunlight
as in the control plates without EA (Table 2).

4. Discussion

There has not been any previous report on the sta-
bility or fate of EA, or on the effect of environmen-
tal physical factors on the stability of any microbial
perylenequinone toxin. However, the ability of bacte-
ria to biodegrade cercosporin has been proven (Mitchell
et al., 2002). In absence of light, EA either in dry
form or as solution in water may remain stable even
at maximal air or soil temperatures that could nor-

Fig.6 Effect of UV-A and UV-B on the stability of elsinochrome
A in dry form

mally be found in temperate regions, particularly. Sim-
ilarly, the resistance of many other fungal toxins par-
ticularly, the more studied 'mycotoxins' (specifically
used for toxic chemicals produced by food poison-
ing fungi in the field or in storage) to high tempera-
tures has been well reported (Chu et al., 1975; Ben-
nett and Richard, 1996; Lowes et al., 2000; Yumbe-
Guevara et al., 2003). In fact, as a general rule, my-
cotoxins are stable during food preparation and are
not destroyed by cooking or baking. For instance,
Yumbe-Guevara et al. (2003) found that thermal treat-
ment of barley and wheat naturally contaminated by the
Fusarium mycotoxin deoxynivalenol (DON) in electric
convention oven, and gas-fired roaster showed no sig-
nificant effects at temperatures below 160°C after 60
min of processing. Tschen et al. (1997) also reported
that helvolic acid, an antibiotic fungal metabolite iso-
lated from the pathogen Sarocladium oryzae (causal
of rice sheath rot) was stable at temperatures of 22-
100°C. However, dramatic effect of temperature on
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the degradation of some chemicals in the environment
has also been reported (Vink and Vanderzee, 1995;
Sanz-Asensio et al., 1997; Anthanasopoulos et al.,
2004). For instance, Anthanasopoulos et al. (2004) re-
ported that the half-lives of parathion methyl at relative
humidity of 60 to 96% were 48 to 57 days at 0°C, 9.2
to 10.5 days at 20°C and 1.3 to 1.5 days at 40°C.

In contrary, the results shown in Figs. 3, 5 and 6
implicate light as a physical factor that could rapidly
degrade EA in the environment. The plots of EA con-
centration and light exposure time relationships fit a
first order rate equation of the type Y = a - bX (where
Y = concentration of EA residue after exposure, a
=concentration of EA at zero exposure time, b = degra-
dation rate constant, and X = time in day of exposure
to light). The correlation coefficient squared (R 2) for
degradation of EA in dilute aqueous solution particu-
larly, on exposure to white light, UV-B, and sunlight
ranged from 0.944 - 1.0 indicating a good fit and im-
plying that EA degradation under light corresponds to
a first order rate kinetics. Though our test system does
not exactly reflect the natural situation of EA excreted
in membranes of leaves (lipid environment), our re-
sults clearly show that photo-degradation of EA may
be faster when the substance is in aqueous solution than
when it is in dry form. Potentially, this is a good indi-
cation, since the toxin would normally be found in the
environment in wet condition, not in dry state.

Comparing the results obtained from experiments
conducted to show the effect of light, UV-A and UV B
and of natural sunlight on EA stability (Figs. 3,5 and 6),
it is clear that natural sunlight was more effective in
degrading EA than artificial white light and either of
the UV radiations. It is possible that EA photolysis
occurs at more than one wavelength range. Solar radi-
ation reaching the earth's surface having a wider wave-
length range (290 - > 800 nm) spanning through the
wavelengths of UV-B, UV-A and visible light up to
the infrared region (Zepp and Cline, 1977; Zepp et
al., 1985; Jensen-Korte et al., 1987; Niu et al., 2004;
Katagi, 2004) may provide better chance for EA pho-
tolysis. In this study, we did not diagnose what wave-
length component of the solar radiation was most im-
portant or responsible for the rapid photo-degradation
of EA. Zepp et al. (1995) reported that whereas visi-
ble sunlight (400-750 nm) hardly causes photochem-
ical reactions, solar UV B radiations (280-315 nm)
and partially solar UV-A radiation (315-400 nm) in-
duce various direct and indirect photochemical pro-

cesses in the top level of surface waters, which can lead
to a degradation of anthropogenic micro-pollutants.
However, the data shown in Figs. 3, 5 and 6 prob-
ably indicate that the quantum flux density of light
at the visible light region may be as important as
the UV-radiations in the photo-degradation process
of EA.

Only substances with UV-absorption spectra in the
wavelength range of sunlight reaching the earth's sur-
face can undergo direct interaction with sunlight and
therefore have a possibility for direct photolysis (Zepp
et al., 1985; Jensen-Korte et al., 1987). Jensen-Korte
et al. (1987) pointed out that most chemical pesticides
for instance, have UV-absorption spectra bands which
fade out in the border area of 280-290 nm or below,
hence practically, no direct photo-degradation is possi-
ble. EA is a photosensitizer, with molecular oxygen as
the ubiquitous quencher (Daub and Hangarter, 1983;
Daub and Ehrenshaft, 1993; 2000). Only its absolute
maximum (217 nm) and first side maxima (268 nm) of
the wavelength spectrum are outside the solar energy
wavelengths reaching the earth surface (Fig. 1). The
four side maxima at 338, 459, 528 and 568 nm (Fig. 1),
with 459 nm corresponding to the maximum wave-
length range (440-460 nm) of sunlight near the ground
(Katagi, 2004) suggest that EA would absorb solar en-
ergy in the UV-region reaching the earth surface, and
even stronger in the visible light region. Hence, EA
has a high possibility for direct photolysis under natu-
ral sunlight.

So far, there has not been any report of detection of
EA from bindweeds or other environmental samples in-
fected by S. convolvuli LA39 despite the indication that
in vitro production of the substance by Stagonospora
isolates of bindweeds is positively related to their
pathogenic potentials (Ahonsi et al., 2005). The impli-
cation is that, if EA is excreted in the environment by
this biocontrol fungus, the likelihood that such excre-
tion (probably in parts per billion) may accumulate to a
`level of concern' in the environment may not be greater
than zero. Further, the results of toxicity bioassay of
photo-degraded EA (Table 2) indicate that degradation
of EA does not result in any toxic lower molecular
weight chemical products. Though photolysis of EA as
a perylenequinone photosensitizer would be expected
to generate the toxic singlet oxygen species (Daub and
Hangarter, 1983; Daub and Ehrenshaft, 1993; 2000;
Ma et al., 2003), these reactive species have a half-life
as short as between 10-6 and 10-5 seconds (Stahl and

Springer



192
	

Environmentalist (2006) 26:183-193

Table 2 Growth of Trichoderma atroviride strain Pl as affected by photo-degraded (10 days daylight illuminated) and non-
degraded (non-illuminated) elsinochrome A (EA) in solution

Mycelial growth inhibition (%) n

Estimated EA
concentration per	 2 days after

	
3 days after

Treatment	 malt agar plate (,LM)a	 inoculation	 P > t°
	

inoculation	 P > t`

10 days sunlight illuminated EA (undiluted) 	 0.19 (3.8)

t0 days sunlight-illuminated EA (2 x diluted) 0.10 (1.9)

10 days sunlight-illuminated EA (4 x diluted) 0.05 (1.0)

10 days sunlight- illuminated EA (8 x diluted) 0.02 (0.5)

Non-illuminated EA (undiluted) 3.31(66.1)

Non-illuminated EA (2 x diluted) 1.65 (33.0)

Non-illuminated EA (4 x diluted) 0.83 (16.5)

Non-illuminated EA (8 x diluted) 0.41 (8.25)

	

0.0	 0.73	 0.0	 1.0

	

0.0	 0.30	 0.0	 1.0

	

0.0	 0.49	 0.0	 1.0

	

0.0	 0.73	 0.0	 1.0

	

43.4	 <0.0001	 41.7	 <0.0001

	

41.7	 <0.0001	 37.2	 <0.0001

	

40.9	 <0.0001	 34.4	 <0.0001

	

28.9	 <0.0001	 22.2	 <0.0001

'Values in parentheses represent original concentration of EA solution before mixing with agar as estimated by HPLC, while
values outside parentheses represent amount of EA present in malt agar—EA mixture per agar plate.
hCalculated as percentages of contrast estimates (in SAS) between growth in treatment and the appropriate solvent control level.
'Values are levels of significance of growth inhibition (contrast between treatment and solvent control).

Sies, 2002), and are therefore, not stable in the envi-
ronment.
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