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Summary. The boundary-layer similarity flow driven over a semi-infinite permeable flat plate by a power-

law shear with asymptotic velocity profile U1ðyÞ ¼ byaðy!1;b > 0Þ is considered in the presence of

lateral suction or injection of the fluid (y denotes the coordinate normal to the plate). The analytically

tractable cases a ¼ �2=3 and a ¼ �1=2 are examined in detail. It is shown that while for a ¼ �2=3 the

adjustment of the flow over an impermeable plate to the power-law shear is not possible, in the permeable

cases the presence of suction allows for a family of boundary-layer solutions with the proper algebraic

decay. The value of the skin friction corresponding to this family of solutions is given by the parameter

s ¼ 9b3=ð4fwÞ, where fw denotes the suction parameter. In the limiting case of a vanishing suction and a

properly vanishing value of the parameter b (such that s ¼ finite), this family of algebraically decaying

solutions goes over into the (exponentially decaying) Glauert-jet. In the case a ¼ �1=2, solutions showing

the proper algebraic decay were found both for suction ( fw > 0) and injection ( fw < 0) in the whole range

�1 < fw < þ1. In this case the skin friction parameters s ¼ 2b2=3 is independent of the suction/injection

parameter fw.

1 Introduction and basic equations

The shear driven flows, like the wall-driven Couette-flow, the wind-driven Ekman-flow, the

Lock-type flows near to the interface of two parallel streams etc. belong to the classical topics of

fluid mechanics. Due to their wide technical and environmental applications, the general re-

search interest in the shear driven flows is still present in our days.

Recently, the adjustment of a zero pressure gradient laminar flow near a flat impermeable

boundary to an exterior power-law velocity profile of the form

U1ðyÞ ¼ bya ðy!1; b > 0Þ ð1Þ

has been investigated for a wide range of values of the exponent a by Weidman et al. [1]. These

authors have shown that by the similarity transformation

wðx; yÞ ¼ x
aþ1
aþ2 � f ðgÞ; g ¼ x�

1
aþ2 � y ð2Þ

where the stream function wðx; yÞ is subject to impermeability, the no-slip and the asymptotic

conditions

wðx; 0Þ ¼ 0;
@w
@y
ðx; 0Þ ¼ 0 and

@w
@y
! bya ðy!1Þ ð3Þ
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Prandtl’s steady boundary-layer equation

@w
@y

@2w
@x@y

� @w
@x

@2w
@y2
¼ @

3w
@y3

ð4Þ

reduces to the ordinary differential equation

ðaþ 2Þ f 000 þ ðaþ 1Þ ff 00 � af 02 ¼ 0 ð5Þ

along with boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ðgÞ ! bga as g!1: ð6Þ

In the above equations all the quantities w;x; y etc. are nondimensional. The stream function

is defined by uðx; yÞ ¼ @w=@y; vðx; yÞ ¼ �@w=@x; x and y are the streamwise and the plate

normal coordinates, u and v the corresponding (nondimensional) velocity components given

by

uðx; yÞ ¼ x
a

aþ2 � f 0ðgÞ;

vðx; yÞ ¼ �x�
1

aþ2 � aþ 1

aþ 2
f ðgÞ � g

aþ 2
f 0ðgÞ

� �
; ð7Þ

and the primes denote derivatives with respect to g.
The outstanding feature of the problem considered by Weidman et al. [1] consists of the

algebraic asymptotic behavior of the streamwise velocity profile u as required by Eq. (1). As

proven in [1], such solutions of the boundary value problem (5), (6) only exists in the range

a > �2=3, but not for a ¼ �2=3 and below it .

The aim of the present paper is to examine the effect of a lateral suction and injection of the

fluid, i.e. the existence of similarity solutions of Eq. (5) which satisfy the boundary conditions

f ð0Þ ¼ fw; f 0ð0Þ ¼ 0; f 0ðgÞ ! bga ðg!1Þ ð8:1�3Þ

with fw 6¼ 0: Our investigation is restricted to the values a ¼ �2=3 and a ¼ �1=2 only, where

exact analytic solutions are available.

It is worth underlying at this place that the problem of the shear driven boundary-layer flows

considered in the present paper is structurally quite different from the more familiar problem of

the pressure gradient driven Falkner-Skan flows with an inviscid and irrotational free stream.

Here we are faced with strictly zero pressure gradient flows, exhibiting a rotational free stream

velocity of the power-law form, U1ðyÞ ¼ bya, i.e. shear.

2 The case a=)1/2

We first notice that our basic equation (5) can be re-written in the form

d2

dg2
ðaþ 2Þf 0 þ aþ 1

2
f 2

� �
� ð2aþ 1Þf 02 ¼ 0: ð9Þ

Thus, for a ¼ �1=2 we obtain after two elementary integrations the Riccati equation

f 0 þ 1

6
f 2 ¼ C1gþ C2; ð10Þ

where C1 and C2 are constants of integration. Using the first two boundary conditions (8) yields

C1 ¼ f 00ð0Þ � s; C2 ¼
1

6
f 2
w: ð11Þ
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Now, letting in Eq. (10) g!1 and having in mind the boundary condition (8.3), we obtain for

the wall shear stress (skin friction) parameter s the result

s ¼ 2

3
b2: ð12Þ

Surprisingly, this result is independent of the suction/injection parameter fw, and thus it

coincides with the expression of s found by Weidman et al. [1] for the impermeable plate

(fw ¼ 0). Furthermore, with the aid of the transformation

f ðgÞ ¼ ð36sÞ1=3 d

dz
½ln WðzÞ�;

z ¼ s

6

� �1=3

gþ f 2
w

6s

� � ð13Þ

we obtain for the new dependant variable W ¼ WðzÞ the Airy equation W 00 ¼ zW (where

primes denote now differentiation with respect to the new independent variable z). In this way,

the general solution of Eq. (10) for C1 and C2 given by Eqs. (11) is

f ðgÞ ¼ ð36sÞ1=3 a � Ai0ðzÞ þ b � Bi0ðzÞ
a � AiðzÞ þ b � BiðzÞ ; ð14Þ

where AiðzÞ and BiðzÞ denote the Airy functions [3], and a and b are integration constants.

Bearing in mind the asymptotic behavior of the Airy functions it can be shown that the function

(14) satisfies the asymptotic condition (8.3) for any nonzero value of the integration constant b

and any (vanishing or non-vanishing) value of a. In the case a ¼ 0 and b 6¼ 0, the corre-

sponding solution

f ðgÞ ¼ ð36sÞ1=3 Bi0ðzÞ
BiðzÞ ð15Þ

satisfies the boundary condition (8.1) for the value of fw which satisfies transcendental equation

ð36sÞ1=3 � Bi0ðz0Þ � fw � Biðz0Þ ¼ 0; ð16Þ

where

z0 ¼ zjg¼0 ¼ ð36sÞ�2=3 � f 2
w: ð17Þ

The (unique) solution of Eq. (16) found numerically for b ¼ 1 is fw ¼ 1:82502 (for b ¼ 0:2 and

b ¼ 3, one obtains fw ¼ 0:62415 and fw ¼ 3:79619, respectively).

For non-vanishing values of a and b the condition (8.1) yields

a ¼ ð36sÞ1=3 � Bi0ðz0Þ � fw � Biðz0Þ
ð36sÞ1=3 � Ai0ðz0Þ � fw � Aiðz0Þ

b ð18Þ

such that the solution (14) becomes again independent of b. In the case of the impermeable

plate (fw ¼ 0), Eq. (18) yields a ¼
ffiffiffi
3
p
� b, and thus we recover the result of Weidman et al. [1].

In Fig. 1, the ratio a=b as given by Eq. (18) is plotted as a function of fw for b ¼ 0:2; 1 and 3,

respectively. These curves show that Eq. (14) possesses a unique solution of the boundary value

problem (5), (8) for any given b > 0 and any specified value of the suction/injection parameter

fw in the range �1 < fw < þ1. The only difference is that the zero of a is shifted to larger

values with increasing fw, but the intersection point of the curve with the a=b-axis of Fig. 1, i.e.,

a=b ¼
ffiffiffi
3
p

is still independent of b. Therefore, the algebraically decaying wall jet with a ¼ �1=2

survives also on an impermeable plate, regardless of the value of suction/injection parameter fw,

but, as shown above, its skin friction given by Eq. (12) is independent of fw. As an illustration,
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in Fig. 2 the downstream velocity profiles f 0ðgÞ are plotted versus g for b ¼ 1 and three different

values of fw (with fw > 0 for suction and fw < 0 for injection). It is seen that the maximum of

f 0ðgÞ, i.e., the ‘‘jet velocity’’ f 0max ¼ f 0ðg0Þ, where g0 is the solution of equation f 00ðg0Þ ¼ 0,

decreases with increasing fw monotonically (see Fig. 3). The abscissa g0 of the jet velocity, on

the other hand, moves from 0 to maximum value, g0;max ¼ 2:50204 as fw increases from

�1 to � 1 and then returns to zero again as fw further increases from �1 to þ1 (see Fig. 4).

It can be shown that in the present case g0 and f 0max are related to each other according to the

relationship

g0 ¼
f 0max

s
þ 3s

2f 02max

� f 2
w

6s
: ð19Þ

The values g0 ¼ 2:47878 and f 0max ¼ 1:13517 found by Weidman et al. [1] for fw ¼ 0 and b ¼ 1

satisfy accurately Eq. (19).

It is also worth noticing here that, according to Eqs. (5), (8) and (12), the curvature of the

velocity profiles f 0ðgÞ at g ¼ 0 is given by

f 000ð0Þ ¼ � aþ 1

aþ 2
fws ¼ � 2

9
fwb2: ð20Þ

Hence, at g ¼ 0 the shape of f 0ðgÞ is concave for fw > 0 (suction), convex for fw < 0 (injection)

and flat (vanishing curvature) for the impermeable plate (fw ¼ 0). These features may indeed be

seen by a careful inspection of Fig. 2.
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Fig. 1. Case a ¼ �1=2: The ratio a=b
given by Eq. (18) is plotted as a
function of fw for different values of b
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3 The case a=)2/3

It is convenient in this case to re-write the basic Eq. (5) into the following form:

1

f

d

dg
f 3=2 d

dg
ðaþ 2Þf�1=2 � f 0 þ 2

3
ðaþ 1Þf 3=2

� �� 	
� ð3aþ 2Þf 02 ¼ 0 ð21Þ

which for a ¼ �2=3 implies

f 3=2 d

dg
4f�1=2 � f 0 þ 2

3
f 3=2

� �
¼ const: ð22Þ

Now, putting in Eq. (22) g ¼ 0 and taking into account the boundary conditions (8), one

obtains for the integration constant the value 4fws where s denotes again the dimensionless skin

friction parameter, s ¼ f 00ð0Þ. Thus Eq. (22) becomes

4ff 00 þ f 2f 0 � 2f 02 ¼ 4fws: ð23Þ

Letting in Eq. (23) g!1 and having in mind the boundary condition (8.3), we obtain for the

skin friction parameter s the result

s ¼ 9

4

b3

fw
: ð24Þ
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On the other hand, integrating Eq. (5) once from 0 to 1 and having in mind the boundary

conditions (8) we easily deduce that for a ¼ �2=3 the parameter s is given by

s ¼ 1

4

Z1

0

f 02ðgÞdg; ð25Þ

which shows explicitly that the skin friction s is a positive quantity. Thus, Eq. (24) requires

fw > 0 which means suction. We also see that s!1 as fw ! 0, and we thus recover here the

singularity found by Weidman et al. [1] as the lower limit of existence of the shear driven

boundary layer flows over impermeable plane surfaces. Therefore, in the present case, a lateral

suction of the fluid makes possible that over a permeable plate a shear driven steady boundary

layer can form. As an illustration, in Fig. 5 the corresponding wall-jet like velocity profiles f 0ðgÞ
are plotted versus g for b ¼ 1 and four different values of the suction parameter fw. The jet

velocity f 0max decrease now from1 to 0 monotonically as fw increase from 0 to1. Its abscissa

g0 shows a similar behavior to that shown in Fig. 4: it moves from 0 to a maximum value

g0;max ¼ 2:15208 as fw increases from 0 to 5.7 and then returns to zero again as fw further

increases from 5.7 to þ1.

The divergence of the jet velocity which occurs for any finite value of b as fw ! 0 corresponds

precisely to the singularity described by Weidman et al. [1]. If, however, simultaneously with

fw ! 0 also b goes to zero in such a way that the skin friction given by Eq. (24) approaches a

finite value, it can be expected that our algebraically decaying wall jet goes over into the

classical (exponentially decaying) Glauert-jet [2]. This is actually the case as shown recently by

Magyari and Keller [4]. Indeed, the Glauert-jet represents the solution of the above Eq. (22)

subject to the boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 0: ð26Þ

It can be expressed in the implicit analytic form

g ¼ 4

f1
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW þW2
p

1�W

 !
þ

ffiffiffi
3
p
� arctan

ffiffiffi
3
p
�W

2þW

 !" #
; ð27Þ

where

W ¼ f ðgÞ
f1

� �1=2

and f1 ¼ lim
g!1

f ðgÞ: ð28Þ
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The corresponding downstream velocity profile decays exponentially according to

f 0ðgÞ ¼
ffiffiffi
3
p

2
f 2
1 � exp

p

2
ffiffiffi
3
p � f1

4
g

� �
as g!1: ð29Þ

The skin friction of the Glauert-jet is thus given by

f 00ð0Þ � sG ¼
f 3
1

72
: ð30Þ

Since our basic equation (5) is invariant under the scaling transformation f f ! k � f ; g! g=kg
(for any a) and all the boundary conditions (26) are homogeneous, the solution (27) is deter-

mined only up to a normalization factor, and thus the value of f1 may be fixed arbitrarily. We

put in this paper f1 ¼ 4 (since our present f is 4 times larger than Glauert’s original one, [2]).

This choice results in sG ¼ 8=9, f 0max ¼ f 0ðg0Þ ¼ 2�11=3 � f 2
1 ¼ 1:25992 and g0 ¼ 2:02854,

respectively. Thus, the skin friction (24) of the algebraically decaying jet equals the skin friction

(30) of the Glauert-jet if

b ¼ 4

3

fw

6

� �1=3

: ð31Þ

Therefore, when fw ! 0 and at the same time b! 0 according to Eq. (31), the wall jet decaying

according to f 0ðgÞ ! bg�2=3 as g!1 must go over gradually into the Glauert-jet (27). This

crossover actually takes place as illustrated in Fig. 6.

4 Summary and conclusions

The effect of a lateral suction and injection on the boundary-layer similarity flow driven over a

permeable semi-infinite flat plate by a power-law shear with the asymptotic velocity profile

U1ðyÞ ¼ byaðy!1; b > 0Þ has been investigated in the analytically tractable particular cases

a ¼ �2=3 and a ¼ �1=2, respectively.

The main results of the paper can be summarized as follows:

(i) While for a ¼ �2=3 the adjustment of the flow over an impermeable plate to the power-

law shear is not possible [1], we have shown that in permeable case the presence of a

(similarity preserving) suction allows for a family of wall jet like solutions with the proper

algebraic decay. The value of the skin friction corresponding to this family of solutions is

given by s ¼ 9b3=ð4fwÞ where fw > 0 is the suction parameter.
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algebraically decaying wall jets ap-
proaches the exponentially decaying
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(ii) The jet velocity f 0max decreases for a ¼ �2=3 from 1 to 0 monotonically as fw increases

from 0 to 1. Its abscissa g0 on the other hand moves from 0 to a maximum value

g0;max ¼ 2:15208 as fw increases from 0 to 5.7 and then returns to zero again as fw further

increases from 5.7 to þ1. We notice that this behavior also occurs in the case of

(exponentially decaying) boundary-layer flows induced by continuous stretching surfaces,

as shown recently by Magyari and Keller [5].

(iii) when fw ! 0 and at the same time b! 0 according to b ¼ 4ð fw=6Þ1=3=3, the family of the

algebraically decaying wall jets with a ¼ �2=3 approaches the well-known (exponentially

decaying) Glauert-jet[2] gradually.

(iv) In the case of a ¼ �1=2, solutions showing the proper algebraic decay were found both for

suction (fw > 0) and injection (fw < 0) in the whole range �1 < fw < þ1. They can be

expressed in terms of Airy functions (as done by Weidman et al. [1] in the case fw ¼ 0, as

well as much earlier by Kuiken [6] in the context of boundary-layer flows induced by

continuous stretching surfaces). In this case the skin friction s ¼ 2b2=3 is independent of

the suction/injection parameter fw. The jet velocity f 0max ¼ f 0ðg0Þ decreases with increasing

fw monotonically also for a ¼ �1=2. Its abscissa g0 moves from 0 to a maximum value

g0;max ¼ 2:50204, as fw increases from �1 to � 1 and then returns to zero again as fw

further increases from �1 to þ1.

The result of the present paper show explicitly that in the case of the shear driven wall jets the

lateral suction or injection of the fluid is able to extend the existence domain of the similarity

solutions significantly.

Finally, it is worth mentioning here that the phenomenon of the seemingly ‘‘missing solu-

tions’’, as it has been described recently in [7], can also be encountered in the present context of

the shear driven flows. It occurs in the case a ¼ �1 when the second term of the left-hand side

of Eq. (5) identically vanishes and thus neither the boundary value problems (5), (6), nor (5), (8)

admit solutions. Putting however wðx; yÞ ¼ f ðgÞ þ b ln x; g ¼ y=x, instead of the usual simi-

larity ansatz (2) which for a ¼ �1 is much too restrictive, [7], the ‘‘missing solutions’’ can

readily be found also in this case.
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