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Abstract In several recent papers, the heat transfer characteristics of nanofluids have been investigated by
simply replacing the transport coefficients of the base fluid by the effective transport coefficients of the nano-
fluids. The present note emphasizes, however, that the governing equations of these homogeneous nanofluid
models (in which the velocity-slip effects of the nanoparticles are neglected) can be reduced with the aid of
elementary scaling transformations to the respective equations of the regular fluids. Thus, the corresponding
nanofluid results can be recovered from the solutions of already solved regular problems by simple arithmetic
operations, without any additional research effort. This feature is illustrated here by the specific examples of
the classical Blasius and Sakiadis forced convection heat transfer problems.

1 Introduction

A “nanofluid” consists of a usual liquid, referred to as “base fluid”, in which solid particles of submi-
cronic size of 1–100 nm (“nanoparticles”) have been dispersed. The nanofluids possess a significantly higher
thermal conductivity and single-phase heat transfer coefficients than the respective base fluids. According to the
nonhomogeneous equilibrium model proposed by Buongiorno [1], the abnormal increase of the heat transfer
characteristics of the nanofluids is due to the velocity-slip of the nanoparticles with respect to the base fluid. The
two main effects responsible for the velocity-slip are the Brownian diffusion and the thermophoretic diffusion
of the nanoparticles [1]. Without taking into account these two effects, the enhanced heat transfer character-
istics of the usual nanofluids cannot be understood. Accordingly, several classical heat transfer problems in
clear fluids [2–6] as well as in porous media [7–9] have been reconsidered recently for the case of nanofluids
using the nonhomogeneous equilibrium model of Boungiorno [1]. In contrast to the investigations [2–9] based
on the nonhomogeneous model [1], in the current year in a number of papers [10–17] homogeneous nanofluid
models have been used in which all the velocity-slip effects of the nanoparticles are omitted. The homoge-
neous nanofluid models adopted in [10–17] are based on the classical balance equations of the regular fluids
in which the transport coefficients are simply replaced by the effective transport coefficients of the nanofluids.
The aim of the present note is to show that the governing equations of the homogeneous nanofluid models
can be reduced with the aid of elementary scaling transformation to the respective equations of the regular
fluids. Accordingly, the nanofluid results obtained from the homogeneous models can be recovered from the
solutions of already solved regular problems by simple arithmetic operations. This feature is illustrated below
by the specific examples of Blasius and Sakiadis nanofluid flows.
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2 The Blasius and Sakiadis nanofluid problems

In a recent paper of Ahmad et al. [10], the nanofluid counterparts of the classical Blasius and Sakiadis forced
convection heat transfer problems have been investigated using the homogeneous nanofluid model governed
by the continuity, momentum and energy equations
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Here, all the symbols possess the usual meaning and the subscript nf stands for “nanofluid”. Introducing the
dichotomic variable ε with the value ε = 0 for the Blasius and ε = 1 for the Sakiadis flow, the boundary
conditions considered in [10] can be written in the compact form u = εU, v = 0 on y = 0, u → (1 − ε)U as
y → ∞ where U denotes the uniform free stream velocity in the Blasius case and the uniform surface velocity
in the Sakiadis case, respectively. It is assumed that the surface temperature Tw is constant in both cases and
differs from the ambient temperature T∞ of the nanofluid. Thus, the thermal boundary conditions are the same
in both cases and read T = Tw on y = 0, T → T∞ as y → ∞. Following the work of Tiwari and Das [18],
for the thermophysical properties of the base fluid (subscript f), of the suspended solid nanoparticles (subscript
s) and of the composite nanofluid suspension (subscript nf), in [10] the following relationships have been
adopted:
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In the above equations, ϕ denotes the volume fraction of the nanoparticles in the nanofluid. With the usual
definition of the stream function, u = ∂ψ/∂y, v = −∂ψ/∂x , and with the aid of the similarity transformations
specified by their Eq. (10), the authors of [10] reduce the above boundary value problems to the form
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where Prf = νf/αf is the Prandtl number of the base fluid and the prime denotes differentiations with respect to
the similarity independent variable η. Subsequently, in [10] a comprehensive parameter study of the boundary
value problems (3)–(6) for water-based nanofluids containing respectively Cu, Al2 O3 and TiO2 nanoparticles
has been reported. The results for the skin friction coefficient C f and the local Nusselt number Nu have been
given in [10] in terms of the dimensionless wall shear stress f ′′ (0) and the dimensionless wall temperature
gradient θ ′ (0) according to the equations
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where Rex = U x/νf is the local Reynolds number of the base fluid.

3 The rescaled boundary value problems

A quick inspection of the governing equations (3) and (5) (which are Eqs. (11) and (12) of [10]) could raise the
impression that the nanofluid model applied in [10] would differ essentially from the corresponding equations
of the regular fluids, and thus, in spite of the neglected velocity-slip effects in the energy equation, it could
possess a new physical content. However, the model based on Eqs. (3) and (5) is fully equivalent to that of the
regular viscous fluids. Indeed, with the aid of the scaling transformations of the independent and dependent
variables
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Eqs. (3)–(5) take the form

...
F + 1

2
F F̈ = 0, (10)

1

Prnf
θ̈ + 1

2
F θ̇ = 0, (11)
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where the dots denote differentiations with respect to the new independent variable ξ . The temperature boundary
conditions (6), on the other hand, remain unchanged. In Eq. (11), Prnf stands for the effective Prandtl number
of the nanofluid which has been defined as
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The dimensionless velocity profiles f ′ (η) are obtained from the corresponding rescaled quantities Ḟ (ξ) sim-
ply as f ′ (η) = Ḟ (ξ) = Ḟ

(
η/

√
a
)
, and the dimensionless wall shear stress f ′′ (0) and wall temperature

gradient θ ′ (0) of the original problems result in terms of the corresponding quantities F̈ (0) and θ̇ (0) of the
rescaled problems according to

f ′′ (0) = F̈ (0)√
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a
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Now, one sees at a glance that Eqs. (10)–(12) coincide with the familiar boundary value equations of the
corresponding Blasius (ε = 0) and Sakiadis (ε = 1) flow and heat transfer problems of the base fluid, with the
(computationally trivial) difference that Pr is replaced by Prnf . Accordingly, in the limiting case of vanishing
volume fraction of the nanoparticles, ϕ → 0, one has a → 1, kf/knf → 1, and thus the effective Prandtl
number (13) of the nanofluid reduces to the Prandlt number Prf of the base fluid.

The numerical solution of both the Blasius and the Sakiadis flow problems are well known and corre-
spond to the values F̈ (0) = 0.3321 (Blasius flow) and F̈ (0) = −0.44375 (Sakiadis flow) of the rescaled
dimensionless wall shear stress, respectively. Thus, the first Eq. (7) for the skin friction coefficient goes over
in
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Consequently, in the considered nanofluid problems, neither the behavior of f ′′ (0), nor that of Re1/2
x C f

requires a new special investigation. The mentioned quantities can be obtained by simple arithmetic calcula-
tions with the aid of Eqs. (14) and (15). Furthermore, Eq. (15) leads to the following relationship between the
Blasius and Sakiadis skin friction coefficients:
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In this way, the data of Table 3 of [10] can be obtained from the corresponding data of Table 2 of [10] with the
aid of the proportionality relationship (16). The same holds for Figures 1 and 3 of [10] in the sense that the
curves plotted in Figure 3 result from the curves of Figure 1 by the simple formula (16). By the way, Eq. (16)
also shows that several data of Table 3 of [10] are not very accurate (in general their accuracy is not higher
than two decimal digits). For example, in the first line of Table 3 corresponding to ϕ = 0 (base fluid without
nanoparticles) all the values should be equal to 0.44375, but they are not.
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Concerning the temperature boundary value problem similar simplifications occur. Indeed, the temperature
solution results in terms of the known solution F (ξ) of the rescaled flow problem for specified values of Prnf
and a from the integral formula
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Therefore, one sees that compared to the case of the base fluid, the corresponding nanofluid heat transfer prob-
lem does not require any new special analysis. With the value (18) of the rescaled wall temperature gradient
θ̇ (0), the corresponding quantity θ ′ (0) of the original problems is obtained from the second of Eq. (14) and
the corresponding Nusselt number from the second of Eq. (7) by simple arithmetic operations. Equation (18)
of θ̇ (0) results in turn from the corresponding equation of the base fluid by simply replacing the value of Pr f
by the value of Prnf given by Eq. (13). In this way,
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It is also worth mentioning here that the homogeneous nanofluid models come into conflict even with the
experimentally measured values of their Nusselt numbers, which exceed the predictions of the classical
Dittus–Boelter correlations systematically (see Fig. 1 of [1]).

4 Conclusions

We may conclude therefore that the homogeneous nanofluid boundary layer heat transfer models which do
not incorporate the two main velocity-slip effects of the nanoparticles with respect to the base fluid, namely
the Brownian diffusion and the thermophoretic diffusion are basically equivalent to the corresponding regular
models for the base fluid and can be mapped on each other by elementary scaling transformations. The only dif-
ference consists in the numerical values of the parameters present in the respective governing equations. Thus,
the corresponding nanofluid results can be recovered from the solutions of already solved regular problems by
simple arithmetic operations, without any additional research effort.
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