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Abstract Growth factors have a significant impact not only on the growth dynamics
but also on the phenotype of chondrocytes (Barbero et al. in J. Cell. Phys. 204:830–
838, 2005). In particular, as chondrocytes approach confluence, the cells tend to align
and form coherent patches. Starting from a mathematical model for fibroblast pop-
ulations at equilibrium (Mogilner et al. in Physica D 89:346–367, 1996), a dynamic
continuum model with logistic growth is developed. Both linear stability analysis and
numerical solutions of the time-dependent nonlinear integro-partial differential equa-
tion are used to identify the key parameters that lead to pattern formation in the model.
The numerical results are compared quantitatively to experimental data by extracting
statistical information on orientation, density and patch size through Gabor filters.
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758 M. J. Grote et al.

1 Introduction

In recent years, therapies for damaged tissue have experienced great progress through
the possibilities offered by new methods of tissue engineering (Langer and Vacanti
1993). In particular, this emerging field holds great promise for the regeneration of
tissues with limited intrinsic repair capacity like adult articular cartilage. Most pro-
cedures pursued in tissue engineering start with a biopsy containing few cells, which
are expanded ex vivo making use of cytokines. Those are then injected into a patient
to grow tissue in vivo. Alternatively, scaffolds are used to provide mechanical support
and structure for the tissue to be grown in vitro before its implantation on the defect.
Those procedures may involve tissue replacement using donor tissue or autologous
cells for in vitro cell-culture expansion, in order to regenerate tissue that matches the
patient’s native tissue.

Much research has already gone into the impact of combinations of growth factors
on the proliferative capacity for a range of cell types, such as pancreatic endocrine
cells, neural progenitor cells, muscle-derived stem cells (Beattie et al. 1997; Carpenter
et al. 1999; Stewart et al. 2003; Deasy et al. 2002) and chondrocytes (Jakob et al. 2001;
Barbero et al. 2003, 2004, 2005). For muscle-derived stem cells and chondrocyte cell
cultures, mathematical models that establish characteristic kinetic parameters, such as
the fraction of dividing cells and mean cell division-time have been developed (Deasy
et al. 2002; Barbero et al. 2005). In addition, a logistic delay-differential model for pro-
liferating chondrocyte cells was used to further include the effect of contact inhibition
of proliferating cells upon confluence (Barbero et al. 2005).

Apart from the impact of growth factors on kinetic parameters, an important focus
of research concerns the effect of cytokines on the phenotype of individual cells and the
resulting organizational structure of the cell culture. Both will influence the mechanical
properties of the engineered tissue, which in the case of cartilage, is intended to sustain
tensile stresses and compressive loads, just as native tissue does (Sharma and Elisseeff
2004). Therefore, it is important to understand the underlying processes leading to the
formation of large-scale patterns of an evolving cell culture. Identifying the relevant
parameters that control these structures is the focus of the present study, combining
experimental and mathematical methods (Chipot and Edelstein-Keshet 1983).

In Barbero et al. (2005), adult human articular chondrocytes (AHAC) were isolated
from cartilage biopsies and then cultured in the presence of a combination of growth
factors. The individual cells assume a phenotype that closely resembles fibroblasts and
eventually self-organize into regions of aligned cells, making up the monolayer of the
cell culture at confluence (Barbero et al. 2003). This phenomenon has been observed
before for various cell types. In principle there are a number of mechanisms that
may control the formation of such patterns, ranging from chemical, adhesive or other
mechanical gradients, see, e.g. Trinkaus (1985) for an early but instructive discussion
in the context of morphogenesis.

Even in the absence of exterior influences, however, Elsdale and Bard (1972) dis-
covered that proliferating fetal lung fibroblasts form parallel arrays during in vitro
cell expansion. Similar results were found for BHK fibroblasts in the experimental
study by Erickson (1978). Elsdale and Bard (1972) argued that the intrinsic prop-
erty of fibroblasts is to move, unless prevented to do so by the environment, and
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Dynamic formation of oriented patches 759

hence that patterns form solely due to direct cell-cell interactions to enable maximal
motility. Under the assumption of contact inhibition, Erickson (1978) concluded from
a series of cell-cell contact experiments that if the lamellipodium of a cell in ruf-
fling mode contacts another cell at a certain angle, the direction of motion changes
depending on that part of the leading edge of the lamellipodium which made contact
and where ruffling is stopped. This mechanism is employed by Erickson to explain
the existence of a critical angle above which cells cease to align. This critical angle
seems to differ for different cell types, e.g. about 20◦ for fetal lung fibroblasts and
approximately 50◦ for BHK cells. For fibroblasts the leading edge of the lamellipo-
dium is much narrower than for the BHK fibroblasts. Hence, except for rather narrow
contact events, motion will halt (else cells may even criss-cross other cells). More-
over, similar behaviour is observed for contact events of already established arrays
of aligned cells. This behaviour is eventually reflected in the resulting patterns at
confluence.

Mathematical modeling of the dynamical process of array formation of aligned
cells started with the work by Edelstein-Keshet and Ermentrout (1990). The con-
tinuum models derived for pattern forming cell cultures assume random spatial and
orientational distributions of the cells that are attracted (repulsed) and change their
direction of motion in response to cell–cell interactions. Here the cell density depends
on time, two-dimensional physical space and the angle of orientation. The range of
interaction is kept small in order to model the local character of cellular interac-
tions. Apart from terms modeling the random motion in physical and angular space,
the model includes a term that describes the probability of alignment of cells as a
response to cell–cell contact, which vanishes outside the range of angles known to
lead to alignment. In subsequent articles the resulting system of integro-differential
equations for free cells and cells already bound to an array are discussed in various
limiting cases and analysed with respect to their stability about the homogeneous state
(Mogilner and Edelstein-Keshet 1995). Similar models were also used for other pattern
forming processes such as swarming or the dynamics of actin binding fibers (Mogilner
and Edelstein-Keshet 1995; Mogilner et al. 1996; Civelecoglu and Edelstein-Keshet
1994).

Here we extend these models by including time-dependent logistic growth to
account for the later stages of in vitro chondrocyte cell expansions. In fact, one impor-
tant aspect of our study is to enable a direct comparison with our experimental results in
Sect. 2.1. The analysis of the experimental results and, in particular, the classification
of the cells within angular space is realized by using two-dimensional Gabor filters
(Daugman 1985) for the experimental images and is described in Sect. 2.3. In Sect. 3,
we present our mathematical model, which consists of a time-dependent nonlinear in-
tegro-partial differential equation. We use standard finite differences for the numerical
discretization in space, for the time discretization we use explicit Chebyshev methods
that circumvent the crippling stability restrictions of standard explicit Runge–Kutta
methods—see Appendix. In Sect. 4, we investigate the stability of the solution via a
linear stability analysis about the homogeneous state and compare those findings to
the results of the full nonlinear model. Finally, quantitative comparisons with experi-
mental data are performed in Sect. 5.
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2 Biological background

2.1 The impact of growth factors

Depending on the cell type and the specific growth factors used, cytokine-induced pro-
liferation of cells can generally be characterized by one or more parameters, such as a
shorter cell division time, a shorter time until first cell division, or lower percentage of
remaining quiescent cells (Deenick et al. 2003; Deasy et al. 2002; Barbero et al. 2005).
Those key parameters can be obtained, for instance, by combining a logistic delay-
differential model with the results from specific micro-colony experiments (Barbero
et al. 2005). From that model, Barbero et al. established in the case of adult human
articular chondrocytes (AHAC) expansion in a medium supplemented with the growth
factor combination TGFβ-1, FGF-2 and PDGF-BB (TFP) that the time of first cell
division is about 1.4 times shorter and the percentage of quiescent cells about 1.7
times smaller than in the absence of TFP.

Further characteristics observed in experiments (Barbero et al. 2005) concern the
elongated shape the cells assume when cultured in a medium with TFP. During the sig-
moidal growth of the cell culture, individual cells are initially oriented at random. As
the population approaches confluence, cells tend to locally align and form coherent
structures. Those spatial patterns appear highly irregular while individual patches
greatly vary both in shape and size, without clear boundaries between them (see
Fig. 1).

2.2 Cell culture: isolation and expansion

To monitor patch formation and obtain quantitative experimental data on diffusion
constants, we track the motion of an ensemble of individual AHAC cells up to conflu-
ence. Here full-thickness human articular cartilage samples were collected from the
femoral lateral condoyle of two individuals (patient A: male, 18 years old, patient B:
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Fig. 1 AHAC cultured with TFP at confluence, day 9 (left). Sigmoidal evolution of the number of cells
versus time (right)
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male, 66 years old), with no history and no radiographic signs of joint disease, after
informed consent and in accordance with the local Ethical Commission. Adult human
articular chondrocytes (AHAC) were isolated using 0.15% type II collagenase for
22 h and cultured for one passage in Dulbeccos modified Eagles medium (DMEM)
containing 10% foetal bovine serum, 4.5 mg/ml D-glucose, 0.1 mM nonessential
amino acids, 1 mM sodium pyruvate, 100 mM HEPES buffer, 100 U/ml penicillin,
100 µg/ml streptomycin, and 0.29 mg/ml L-glutamine and supplemented with the
1 ng/ml of Transforming Growth Factor-b1 (TGF-b1), 5 ng/ml of Fibroblast Growth
Factor-2 (FGF-2) and 10 ng/ml of Platelet-Derived Growth Factor-BB (PDGF-BB)
(growth factor medium, TFP) in a humidified 37◦C/5% CO2 incubator as previously
described (Barbero et al. 2005). When cells were approximately 80% confluent, first
passage (P1) cells were rinsed with phosphate buffered saline, detached using 0.05%
trypsin/0.53 mM EDTA and frozen in complete medium containing 10% dimethyl-
sulfoxid. AHAC after thawing were then used for the studies described below.

Monitoring of cell expansion until confluence

AHAC were re-plated in two wells of a 6 well plate at a density of 10,000 cells/cm2

and cultured in growth factor medium up to 10 days in a humidified 37◦C/5% CO2
incubator with daily culture medium change. AHAC cultures were monitored by phase
contrast microscopy and pictures were taken from random areas of the wells each day.

Study of cell movement

AHAC were re-plated in a six-well plate at different densities, which were 200, 3,000,
10,000, 15,000 and 20,000 cells/cm2, and cultured in growth factor medium for 1 day
in a humidified 37◦C/5% CO2 incubator. Next, the plate was transferred to the incu-
bator of the Olympus system. From a time-lapse microscope we obtained a sequence
of frames which we used to monitor cell motion. Snapshots were taken at 15 min
intervals, which corresponds to an average travel distance of 9 µm, to provide suf-
ficient space-time resolution compared to the typical length of a cell (50 µm). With
the software analySISD we performed a manual tracking in all five wells (Fig. 2) to
follow about 100 cells for each density, for 12 h, a duration that allowed us to neglect
cell doubling.

Spatial diffusion

To estimate the spatial diffusion, we performed experiments at various densities
(i.e. 200, 3,000, 10,000, 15,000, 20,000 cells/scm) and for each density we manu-
ally tracked individual cells in three different areas of the well. Assuming Brownian
motion, the diffusion coefficient D is related to the mean square displacement, 〈X2〉,
through the relation 〈X2〉 = 2Dt . A linear least-squares fit of the time evolution of the
mean square distance then yields D. From those estimates at varying density, shown
in Table 1, we obtained the constant average diffusion coefficient D = 0.29 µm2/s.
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Fig. 2 Tracking of individual cells at density 20,000 cm−2

Table 1 Estimates of the diffusion constant D at three different locations inside the well and at varying
density, together with the mean values ± SD

Cells/scm 200 3,000 10,000 15,000 20,000

Coeff D1 0.31 0.30 0.37 0.31 0.31

Coeff D2 0.18 0.23 0.32 0.30 0.26

Coeff D3 0.23 0.40 0.34 0.30

Mean ± SD 0.24 ± 0.07 0.26 ± 0.04 0.36 ± 0.04 0.31 ± 0.02 0.30 ± 0.03

2.3 Image analysis of alignment

Standard image segmentation algorithms proved unable to distinguish between indi-
vidual cells and the background. Thus to identify patches of alignment and estimate
their size quantitatively, both in the numerical simulations and in the experiment, we
proceed in two steps. First, we apply a special class of filters to images such as Fig. 1
that reveal the dominant local axis of orientation. Second, we estimate the average
size of cell clusters with a common orientation through a discrete statistical measure,
which is then used to compare numerical simulations with experiments.

To classify cells according to their orientation, we opt for Gabor filters (Gabor
1946; Forsyth and Ponce 2003) which consist of a local Gaussian kernel of width σ ,
multiplied by a plane wave with distinct orientation θ and frequency ω:

G(x ′, y′) = exp

{
−1

2

((
x ′

σ

)2

+
(

y′

σ

)2
)}

cos(2πωx ′)

x ′ = x cos(θ) + y sin(θ), y′ = y cos(θ) − x sin(θ),
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Fig. 3 Two-dimensional Gabor filters with frequency ω = 0.08, scale σ = 12, and orientations θ =
0, π/4, π/2

Fig. 4 The effect of Gabor filtering when applied to Fig. 1. The color indicates the dominant local direction
of alignment (color figure online)

where unit length in x (or y) corresponds to a single pixel. The typical width σ = 12
and frequency ω = 0.08 for an array of aligned cells were determined a priori and
remained fixed in all further analysis (see Fig. 3). Hence Gabor filters locally respond
to patterns with spatial frequency ω and orientation θ , within a subregion of size σ .
Their two-dimensional extension is commonly used in image analysis and computer
vision; they were also proposed as a model for the spatial summation properties of
simple cells in the visual cortex (Daugman 1985).

To any image we apply a suite of Gabor filters for varying orientation at 45◦ inter-
vals and assign to each pixel location (i, j) a distinct color ci j that corresponds to
the highest filter response. Hence ci j reflects the dominant orientation at location
(i, j), and cells aligned with that particular orientation are thus revealed, as shown in
Fig. 4.

Next, we estimate the typical cluster in a filtered image, such as in Fig. 4, either
from experiment or numerical simulation. To do so, we assign to each pixel (i, j) the
value pi j (s) = 1 if it belongs to a cluster of size s, that is if at least 50% of the points
within distance s are of the same color; else, we set pi j (s) to zero. Summation over
all pixels yields an estimate r(s) of the number of pixels belonging to a cluster of
size s as
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Fig. 5 Estimate of cluster size from two-dimensional synthetic texture images (top left), with correspond-
ing cluster size function r(s) below, as defined in (2.1) (bottom left). The intersection of r(s) with the s-axis
yields a robust estimate of the cluster size, even in the presence of added random noise (right)

r(s) =
∑

i j

pi j (s), pi j (s) =
{

1
0

. (2.1)

The intersection of r(s) with the s-axis yields a reliable estimate for the typical patch
size, i.e. the largest cluster size, as illustrated with synthetic black and white data in
Fig. 5. Moreover, comparison of the left and right frames in Fig. 5 demonstrates that
the intersection of r(s) with the s-axis is rather insensitive to added random noise.

3 Mathematical model

3.1 Formulation

Starting from the pioneering works of Edelstein-Keshet and Ermentrout (1990) and
Mogilner and Edelstein-Keshet (1995, 1996), we now build a continuum model to
describe the time evolution of a cell population of density C(θ, x, t) in angle θ and
two-dimensional space x = (x, y) at time t . During initial times the cells are essentially
free to move in space and also turn their axis of orientation at random, similarly to fibro-
blasts. As the population density increases, however, cells come into contact. In Elsdale
and Bard (1972), Edelstein-Keshet and Ermentrout (1990) and Erickson (1978) the
underlying mechanism responsible for the directional motion and the resulting pattern
formation is explained solely on the basis of single cell contact events for the case
of related fibroblast cell cultures. This mechanism is a form of contact inhibition that
cells experience when their lamellipodium touch. Indeed whenever mutual contact
occurs within a small angle and hence only a portion of the lamellipodium touches,
the cells alter their orientation accordingly and align, as observed by Elsdale and Bard
(1972).

Following Mogilner and Edelstein-Keshet (1996) we now let W (x − x′, θ − θ ′)
denote the rate at which a cell at x′ and θ ′ moves to x and rotates to θ due to the impact
of any surrounding cells. The angular velocity associated with this motion is then
given by the gradient of W at angle θ and position x, due to the cumulative interaction
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Fig. 6 The angular and spatial cellular interaction kernels from (3.3), (3.4): W1(θ) with critical angle
α = 50◦ (left), and W2(x) (right)

with all other cells:

∂

∂θ
(W 	 C)(x, θ, t) := ∂

∂θ

∫
W (x − x′, θ − θ ′)C(θ ′, x′, t) dθ ′dx′. (3.1)

The gradient of the associated flux C ∂θ (W 	 C) then induces convective motion
towards locations of higher concentration which corresponds to aggregation in space
and alignment in angle; both compete with the inherent tendency of cells for random
motion modelled by diffusive terms.

Next, the probabilities to align or to aggregate are assumed independent of each
other, that is

W (x − x′, θ − θ ′) = W1(θ − θ ′)W2(x − x′). (3.2)

Moreover, experiments suggest that the probability of alignment W1 decreases as the
relative angle between neighboring cells increases (Elsdale and Bard 1972), whereas
beyond a critical angle α cells no longer align; hence, W1 must be positive and non-
increasing for 0 ≤ θ ≤ α but become negligible for α < θ ≤ π . Since clockwise
and anticlockwise turns are equally probable, W1 must also be even. For simplicity,
we assume that W1 is Gaussian with mean zero and standard deviation α/2; other
choices are possible and discussed in Edelstein-Keshet and Ermentrout (1990). After
normalization, we thus obtain (Fig. 6)

W1(θ) = 1

α
√

2π
e
− 2θ2

α2 . (3.3)

Since the strength of cell-to-cell interactions decreases with growing distance
(Edelstein-Keshet and Ermentrout 1990), we again choose a Gaussian kernel for W2,
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W2(x) = 1

2σ 2π
e− |x|2

2σ2 , x ∈ [−Lx , Lx ] × [−L y, L y], (3.4)

where Lx and L y denotes the size of the domain.
Our previous experiments indicate that the growth rate slows down, as the cell

density increases locally in space, and that it eventually vanishes when the carrying
capacity is reached because of limited space (Barbero et al. 2005). Therefore we model
cell growth by a logistic term with growth rate ρ, where the growth rate reduction is
determined by the population density at x and t , that is by the marginal probability
density

∫ π

−π
C(t, x, y, θ)dθ . The full logistic model, including the divergence of the

drift of the cell population and random motion, previously derived in Mogilner and
Edelstein-Keshet (1996), can then be written as

∂C

∂t
= ε1

∂2C

∂θ2 + ε2

(
∂2C

∂x2 + ∂2C

∂y2

)

−γ
∂

∂θ

(
C

[
∂W

∂θ
∗ C

])
− γ

{
∂

∂x

(
C

[
∂W

∂x
∗ C

])
+ ∂

∂y

(
C

[
∂W

∂y
∗ C

])}

+ρ C

⎛
⎝1 − Lx L y

K

π∫
−π

C(t, x, θ)dθ

⎞
⎠ . (3.5)

where ε1, ε2 and γ denote the diffusion and drift coefficient, respectively. In addi-
tion we note that upon using the definition (3.1) and functional forms (3.2)–(3.4),
integration by parts yields the above drift terms.

4 Stability

Linear stability analysis

Before investigating numerically the emergence of coherent patterns in the full non-
linear model (3.5), it is instructive to investigate the stability properties of the homo-
geneous state, i.e. the state, where the density of cells in angular and spatial space is
equally distributed. Linear stability analysis characterizes the effect of small pertur-
bations on the early time evolution in angular and spatial space. We therefore expect
good agreement with the early stages of the numerical solution of the fully nonlinear
model (3.5).

If ρ = 0, the homogeneous state C ≡ C̄ is an exact solution of (3.5), since we then
have W 	 C = C . In this case, linearization of (3.5) about C ≡ C̄ using the ansatz

C(x, θ, t) = C + δ C ′
n,q(x, θ, t), (4.1)

where the amplitude of the perturbation δ � 1 is small, results in an eigenvalue
problem for the integro-differential operator previously analyzed in Edelstein-Keshet
and Ermentrout (1990) and Mogilner and Edelstein-Keshet (1996). In particular,
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Mogilner and Edelstein-Keshet (1996) showed for an unbounded spatial domain that
the functions

uq1(x) = eiq1x , uq2(y) = eiq2 y, zn(θ) = einθ , q1, q2 ∈ R (4.2)

form a complete set of orthogonal eigenfunctions for the spatial and angular Laplace
operator with eigenvalues q1, q2 for the spatial and n = 0, 1, 2, . . . for the angular dif-
fusion operator, respectively. In addition, they proved that (4.2) are not only the eigen-
functions of the Laplace operators, but also of the convolution operators W1∗ and W2∗,
where the eigenvalues are the Fourier coefficients denoted by Ŵn and Ŵq = Ŵq1 Ŵq2 ,

where q =
√

(q2
1 + q2

2 ) and

Ŵn = 1

π

π∫
−π

W1(θ)e−inθ dθ, Ŵq j =
Lx j∫
0

W2(x j )e
−iq j x j dx j , (4.3)

where j = 1, 2 and x1 = x, x2 = y. From the normal modes ansatz

C ′
n,q (x, θ, t) = eλt uq1(x) uq2(y) zn(θ) (4.4)

the stability of the homogeneous state is then found from the solution of the equation

λ = −r + C s , (4.5)

where

r =
(
ε1n2 + ε2q2

)
and s = Ŵq Ŵnγ

(
n2 + q2

)
(4.6)

for all q1, q2 and n. Hence the condition for instability of the homogeneous solution is
given by λ > 0. Thus, any increase in the diffusion coefficients ε1, ε2 tends to stabilize
the system, while the cell-to-cell interaction terms Ŵn and Ŵq tend to destabilize the
system, for increasing values of n, q, unless Wn is zero. Moreover, for any particular
values of ε1, ε2, n, q, the constant state C̄ becomes unstable at sufficiently high cell
density, unless Ŵn or Ŵq vanishes.

For our extended model with logistic growth, where ρ �= 0, the homogeneous state
about which we linearize is now time-dependent, due to the slow mass increase. Thus
we make the ansatz

C(θ, x, t) = C(t) + δ C ′
n,q(θ, x, t) (4.7)

with C ′
n,q = Ĉn,q(t)ei(qx+nθ), since now the standard normal modes ansatz may lead

to non-normal linear systems with non-orthogonal eigenfunctions (see Trefethen et al.
1993), for instance, for a more detailed discussion of such problems in the context
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of hydrodynamics. Our slightly more general ansatz for C(θ, x, t) then leads to the
following differential equation for Ĉn,q

dĈn,q

dt
=

[
−(ε1n2 + ε2q2) + C(t) Ŵq Ŵnγ (n2 + q2) + ρ

(
1 − C(t)

κ

)]
Ĉn,q(t),

(4.8)

where

C(t) = κ

1 + C1κe−ρt
(4.9)

is the solution of the leading order problem and represents the slowly growing mass
until the carrying capacity is reached. The constant C1 = 1/C(0)−1/κ , where C(0) is
chosen to be the same as C̄ in the original problem and we denote κ = K/(2π Lx L y).
Hence, the growth rate is given here by

ln(Ĉn,q(t)) = (−r + sκ)t + s κ − ρ

ρ
ln

(
1 + C1κ e−ρt) + const. (4.10)

We note that now the additional parameter K , the carrying capacity, will have a decisive
impact on the stability properties of the solutions.

Comparison of the full model with linear stability

To compare the results from linear stability analysis to those from the numerical
simulation of the full problem, we choose as an example the simple case for which
ρ = 0 and γ = 1. We set the (constant) base state C̄ = 25, let ε1 = 0.0025 and
ε2 = 0.5 so that for n > 0 and q = 0 the base state is unstable according to linear
stability analysis. Now, we determine nmax such that the growth rate is maximal, i.e.
σmax = σ(nmax , qmax ) (here q = qmax = 0). Thus, we can find nmax which is at
most O(1) with a σmax not too small, together with the corresponding eigenfunction
C ′

n,q and a corresponding asymptotic growth rate λ.
Next, we initialize our nonlinear simulation with the initial data

C̄ + δC ′
n,q , such that δ ≤ min

(
0.1, 0.1

σmax

n2
max

)

to ensure that the correction term does not invalidate the original assumptions of linear
stability analysis.

In Fig. 7, log ||C || with

||C || = maxθ,x,y |C(θ, x, y, t) − C̄ |
δ

is shown versus t , both for the solution of the fully nonlinear model and for that from
linear stability. Note that the growth rate of the linearized problem for the extended
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Fig. 7 Comparison of the growth rates for the fully nonlinear and the linearized models. Left ρ = 0: the
dashed line is λ t , where λ is given by the solution of the linear stability problem (4.5). The solid curve
denotes ln(||C ||). Right, ρ = 0.2: the dashed line shows the long-time behaviour of the solution of (4.10).
The solid curve results from the solution to the full problem (3.5)

model, i.e. where ρ �= 0, now also depends on time. Once initial transients have died
out, both models agree, as expected. As time progresses, however, the dynamics of the
full model deviate from those of the linearized problem. Thus, the evolving patterns
may deviate from those predicted by linear stability theory, in particular at later times,
as the cell culture reaches confluence, depending on parameter values.

In Fig. 7 we show a comparison of the growth rates for the fully nonlinear and
the linearized models, with the above set of parameters. This example illustrates the
following generic behaviour. For ρ = 0, we observe agreement right from the begin-
ning, since the perturbation corresponds to an exact eigenfunctions, as in the linear
stability problem. For the extended model with ρ = 0.2 and K = 1,220, for instance,
we observe that the long-time behaviour of the solution of (4.10) compares well with
the solution to the full problem (3.5). Eventually though, the nonlinear terms come
into play and the solution of the full model deviates from the prediction of the linear
model.

5 Comparison of simulations with experiments

5.1 Parameter values

To compare computational results from any mathematical model with those from
experiment, it is crucial to have accurate estimates of the parameter values. While
the values of most parameters were determined quite accurately from experiment,
uncertainties about some of them remained.

In particular, the estimation of the spatial diffusion coefficient ε2 was performed by
hand following the positions of the moving cells. From the experiment (Table 1), the
average spatial diffusion coefficient ε2 = 0.29 µm2/s = 0.025 mm2/days. Because
cells do not change their orientation in a continuous way, ε1 could not be deter-
mined from those measurements, mainly because cells also contract, become almost
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Fig. 8 Snapshots of the cell density at different times. At each point (x, y) in the computational domain,
the marginal angular density of C is shown, that is the number of cells at position (x, y) and time t ; the
color represents the angle for which C(x, y, θ, t) is maximal (color figure online)

spherical, and elongate randomly, excluding the determination of a well-defined axis
of orientation. In our numerical simulations, we chose values for the angular dif-
fusion coefficient ε1, which is the mean square displacement in angular space per
day, to range from 0.025 (Figs. 8, 9, 11) to 0.0025 (Fig. 10). The values for ρ and
K are always given by 1.2 and 4,000 cells/ mm2 and have been determined previ-
ously in Barbero et al. (2005). They were used as initial guess for a nonlinear least-
squares parameter fit to the time evolution of the total mass. The size of the domain
Lx = 3.75 mm and L y = 2.75 mm was chosen to match the area observable under the
microscope. In Elsdale and Bard (1972), the critical angle α was obtained for fibro-
blast cultures by inspection of relative angles between cells at confluence. Because
of the strong similarity between cytokine cultured chondrocytes and fibroblasts, we
used the same value here, i.e. α = 20◦ for our simulations, except in Fig. 11, where
we also include results for critical angles α = 40◦ and 60◦. Since chondrocytes
only attach when they are very close to each other, we chose the standard deviation
σ = 0.01 mm for the spatial interaction kernel to be about the length of a single cell.
The value of γ = 0.0005 essentially sets the convective time scale and was obtained
by fitting the cluster size from the simulation to that obtained from experiment (see
Sect. 2.3).
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Fig. 9 Comparison of simulation (bottom) with experiment (top). Here color indicates the local dominant
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(bottom) are shown on the right (color figure online)
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Fig. 10 The cell density is shown at confluence for the smaller angular diffusion coefficient: ε1 = 0.0025.
Left the dominant cell orientation; right the cluster size function r(s)

5.2 Numerical simulations

Starting from a random initial distribution at t = 0, we solve (3.5) using the numeri-
cal method described in Appendix A and the parameter values listed above. In Fig. 8,
snapshots of the cell density at different times are shown. Here at each point (x, y) ∈ �
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Fig. 11 The cell density is shown at confluence for larger critical angles: α = 400 (left) and α = 600

(right). The corresponding cluster size functions r(s) are shown below

the marginal spatial cell density of C , that is the integral of C(x, y, θ, t) over θ , is dis-
played. The color used at any point (x, y) corresponds to the angle, where C(x, y, θ, t)
is maximal; hence, it represents the local dominant orientation of the cells. We observe
that the number of cells increases uniformly throughout the computational domain �,
yet past day 6 several patches of cells with a common orientation emerge and settle in
a stationary configuration by day 9; note that the total number of cells hardly changes
beyond day 6 anymore.

In Fig. 9 we compare the simulation with the experimental data using Gabor fil-
ters for post-processing both (see Sect. 2.3). In doing so the spatial resolution of the
microscope image was coarsened to match that of the simulation, while the angular
dependence over [0, π) was divided into four classes, that is sub-intervals of identi-
cal lengths, each one assigned with a different color. The cluster size (intersection of
r(s) with the x-axis, see Sect. 2.3) was calculated for three samples from the same
donor. By fitting the average cluster size from the simulation to that from experiment,
between 15 and 20 pixels or about 0.5mm, we determined the standard value of γ , as
shown in Fig. 9.

Once the model has been validated through comparison to experiment, it is instruc-
tive to change the value of individual parameters to study their effect on the size and
shape of the patterns at confluence. Thus we can also evaluate the parameter sensitivity
of the model and address the uncertainties associated with some of the values obtained
from experiment. For instance, the reduction of the angular diffusion coefficient ε1
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has little effect on the size of the patterns, but the interfaces appear more well-defined
in contrast to the standard case: compare Figs. 9 and 10. An increase in the critical
angle α instead, results in larger and increasingly irregular patterns, while the uniform
spatial population density is maintained, as shown in Fig. 11.

6 Concluding remarks

Starting from the classical models by Mogilner and Edelstein-Keshet (1996), we have
developed a mathematical model for proliferating chondrocytes, cultured with spe-
cific growth factors, by including logistic growth and studied the patterns emerging at
confluence through experiments and simulation. Most parameters in the model were
obtained directly through independent experiments or from our previous micro-colony
tests (Barbero et al. 2005). Guided by these parameter studies we arrived at reason-
able parameter values for comparison to the experimentally observed cell patterns at
confluence. Linear stability analysis was used as guidance through the range of unsta-
ble parameter values, as their interplay leads to pattern formation; their improved
understanding and control will be useful in the future design of engineered tissue.

For the time integration of the nonlinear integro-partial differential equation, we
opted for Runge–Kutta–Chebyshev methods which permit much larger time steps than
standard Runge–Kutta methods while nonetheless remaining fully explicit. Quantita-
tive comparison of experimental data with the numerical simulations was achieved in
two steps. First, we visualized the orientation and alignment of the cells with Gabor
filters. Then, we determined the average cluster size of the cell population both in the
simulation and the experiment.

From the stability analysis and the simulations, we were able to determine key
parameters for pattern formation. In particular, we find that the total number of domi-
nant directions of alignment in a cell culture is mainly regulated by the critical angle,
below which the probability that cells align is high. Indeed, smaller values in the
critical angle α for cell–cell interactions lead to arrays of aligned cells, as observed in
experiments, whereas larger values lead to a single dominant direction of alignment.
Regarding the diffusion and drift coefficients, both tend to destabilize the homoge-
neous state and thereby lead to pattern formation. For fixed diffusion coefficients, the
average pattern size typically scales with the drift coefficient, γ , although the number
of dominant directions of alignment remains identical, as it is regulated by the critical
angle.

While we think that continuum models in combination with some local experimen-
tal analysis yields convincing evidence to capture the large scale long-time structures
of proliferating cell cultures, our work also leaves a number of open tasks and ques-
tions. Apart from the study of aggregation patterns, which has been left open, the
experimental determination of the remaining parameters, in particular drift parame-
ters but also angular diffusion coefficients will be an important future task. We believe
that in principle more sophisticated image analysis and segmentation software would
allow the automatic tracking of larger number of cells and yield both more refined
and improved statistics. Through a new set of experiments, more experimental studies
such as those by Elsdale (1973) are needed in order to establish more accurately the
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critical angle for cell alignment for the particular cells under consideration without
relying on similar cases from the literature.
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useful comments and suggestions.

Appendix A: Numerical methods

Here we describe the numerical discretization in space and time for solution of (3.5).
We restrict the computations to a small subregion � inside the experimental well.
Thus, boundary effects due to the finite size of the well are negligible and we may
impose periodic boundary conditions at the boundary of the computational domain
� = [0, Lx ]×[0, L y]. For the numerical approximation of (3.5) all spatial derivatives
are approximated by second-order centered finite differences on a regular grid. The
convolution integrals are computed by trapezoidal quadrature, which yields exponen-
tial convergence for periodic analytic functions (Kress 1999). Hence the numerical
discretization error is second-order accurate in space and angle.

For parabolic problems standard explicit Runge–Kutta schemes impose rather strin-
gent restrictions on the time-step for numerical stability, typically �t ≤ C�x2, and
hence are notoriously inefficient (Hairer and Nørsett 1987). In contrast, implicit meth-
ods waive those time-step restrictions but would require here the solution of a nonlin-
ear integro-differential boundary value problem at every time step, a rather high price
to pay.

To avoid the above mentioned difficulties, we opt for Runge–Kutta–Chebyshev
methods instead, which are fully explicit while allowing larger time-steps. Instead
of maximizing the accuracy, RK–Chebyshev methods maximize the interval [−�, 0]
of the negative real axis contained in the stability region (Hairer and Nørsett 1987;
Markoff 1916). Because � is proportional to s2, for a fixed number of stages, s, any
reduction of the mesh size �x can be counterbalanced by an equivalent increase of
the number of stages while keeping the time-step �t fixed. Therefore RK–Chebyshev
methods circumvent the crippling quadratic increase in the number of time-steps of
traditional RK methods that results from any linear reduction of the mesh size (Franklin
1959; Gouillou and Lago 1960; Yuan 1958).

For instance, the first-order s-stage RK–Chebyshev method for the initial-value
problem

y′(t) = f (y), y(0) = y0, (A.1)

is given by

g0 = y0, (A.2)

g1 = y0 + (1/s2)�t f (g0), (A.3)

gi = (2/s2)�t f (gi−1) + 2gi−1 − gi−2, (A.4)

y1 = gs . (A.5)
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Fig. A.1 Stability regions: fourth-order RK4 (top) and first-order 3-stage Chebyshev methods without
damping (middle) and with damping (bottom). The stability regions of the RK–Chebyshev method is about
nine times larger then that of the standard RK4

In Fig. A.1 we observe that the stability regions of the 3-stage RK–Chebyshev
method is about nine times larger than that of the standard fourth-order RK4. Fol-
lowing Hairer (2002), we eliminate the two intersections where the stability region
shrinks to zero by adding small damping of size ε > 0. Let ε > 0 and Ts(x) denote the
Chebyshev polynomial of degree s (Abramowitz 1964). Then the damped
RK–Chebyshev method for (A.1) is given by

g0 = y0, (A.6)

g1 = y0 + �t (w1/w0) f (g0), (A.7)

gi = 1

Ti (w0)

[
2w1�tTi−1(w0) f (gi−1) + 2w0Ti−1(w0)gi−1 − Ti−2(w0)gi−2

]
,

(A.8)

y1 = gs . (A.9)

where

Rs(z) = 1

Ts(w0)
Ts(w0 + w1z), w0 = 1 + ε

s2 , w1 = Ts(w0)

T ′
s (w0)

. (A.10)

As illustrated in Fig. A.1 for ε = 0.05, the stability domain is now slightly shorter (by
a factor 4εs2/3), but its boundary remains at a safe distance form the real axis (Hairer
2002).

When the right-hand side in (A.1) explicitly depends on time, the terms involving
f (gi ) in (A.6)–(A.9) are replaced by f (gi , ti ). The precise times ti ∈ [0,�t] where f
needs to be evaluated are determined by augmenting (A.1) with the trivial differential
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equation,

z′(t) = 1, z(0) = t0 (A.11)

and applying (A.6)–(A.9) to it. Thus for t ∈ [0,�t] we have

t0 = 0, (A.12)

t1 = �t (w1/w0), (A.13)

ti = 1

Ti (w0)

[
2w1�tTi−1(w0)) + 2w0Ti−1(w0)ti−1 − Ti−2(w0)ti−2

]
, (A.14)

and so forth during subsequent time steps.
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