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Abstract In this paper, the strong approximation of a stochastic partial differen-
tial equation, whose differential operator is of advection-diffusion type and which is
driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale,
is presented. A finite dimensional projection of the infinite dimensional equation,
for example a Galerkin projection, with nonequidistant time stepping is used. Error
estimates for the discretized equation are derived in L2 and almost sure senses. Be-
sides space and time discretizations, noise approximations are also provided, where
the Milstein double stochastic integral is approximated in such a way that the overall
complexity is not increased compared to an Euler–Maruyama approximation. Finally,
simulations complete the paper.

Keywords Finite element method · Stochastic partial differential equation ·
Martingale · Galerkin method · Zakai equation · Advection-diffusion PDE · Milstein
scheme · Karhunen–Loève expansion · Nonequidistant time stepping

1 Introduction

The numerical study and simulation of stochastic partial differential equations has
been an active field of research for the last fifteen years. Within the last decades, the
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extension of partial differential equations to stochastic partial differential equations
has become increasingly more important in applications, especially in engineering
(image analysis, surface analysis, and filtering, etc. [26, 32, 38, 40, 45]). On the other
hand, in finance, finite dimensional systems of stochastic differential equations have
been extended to infinite dimensional ones, i.e., to stochastic partial differential equa-
tions (see e.g., [1, 17]). In most cases, it is not possible to obtain explicit solutions to
these problems. It is therefore natural to study numerical solutions of these stochastic
partial differential equations.

We aim at approximating (mild) solutions of the stochastic partial differential
equation given by

dX(t) = (A + B)X(t) dt + G
(
X(t)

)
dM(t), X(0) = X0. (1.1)

Here M is a càdlàg, square integrable martingale taking values in a separable Hilbert
space U . Probably the most popular examples of such stochastic processes are Wiener
processes and jump processes which are square integrable martingales. The operators
A and B are second and first order differential operators on the Hilbert space H =
L2(D) for a bounded domain D ⊂ R

d , d ∈ N. The operator G is a mapping from
H into the linear operators from U to H . The initial condition X0 is an H -valued
random variable that is independent of the driving noise process and we consider the
solution on a finite time interval τ = [0, T ], T < +∞.

The type of equation studied in this paper appears, besides geophysical models, in
the study of Zakai’s equation (cf. [47]). The stochastic partial differential equation of
Zakai type, which was introduced by Zakai for a nonlinear filtering problem, reads,
extended to square integrable martingales,

dut (x) = L∗ut (x) dt + G
(
ut (x)

)
dMt(x). (1.2)

In the framework of this paper, the equation is considered on a bounded domain
D ⊂ R

d , with zero Dirichlet boundary conditions on the Lipschitz boundary ∂D and
initial condition u0(x) = v(x), for x ∈ D. In the original filtering problem, L∗ is a
second order elliptic differential operator of the form

L∗u = 1

2

d∑

i,j=1

∂i∂j aiju −
d∑

i=1

∂ifiu,

for u ∈ C2
c (D), and it is explicitly split into the operators A and B in Eq. (1.1) in

Sect. 2. In the original filtering problem, the operator G in Eq. (1.2) denotes a point-
wise multiplication with a suitable function g ∈ H . This setting is included in the
more general assumptions on G in Eq. (1.1) which are discussed in detail in Sect. 2.

When it comes to strong approximations of Hilbert-space-valued stochastic dif-
ferential equations, approximation has to be performed in space and time; moreover,
it is likely that the noise must also be approximated. In this paper, we study for the
space approximation a projection of the original problem onto a finite dimensional
subspace of H , which could be done, for example, by use of a Galerkin method.
Further, we employ a Milstein approach with nonequidistant time stepping for the
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time approximation of the solution of the stochastic partial differential equation (1.1).
We derive mean square and almost sure convergence results for our approximation
scheme which are of special interest for all path dependent problems, e.g., in our case
(among others) in filtering problems.

So far, Galerkin methods have been mainly used for partial differential equations
(cf. [19, 20, 44, 46]), but some recent applications to stochastic partial differential
equations have been performed e.g., in [5, 8, 10, 12, 13, 29–31]. One can find the
approximation of mild solutions with colored noise e.g., in [4, 22, 31, 32] and refer-
ences therein. First approaches to higher order approximation schemes using Taylor
expansions were treated e.g., in [23, 39], and [24] with additive, space-time white
noise and with multiplicative, colored Wiener noise in [25] and colored, continuous
martingale noise in [6]. In [25], a Milstein scheme for stochastic partial differen-
tial equations driven by Wiener noise is derived and L2 convergence of order 1 − ε,
for ε > 0, in the time discretization is shown. In most of these references, parabolic
equations with (possibly) nonlinear terms are studied. Here, we treat a larger class
of (possibly) noncontinuous noises and study an advection-diffusion type equation.
For Wiener noise, fully discrete approximations of the solution of Eq. (1.1) were al-
ready studied in [13], while higher order schemes were presented in [35, 36] for a
time approximation. Furthermore, in [6] a (semidiscrete) space approximation and a
fully discrete approximation using a Galerkin method in space and a backward Euler
approach in time were introduced. A space approximation for an equation driven by
a—not necessarily continuous—square integrable martingale was done in [34].

Here, we combine and extend results from [6, 33, 35, 36], and [34] and derive
L2 and almost sure convergence for an approximation scheme with a not necessarily
equidistant time discretization. The increased convergence of order one in the time
discretization is derived by adding an extra term to the well-known Euler–Maruyama
scheme, which itself just leads to convergence of order O(k1/2). In [6], Lp conver-
gence of order O(h2 +k) for a space discretization of width h and a time step of size k

was shown and used to prove almost sure convergence of order O((h2 + k)1−ε). For
a noncontinuous, square integrable martingale, problems arise in the proof of almost
sure convergence, as presented in [6] due to the missing time regularity of the solution
of the stochastic partial differential equation. Namely, X(t) − X(s) converges with
order (t − s)1/p in Lp for t → s and this cannot be improved (see [34]). Therefore,
the optimal order of almost sure convergence cannot be achieved with an argumenta-
tion based on the Borel–Cantelli lemma, which was used in the proof of almost sure
convergence in [6]. Since the proof in [6] was done for p > 2, and then transferred to
L2 by Hölder’s inequality, even the order of convergence in L2 would not be optimal
with this strategy. Here, we combine the proof given in [6] with the arguments in [33]
in order to preserve L2 convergence of order O(h2 + k), even for noncontinuous
martingale noises, given that the equation fulfills sufficient smoothness assumptions.
Further, we derive almost sure convergence of the approximation scheme.

Besides space and time discretization, we also address the problem of the approx-
imation of the (noncontinuous) noise. As shown in [7], the appropriate truncation
of the Karhunen–Loève expansion of the noise preserves the overall order of con-
vergence for the Euler–Maruyama term. The corresponding result for the Milstein
term (with its iterated stochastic integrals) exhibits further difficulties. Fast simulation
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of Wiener noise can be done, for example, with Fourier techniques in O(N logN),
where N is the number of space discretization points, as shown in [37]. This is es-
sentially the same computational cost as an optimal Finite Element solver needs for
a discretized homogeneous (elliptic) problem. In this paper, we prove that for a given
complexity of the Euler–Maruyama term, the overall order of computational work
does not increase when a Milstein term is added, although multi dimensional iterated
stochastic integrals have to be calculated. The order of computational work remains
the same, due to the fact that the number of terms of the Karhunen–Loève expansion,
which is needed to keep the overall order of convergence, is the square root of terms
needed for the Euler–Maruyama term.

More precisely, the main result of this paper is the following: Assume that Eq. (1.1)
is approximated by the projected stochastic partial differential equation onto a finite
dimensional subspace of H , and discretized in time with an adapted Milstein scheme.
Furthermore, suppose that the approximation of the corresponding homogeneous,
parabolic, deterministic problem

∂

∂t
u = Au

converges with order O(hα + kα/2), for α ∈ N, to the solution of the homogeneous
problem. Then, the approximated stochastic partial differential equation converges
with order O(hα + kmin(α/2,1)) in L2. It also converges almost surely to the mild
solution of Eq. (1.1) with at least order O(k(1−ε)/2) for any ε > 0 and for h2 = O(k).
Furthermore, conditions are given such that the approximation of the noise preserves
this order of convergence.

This work is organized as follows: In Sect. 2, the framework and the properties
of the stochastic partial differential equation and its solution are given. Section 3 in-
troduces the space and time approximation and its L2 and almost sure convergences.
The noise is approximated in Sect. 4, and conditions are given so that the overall or-
der of convergence that was proven in Sect. 3 is preserved. Finally, Sect. 5 provides
an example of a compensated Poisson process, which illustrates the limit of the order
of convergence in the time domain. Further, this section contains simulations of the
mean square convergence of the Euler–Maruyama and Milstein term.

2 Framework

Let H denote the Hilbert space L2(D) with Lebesgue measure, where D ⊂ R
d ,

d ∈ N, is a bounded domain with Lipschitz boundary ∂D, and let the subspaces
Hα be the Sobolev spaces for a smoothness parameter α ∈ N, and Hα

0 the closure
of C∞

c (D) in Hα . Here, C∞
c (D) is the space of all infinitely often differentiable

functions with compact support. Consequently, H 1
0 denotes the space of all weakly

differentiable functions that vanish at the boundary. We are interested in the develop-
ment of a numerical approximation scheme to generate paths of the solution of the
stochastic partial differential equation

dX(t) = (A + B)X(t) dt + G
(
X(t)

)
dM(t) (2.1)
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on the finite time interval [0, T ] with initial condition X(0) = X0 and zero Dirichlet
boundary conditions on ∂D. M is a càdlàg, square integrable martingale on a filtered
probability space (Ω, F , (Ft )t≥0,P), satisfying the “usual conditions”, with values
in a separable Hilbert space (U, (·, ·)U ). The space of all càdlàg, square integrable
martingales taking values in U with respect to (Ft )t≥0 is denoted by M2(U). We re-
strict ourselves to the following subset of square integrable martingales taking values
in U :

M2
b(U) = {

M ∈ M2(U),∃Q ∈ L+
1 (U) s.t. ∀t ≥ s ≥ 0,

〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t − s)Q
}
,

where L+
1 (U) denotes the space of all linear, nuclear, symmetric, nonnegative-

definite operators acting on U . The operator angle bracket process 〈〈M,M〉〉t is de-
fined as

〈〈M,M〉〉t =
∫ t

0
Qs d〈M,M〉s ,

where 〈M,M〉t is the unique angle bracket process from the Doob–Meyer decom-
position. The process (Qs, s ≥ 0) is called the martingale covariance. Examples of
such processes are square integrable Lévy martingales, i.e., those Lévy martingales
with Lévy measure ν that satisfies, for ϕ ∈ U ,

∫

U

‖ϕ‖2
U ν(dϕ) < +∞.

Since Q ∈ L+
1 (U), there exists an orthonormal basis (en, n ∈ N) of U consisting

of eigenvectors of Q. Therefore, we have the spectral representation Qen = γnen,
where γn ≥ 0 is the eigenvalue corresponding to en. The square root of Q is defined
as

Q1/2ψ =
∑

n

(ψ, en)Uγ
1/2
n en,

for ψ ∈ U , and Q−1/2 denotes the pseudo inverse of Q1/2. Let (H, (·, ·)H) be
the Hilbert space defined by H = Q1/2(U) and endowed with the inner product
(ψ,φ)H = (Q−1/2ψ,Q−1/2φ)U for ψ,φ ∈ H. Let LHS(H,H) refer to the space of
all Hilbert–Schmidt operators from H to H and ‖ · ‖LHS(H,H) denote the correspond-
ing norm.

By Proposition 8.16 in [42] we have

E

(∥∥
∥∥

∫ t

0
Ψ (s) dM(s)

∥∥
∥∥

2

H

)
≤ E

(∫ t

0

∥
∥Ψ (s)

∥
∥2

LHS(H,H)
ds

)
, (2.2)

for t ∈ τ = [0, T ] with T < +∞, M ∈ M2
b(U), and a locally bounded, predictable

process Ψ : τ → LHS(H,H) with

E

(∫ T

0

∥∥Ψ (s)
∥∥2

LHS(H,H)
ds

)
< +∞.
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For an introduction to Hilbert-space-valued stochastic differential equations we
refer the reader to [11, 16, 42, 43].

The operators A and B in Eq. (2.1) are defined as follows: We assume that the
functions aij , for i, j = 1, . . . , d , are twice continuously differentiable on D with
continuous extension to the closure D̄. The operator A is the unique self-adjoint
extension of the differential operator

1

2

d∑

i,j=1

∂i(aij , ∂ju), u ∈ C2
c (D).

B is a first order differential operator given by

Bu =
d∑

i=1

∂i(biu), u ∈ C1
c (D),

with elements bi that are defined as

bi = 1

2

d∑

j=1

∂j aij − fi,

where the functions fi , i = 1, . . . , d , are continuously differentiable on D with con-
tinuous extension to D̄. Defined this way, we also include the differential operator L∗
in Eq. (1.2).

With the following assumptions, the right hand side of Eq. (2.1) is well defined
and its solution has certain regularity properties to be shown later. From here on, let
the smoothness parameter α ∈ N be fixed.

Assumption 2.1 The coefficients of A and B , the operator G, and the initial condi-
tion X0 satisfy the following conditions:

(a) For i, j = 1, . . . , d , the elements aij belong to Cα+1
b (D) and fi to Cα

b (D) with
continuous extensions to D̄,

(b) there exists δ > 0 such that for all x ∈ D and ξ ∈ R
d

d∑

i,j=1

aij (x)ξiξj ≥ δ‖ξ‖2
Rd ,

(c) X0 is F0-measurable and E(‖X0‖2
Hα) < +∞,

(d) G is a linear mapping from H into L(U,H) that satisfies for C > 0 that for
0 ≤ β ≤ α and φ ∈ Hβ

∥∥G(φ)
∥∥

LHS(H,Hβ)
≤ C‖φ‖Hβ .

Assumption 2.1(b) implies that the operator A is dissipative, see e.g., [28]. Then, by
the Lumer–Phillips theorem, e.g., [18], A generates a strongly continuous contraction



Appl Math Optim (2012) 66:387–413 393

semigroup on H which we denote by S = (S(t), t ≥ 0). Furthermore, by Corollary 2
in [27], S is analytic in the right half-plane. Therefore, fractional powers of −A are
well-defined, cf. [18], and we denote for simplicity A−β = (−A)−β and Aβ = A−1

−β

for β > 0.
In this context we shall make use of the following lemma—whose statement is

also known as Kato’s conjecture—which was proven in [3].

Lemma 2.2 The domain of A1/2 is D(A1/2) = H 1
0 and the norm ‖A1/2 · ‖H is equiv-

alent to ‖ · ‖H 1 , i.e., there exists C > 0 such that

‖A1/2φ‖H ≤ C‖φ‖H 1 and ‖φ‖H 1 ≤ C‖A1/2φ‖H ,

for all φ ∈ H 1
0 .

To simplify the notation in the preceding, we introduce the following norm for an
H -valued random variable Φ with finite second moment

‖Φ‖H,L2 = (
E

(‖Φ‖2
H

))1/2
.

Furthermore, we abbreviate the norm in C(τ ;L2(Ω;H)) with

‖Ψ ‖H,L2,∞τ
= sup

t∈τ

∥∥Ψ (t)
∥∥

H,L2,

for a stochastic process Ψ = (Ψ (t), t ∈ τ) with finite second moment for all t ∈ τ .
With these notations, Assumption 2.1 also implies, by results in Chap. 9 in [42],

that Eq. (2.1) has a unique mild solution X in Hα , i.e.,

‖X‖Hα,L2,∞τ
< +∞,

and X admits for t ∈ (0, T ] the (mild) form

X(t) = S(t)X0 +
∫ t

0
S(t − s)BX(s) ds +

∫ t

0
S(t − s)G

(
X(s)

)
dM(s). (2.3)

Furthermore, it is clear that the solution is in Hβ , for all 0 ≤ β ≤ α.
We remark that we could have added a nonlinearity F(X(t)) dt as done in [25].

With some smoothness assumptions, the results in the subsequent sections would
still hold for continuous martingales, where F has to be treated as in [25]. If the
additional smoothness assumptions are fulfilled, the additive nonlinearity does not
affect the choice of approximation. For example, Galerkin methods could be used for
nonlinear, parabolic equations.

3 Approximation Scheme and Order of Convergence

In this section we derive a fully discrete approximation scheme for Eq. (2.1) and
prove the convergence properties of this scheme.
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To derive a semidiscrete form of Eq. (2.1) first, we project H onto a finite dimen-
sional subspace Vh of H , for instance a Finite Element space. This can for example
be done by first discretizing D by a triangulation defined over a finite number of
points. Then, let (Sh,h > 0) denote a family of Finite Element spaces, consisting of
piecewise linear, continuous polynomials with respect to the family of triangulations
(Th,h > 0) of D such that Sh → H for h → 0 and furthermore Sh ⊂ H 1

0 (D) for
h > 0. In the general framework let V = (Vh,h > 0) be a family of finite dimensional
subspaces of H 1

0 with H -orthogonal projection Ph and norm derived from H . For
h → 0 the sequence V is supposed to be dense in H in the following sense: For all
φ ∈ H , it holds that

lim
h→0

‖Phφ − φ‖H = 0.

Furthermore, we assume that the speed of convergence is specified by

∥∥(Ph − 1)φ
∥∥

H
≤ Chα‖φ‖Hα , (3.1)

for φ ∈ Hα . The Finite Element spaces (Sh,h > 0) satisfy this inequality for α ≤ 2.
Moreover, Eq. (3.1) is satisfied for the space of piecewise polynomials of degree at
most α − 1 on a quasi-uniform triangulation (c.f. Theorem 4.28 in [20] and Satz 6.4
in [9]).

The semidiscrete problem is to find Xh(t) ∈ Vh such that for t ∈ τ

dXh(t) = (Ah + PhB)Xh(t) dt + PhG
(
Xh(t)

)
dM(t), Xh(0) = PhX0.

Here, we define the approximate operator Ah : Vh → Vh through the bilinear form

(−Ahϕh,ψh)H = BA(ϕh,ψh) =
d∑

i,j=1

(aij ∂jϕh, ∂iψh)H ,

for all ϕh,ψh ∈ Vh. The operator Ah is the generator of an analytic semigroup
Sh = (Sh(t), t ≥ 0) defined formally by Sh(t) = exp(tAh), for t ≥ 0. The càdlàg,
semidiscrete mild solution is then given by

Xh(t) = Sh(t)PhX0 +
∫ t

0
Sh(t −s)PhBXh(s) ds +

∫ t

0
Sh(t −s)PhG

(
Xh(s)

)
dM(s).

(3.2)
By Assumption 2.1, Sh is self-adjoint, positive-semidefinite on H and positive-
definite on Vh. We assume that for α ≥ β ≥ 0 with φ ∈ Hβ and t ∈ τ , we have
that

∥∥(
S(t) − Sh(t)Ph

)
φ
∥∥

H
≤ Chαt−(α−β)/2‖φ‖Hβ . (3.3)

This is for example satisfied by the Finite Element spaces (Sh,h > 0) as introduced
before for α = 2 (see Theorem 3.5 in [46]). In the more general setting of piece-
wise polynomials of degree at most α − 1, Theorem 5.7 in [20] as well as Proposi-
tion 11.2.2 in [44] imply Eq. (3.3).



Appl Math Optim (2012) 66:387–413 395

The proposed space-discretized equation converges uniformly, almost surely with
order O(hα−ε) and with order O(hα) in Lp for p > 0 to the mild solution of Eq. (2.1),
which was shown in [34].

For the time discretization, we propose a similar scheme to [35, 36] and a sim-
plified version of [7], which is a combination of a linearized nonequidistant time
discretization, i.e., a linear-implicit backward Euler approach, and a Milstein scheme
but with one approximation term less than in [35, 36]. We introduce the following
framework:

We shall always consider a finite time interval τ = [0, T ] with T < +∞. Let
T = (Tn, n ∈ N) be a sequence of partitions Tn, n ∈ N, of the interval τ whose mesh
width tends to zero as n tends to +∞. We set Tn = {tn0 , tn1 , . . . , tnln} with ln ∈ N,
0 = tn0 < tn1 < · · · < tnln = T , step size kn(i) = tni+1 − tni , and maximal step size kn

in Tn given by

kn = max
{
kn(i), i = 0, . . . , ln − 1

}
.

For n ∈ N, we define the map πn : τ → {tni , i = 0, . . . , ln} by πn(s) = tni , if tni ≤ s <

tni+1. Furthermore, we set ιn(j) = tnj for j = 0, . . . , n. Then, ιn is a bijective map and

κn = ι−1
n ◦ πn is well-defined and gives for t ∈ τ the index of the next smaller grid

point in Tn.
In [7], the rational approximation of the semigroup was done by r(kn(j)Ah) with

r(λ) = (1 +λ/2)/(1 −λ/2), λ ∈ R\{2}, which resembles a Crank–Nicolson method.
Here, we simplify this scheme to a backward Euler scheme, i.e., r(λ) = (1−λ)−1 for
λ ∈ R\{1} and generalized in the standard way to compact operators. For an equidis-
tant time discretization, this approximation is the same for all j = 0, . . . , ln − 1. In
our approach with a variable step size, the approximations are not necessarily the
same at all discretization times. To simplify the notation, we set

R
n,h
j = r

(
kn(j)Ah

)
.

Furthermore, for 0 ≤ i < j ≤ ln we denote

R
n,h
(j−1:i) = R

n,h
j−1R

n,h
j−2 · · ·Rn,h

i+1R
n,h
i .

In case of an equidistant partition we have R
n,h
(j−1:i) = r(knAh)

j−i+1. The recursive
approximation scheme, which was derived in [6], reads then

Xn
j = R

n,h
j−1X

n
j−1 +

∫ tnj

tnj−1

R
n,h
j−1PhBXn

j−1 ds

+
∫ tnj

tnj−1

R
n,h
j−1PhG

(
Xn

j−1

)
dM(s)

+
∫ tnj

tnj−1

(
R

n,h
j−1PhG

(∫ s

tnj−1

G
(
Xn

j−1

)
dM(r)

))
dM(s) (3.4)
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and can be rewritten as

Xn
j = R

n,h
(j−1:0)PhX0 +

∫ tnj

0
R

n,h
(j−1:κn(s))PhBXn

κn(s) ds

+
∫ tnj

0
R

n,h
(j−1:κn(s))PhG

(
Xn

κn(s)

)
dM(s)

+
∫ tnj

0

(
R

n,h
(j−1:κn(s))PhG

(∫ s

πn(s)

G
(
Xn

κn(s)

)
dM(r)

))
dM(s). (3.5)

The approximation scheme in Eq. (3.5) is not limited to a backward Euler approach,
but any other time stepping scheme which fulfills the following assumption can be
used.

Assumption 3.1 Assume that the approximation of the semigroup (R
n,h
(j−1:i),0 ≤ i <

j ≤ ln) is stable, i.e., there exists a constant C such that for all n ∈ N, h > 0, and
0 ≤ i < j ≤ ln

∥∥R
n,h
(j−1:i)Ph

∥∥
L(H)

≤ C,

and that there exists a constant C such that for all n ∈ N, h > 0, 0 ≤ i < j ≤ ln, fixed
α ∈ N, β ∈ {0,1}, and φ ∈ Hα−β

∥∥(
S
(
tnj − tni

) − R
n,h
(j−1:i)Ph

)
φ
∥∥

H
≤ C

(
h + k

1/2
n

)α(
tnj − tni

)−β/2‖φ‖Hα−β . (3.6)

This is especially met by a backward Euler scheme, which is shown similarly to
Theorem 7.7 in [46] with Theorems 7.3 and 3.5 in the same book.

The order of convergence is proven in the following theorem.

Theorem 3.2 Let Assumption 3.1 be satisfied. Then, the approximation Xn =
(Xn

j , j = 0, . . . , ln) defined by Eq. (3.5) converges in mean square to the mild solu-
tion X of the stochastic partial differential equation (2.1) and satisfies for constants
C1 and C2 that depend on T

sup
0≤j≤ln

∥∥X
(
tnj

) − Xn
j

∥∥
H,L2 ≤ C1

(
hα + k

α/2
n

)‖X‖Hα,L2,∞τ
+ C2kn‖X‖H 1,L2,∞τ

.

Especially, for α = 2 and X ∈ H 2, it holds that

sup
0≤j≤ln

∥∥X
(
tnj

) − Xn
j

∥∥
H,L2 = O

(
h2 + kn

)
.

Proof The proof of the theorem involves numerous estimates, where the same tech-
niques are used many times. Therefore, we derive the terms to be bounded and choose
one of each type to show the techniques that are employed.

Equation (2.3) can be rewritten for t ∈ τ as

X(t) = S(t)X0 +
∫ t

0
S(t − s)BS

(
s − πn(s)

)
X

(
πn(s)

)
ds
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+
∫ t

0

(
S(t − s)B

∫ s

πn(s)

S(s − r)BX(r) dr

)
ds

+
∫ t

0

(
S(t − s)B

∫ s

πn(s)

S(s − r)G
(
X(r)

)
dM(r)

)
ds

+
∫ t

0
S(t − s)G

(
S
(
s − πn(s)

)
X

(
πn(s)

))
dM(s)

+
∫ t

0

(
S(t − s)G

(∫ s

πn(s)

S(s − r)BX(r) dr

))
dM(s)

+
∫ t

0

(
S(t − s)G

(∫ s

πn(s)

S(s − r)G
(
X(r)

)
dM(r)

))
dM(s)

similarly to Eq. (3.5) as done in [6, 35]. We remark that the third, the fourth, and the
sixth term on the right hand side are not approximated in scheme (3.5) because they
(for themselves) converge as fast as the overall approximation scheme.

For fixed n ∈ N, the difference of the mild solution and the fully discrete approxi-
mation (3.5) is split into the initial condition, the Bochner integral and the Itô integral
terms

X
(
tnj

) − Xn
j = (

S
(
tnj

) − R
n,h
(j−1:0)

Ph

)
X0 + ξn(j) + ηn(j).

The Bochner integral part ξn is split again into three parts:

ξn = ξn
1 + ξn

2 + ξn
3 ,

with

ξn
1 (j) =

∫ tnj

0

(
S
(
tnj − s

)
BS

(
s − πn(s)

)
X

(
πn(s)

) − R
n,h
(j−1:κn(s))PhBXn

κn(s)

)
ds,

ξn
2 (j) =

∫ tnj

0

(
S
(
tnj − s

)
B

∫ s

πn(s)

S(s − r)BX(r) dr

)
ds,

ξn
3 (j) =

∫ tnj

0

(
S
(
tnj − s

)
B

∫ s

πn(s)

S(s − r)G
(
X(r)

)
dM(r)

)
ds.

Similarly, the stochastic integral is decomposed into

ηn = ηn
1 + ηn

2 + ηn
3 ,

with

ηn
1(j) =

∫ tnj

0

(
S
(
tnj − s

)
G

(
S
(
s − πn(s)

)
X

(
πn(s)

))

− R
n,h
(j−1:κn(s))PhG

(
Xn

κn(s)

))
dM(s),

ηn
2(j) =

∫ tnj

0

(
S
(
tnj − s

)
G

(∫ s

πn(s)

S(s − r)BX(r) dr

))
dM(s),
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ηn
3(j) =

∫ tnj

0

(
S
(
tnj − s

)
G

(∫ s

πn(s)

S(s − r)G
(
X(r)

)
dM(r)

)

− R
n,h
(j−1:κn(s))PhG

(∫ s

πn(s)

G
(
Xn

κn(s)

)
dM(r)

))
dM(s).

The estimates for the seven terms are a combination of those presented in [6] and
in [34]. Therefore, we further split three of the terms. We may write

ξn
1 (j) =

∫ tnj

0
S
(
tnj − s

)
B

(
S
(
s − πn(s)

) − 1
)
X

(
πn(s)

)
ds

+
∫ tnj

0

(
S
(
tnj − s

) − S
(
tnj − πn(s)

))
BX

(
πn(s)

)
ds

+
∫ tnj

0

(
S
(
tnj − πn(s)

) − R
n,h
(j−1:κn(s))Ph

)
BX

(
πn(s)

)
ds

+
∫ tnj

0
R

n,h
(j−1:κn(s))PhB

(
X

(
πn(s)

) − Xn
κn(s)

)
ds,

and we refer to the terms on the right hand side by ξn
1,i (j) for i = 1, . . . ,4. Similarly,

ηn
1(j) is split into the following four terms

ηn
1(j) =

∫ tnj

0
S
(
tnj − s

)
G

((
S
(
s − πn(s)

) − 1
)
X

(
πn(s)

))
dM(s)

+
∫ tnj

0

(
S
(
tnj − s

) − S
(
tnj − πn(s)

))
G

(
X

(
πn(s)

))
dM(s)

+
∫ tnj

0

(
S
(
tnj − πn(s)

) − R
n,h
(j−1:κn(s))Ph

)
G

(
X

(
πn(s)

))
dM(s)

+
∫ tnj

0
R

n,h
(j−1:κn(s))

PhG
(
X

(
πn(s)

) − Xn
κn(s)

)
dM(s)

and ηn
3(j) into five terms

ηn
3 (j)

=
∫ tnj

0
S
(
tnj − s

)
G

(∫ s

πn(s)

(
S(s − r) − 1

)
G

(
X(r)

)
dM(r)

)
dM(s)

+
∫ tnj

0
S
(
tnj − s

)
G

(∫ s

πn(s)
G

(
X(r) − X

(
πn(s)

))
dM(r)

)
dM(s)

+
∫ tnj

0

(
S
(
tnj − s

) − S
(
tnj − πn(s)

))
G

(∫ s

πn(s)
G

(
X

(
πn(s)

))
dM(r)

)
dM(s)

+
∫ tnj

0

(
S
(
tnj − πn(s)

) − R
n,h
(j−1:κn(s))

Ph

)
G

(∫ s

πn(s)
G

(
X

(
πn(s)

))
dM(r)

)
dM(s)
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+
∫ tnj

0
R

n,h
(j−1:κn(s))

PhG

(∫ s

πn(s)
G

(
X

(
πn(s)

) − Xn
κn(s)

)
dM(r)

)
dM(s).

The initial condition is bounded by Assumption 3.1 for β = 0 by
∥∥(

S
(
tnj

) − R
n,h
(j−1:0)Ph

)
X0

∥∥2
H,L2 ≤ C

(
h + k

1/2
n

)2α‖X0‖2
Hα,L2 .

For ξn and ηn we just give calculations for one term of each type of estimation to
demonstrate the technique. The other terms are treated in a similar way. The first
term of ξn

1 satisfies by the properties of the Bochner integral, Lemma 2.2, and Theo-
rem 6.13 in [41] that

∥∥ξn
1,1(j)

∥∥2
H,L2 ≤ CE

((∫ tnj

0

(
tnj − s

)−1/2∥∥(
S
(
s − πn(s)

) − 1
)
X

(
πn(s)

)∥∥
H

ds

)2)

≤ CE

((∫ tnj

0

(
tnj − s

)−1/2(
s − πn(s)

)α/2∥∥X
(
πn(s)

)∥∥
Hα ds

)2)

≤ Ckα
n E

((∫ tnj

0

(
tnj − s

)−1/2∥∥X
(
πn(s)

)∥∥
Hα ds

)2)
.

Hölder’s inequality and Fubini’s theorem imply that

∥∥ξn
1,1(j)

∥∥2
H,L2 ≤ Ckα

n

∫ tnj

0

(
tnj − s

)−1/2
ds

∫ tnj

0

(
tnj − s

)−1/2∥∥X
(
πn(s)

)∥∥2
Hα,L2 ds

≤ Ckα
n (2

√
T )2‖X‖2

Hα,L2,∞τ
.

The property of the semigroup with similar estimates leads to
∥∥ξn

1,2(j)
∥∥2

H,L2 + ∥∥ηn
1,1(j)

∥∥2
H,L2 + ∥∥ηn

1,2(j)
∥∥2

H,L2 + ∥∥ηn
3,1(j)

∥∥2
H,L2 + ∥∥ηn

3,3(j)
∥∥2

H,L2

≤ Ckα
n‖X‖2

Hα,L2,∞τ
.

The convergence properties of the approximate semigroup in Assumption 3.1 imply
for ξn

1,3(j) for β = 1 with similar estimates as before concerning B

∥∥ξn
1,3(j)

∥∥2
H,L2 ≤ C

1

4
2
√

T
(
h2 + kn

)α
∫ tnj

0

(
tnj − s

)−1/2∥∥BX
(
πn(s)

)∥∥2
Hα−1,L2 ds

≤ CT
(
h2 + kn

)α‖X‖2
Hα,L2,∞τ

.

These estimates are also applied to the following two terms and give
∥∥ηn

1,3(j)
∥∥2

H,L2 + ∥∥ηn
3,4(j)

∥∥2
H,L2 ≤ C(1 + kn)

(
h2 + kn

)α‖X‖2
Hα,L2,∞τ

.

In the end, the difference of the solution and the approximation is estimated by their
difference at previous time steps, which stems from the following calculations

∥∥ξn
1,4(j)

∥∥2
H,L2 ≤ CE

((∫ tnj

0

(
tnj − πn(s)

)−1/2∥∥X
(
πn(s)

) − Xn
κn(s)

∥∥
H

ds

)2)
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≤ C2
√

T

j−1∑

i=0

kn(i)
(
tnj − tni

)−1/2∥∥X
(
tni

) − Xn
i

∥∥2
H,L2,

where we used Eq. (4.2) in [31]. The stability of the semigroup approximation
for ηn

1,4(j) and ηn
3,5(j) leads to

∥∥ηn
1,4(j)

∥∥2
H,L2 + ∥∥ηn

3,5(j)
∥∥2

H,L2 ≤ C

j−1∑

i=0

kn(i)
(
1 + kn(i)

)∥∥X
(
tni

) − Xn
i

∥∥2
H,L2

≤ C(1 + T )

j−1∑

i=0

kn(i)
∥
∥X

(
tni

) − Xn
i

∥
∥2

H,L2 .

The remaining terms cannot be estimated with respect to α. For those, convergence is
limited by the properties of the stochastic integral. We have with the regularity of the
solution from Lemma 2.5 in [33] and Eq. (2.2), combined with previous estimates

∥
∥ηn

3,2(j)
∥
∥2

H,L2 ≤ C

∫ tnj

0

∫ s

πn(s)

∥
∥X(r) − X

(
πn(s)

)∥∥2
H,L2 dr ds

≤ Ck2
n‖X‖2

H 1,L2,∞τ
.

The convergence for two of the remaining terms that were not approximated in
Eq. (3.5) results from the upper and lower limit of the inner integral, i.e., we have

∥∥ξn
2 (j)

∥∥2
H,L2 + ∥∥ηn

2(j)
∥∥2

H,L2 ≤ Ck2
n‖X‖2

H 1,L2,∞τ
.

Finally, to give estimates on ξn
3 (j), we may write

∥∥ξn
3 (j)

∥∥2
H,L2 =

∥∥∥∥∥

j∑

i=1

∫ tni

tni−1

S
(
tnj − s

)
B

∫ s

tni−1

S(s − r)G
(
X(r)

)
dM(r) ds

∥∥∥∥∥

2

H,L2

=
j∑

i,k=1

E

((∫ tni

tni−1

S
(
tnj − s

)
B

∫ s

tni−1

S(s − r)G
(
X(r)

)
dM(r) ds,

∫ tnk

tnk−1

S
(
tnj − s

)
B

∫ s

tnk−1

S(s − r)G
(
X(r)

)
dM(r) ds

)

H

)
.

For i �= k the inner product is zero, since one term is independent and the other
measurable with respect to the filtration at the smaller of the two time points tni , tnk .
This implies

∥∥ξn
3 (j)

∥∥2
H,L2 =

j∑

i=1

∥∥∥∥

∫ tni

tni−1

S
(
tnj − s

)
B

∫ s

tni−1

S(s − r)G
(
X(r)

)
dM(r) ds

∥∥∥∥

2

H,L2
.
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Hölder’s inequality and similar estimates as before lead to

∥∥ξn
3 (j)

∥∥2
H,L2 ≤ Ckn

∫ tnj

0

∫ s

πn(s)

∥∥X(r)
∥∥2

H 1,L2 dr ds ≤ Ck2
n‖X‖2

H 1,L2,∞τ
.

This concludes the estimates of the terms, and overall we have for 0 < j ≤ ln

∥∥X
(
tnj

) − Xn
j

∥∥2
H,L2 ≤ C1

((
h2α + kα

n

)‖X‖2
Hα,L2,∞τ

+ k2
n‖X‖2

H 1,L2,∞τ

)

+ C2

j−1∑

i=0

kn(i)
(
1 + (

tnj − tni
)−1/2)∥∥X

(
tni

) − Xn
i

∥∥2
H,L2 .

A discrete version of Gronwall’s inequality (cf. [14]) implies
∥∥X

(
tnj

) − Xn
j

∥∥2
H,L2 ≤ C1

((
h2α + kα

n

)‖X‖2
Hα,L2,∞τ

+ k2
n‖X‖2

H 1,L2,∞τ

)

×
j−1∏

i=0

(
1 + C2 kn(i)

(
1 + (

tnj − tni
)−1/2))

≤ C1
((

h2α + kα
n

)‖X‖2
Hα,L2,∞τ

+ k2
n‖X‖2

H 1,L2,∞τ

)

× exp
(
C2(T + 2

√
T )

)
,

which concludes the proof. �

This theorem entails two remarks. The first comments on the choice of α.

Remark 3.3 The result of Theorem 3.2 implies that kn is a sharp bound for the con-
vergence rate in time due to the properties of the mild solution of Eq. (2.1) while the
convergence in space depends on the regularity of the solution. If the mild solution
is in Hα , the approximation converges with hα . Especially, if the solution is in H 1,
the approximation scheme still converges with order h + k

1/2
n , however in this case

an Euler–Maruyama scheme, which leads to the same error bound, would be simpler
and faster to simulate.

Furthermore, we remark on Lp convergence for p > 2 which was proven for con-
tinuous martingales in [6]. This type of convergence can also be proven for noncon-
tinuous martingales but the order of convergence depends on p. Therefore, a proof of
L2 convergence by Lp convergence for p > 2 as done in [35, 36] and [6] would lead
to a rate of O(k

2/p
n ).

Remark 3.4 The estimates in Theorem 3.2 can also be done in Lp for p > 2 with
adjusted preliminaries, but the order of convergence is then dependent on p. This is
due to the fact that for a stochastic integral of Itô type with respect to a noncontinuous,
square integrable martingale a Burkholder–Davis–Gundy type inequality reads

E

(∥∥∥∥

∫ t

r

Φ(s) dM(s)

∥∥∥∥

p

H

)
≤ CE

(∫ t

r

∥∥Φ(s)
∥∥p

L(U,H)
ds

)
,
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while we have

E

(∥∥∥∥

∫ t

r

Φ(s) dM(s)

∥∥∥∥

p

H

)
≤ CE

((∫ t

r

∥∥Φ(s)
∥∥2

L(U,H)
ds

)p/2)

for continuous martingales. This implies that, if the convergence results from the lim-
its of the integral, we obtain t − r for all p ≥ 2 instead of (t − r)p/2. This is illustrated
in Sect. 5, where we derive error bounds for a compensated Poisson process.

Overall, Theorem 3.2 transforms for p > 2 to

sup
0≤j≤ln

∥∥X
(
tnj

) − Xn
j

∥∥
H,Lp ≤ C1

(
hα + k

α/2
n

)‖X‖Hα,Lp,∞τ + C2k
2/p
n ‖X‖H 1,Lp,∞τ

,

for some positive constants C1 and C2 that depend on α.

Theorem 3.2 implies almost sure convergence as stated in the next theorem. The
rate of convergence in the time domain is at least 1/2 − ε. To our knowledge, so far
it is not known how to prove higher almost sure convergence rates for this type of
Milstein scheme, which is e.g., of interest in filtering problems.

Theorem 3.5 Let C1 and C2 be constants such that for all n ∈ N, kn ≤ C1T/n, and
h2 = C2kn. Then, for α = 2, (Xn,n ∈ N) converges almost surely to X, i.e.,

lim
n→∞ sup

0≤j≤ln

∥∥X
(
tnj

) − Xn
j

∥∥
H

= 0 P-a.s.

Proof Let ε > 0, then Chebyshev’s inequality implies with Theorem 3.2 for all 0 ≤
j ≤ ln that

P
(∥∥X

(
tnj

) − Xn
j

∥∥
H

≥ k
(1−ε)/2
n

) ≤ k−(1−ε)
n

∥∥X
(
tnj

) − Xn
j

∥∥2
H,L2 ≤ Ck1+ε

n ,

since h2 = C2kn. Furthermore, since kn ≤ C1T/n, the corresponding series is con-
vergent and therefore by the Borel–Cantelli lemma we get that for all 0 ≤ j ≤ ln
asymptotically

∥∥X
(
tnj

) − Xn
j

∥∥
H

≤ k
(1−ε)/2
n , P-a.s.,

i.e., there exists a P-null set Nj such that for all ω in the complement Nc
j and n ≥

n0(ω) for some n0(ω) ∈ N,
∥∥X

(
tnj ,ω

) − Xn
j (ω)

∥∥
H

≤ k
(1−ε)/2
n .

Since ln < +∞,
⋃

0≤j≤ln
Nj is a P-null set and therefore, for all ω ∈ ⋂

0≤j≤ln
Nc

j

asymptotically

sup
0≤j≤ln

∥∥X
(
tnj ,ω

) − Xn
j (ω)

∥∥
H

≤ k
(1−ε)/2
n ,

which proves the theorem. �

We continue with the approximation of M , since the presented scheme might still
not be suitable for simulations although it is discretized in space and time.
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4 Noise Approximation

In Sect. 3 we did not approximate the noise. Here, we derive an approximation of
the driving noise term, in this case of a Lévy process, which preserves the overall
order of convergence presented in Sect. 3. We assume that we are able to simulate
the real-valued processes exactly, meaning that we do not take the error into account
which stems from the approximation of small jumps by e.g., a Brownian motion. For
the simulation and approximation of one dimensional Lévy processes we refer the
reader to [2] and [15].

Let us assume in this section that M ∈ M2
b(U) is a Lévy process L and there-

fore has a stationary covariance Q ∈ L+
1 (U). Then, there exists an eigenbasis

(ei ∈ U, i ∈ N) and a set of eigenvalues (γi, i ∈ N) such that Qei = γiei and γi ≥ 0
for all i ∈ N as seen in Sect. 2. This implies that L admits the Karhunen–Loève ex-
pansion

L(t) =
∞∑

i=1

(
L(t), ei

)
U

ei =
∞∑

i=1

√
γiLi(t)ei, (4.1)

where (Li, i ∈ N) is a family of real-valued, orthogonal Lévy processes (see Sect. 4.8
in [42]). Let us denote by Lκ the truncated process, i.e., for all t ∈ τ the stochastic
process, which is given by

Lκ(t) =
κ∑

i=1

√
γiLi(t)ei,

and its covariance is denoted by Qκ . For κ → +∞, this process converges almost
surely to L (see Sect. 4.8 in [42]). We set

Lcκ(t) = L(t) − Lκ(t) =
∞∑

i=κ+1

√
γiLi(t)ei,

with covariance Qcκ = Q − Qκ , which converges almost surely to zero. Let
L

2
H,τ

(H) = L2(Ω × τ ;LHS(H,H)) be the space of integrands, defined over the
probability space (Ω × τ, Pτ ,P ⊗ dλ), where Pτ denotes the σ -field of predictable
sets in Ω × τ and dλ is the Lebesgue measure. Then, the Itô integral over Ψ ∈
L

2
H,T

(H) satisfies that

∫ b

a

Ψ (s) dL(s) −
∫ b

a

Ψ (s) dLκ(s) =
∫ b

a

Ψ (s) dLcκ(s). (4.2)

In [7], it is shown, how the stochastic integral with respect to an Lκ consisting of
independent Lévy processes (Li, i ∈ N) converges to a Hilbert-space-valued Lévy
process L for κ → +∞. This result generalizes to the following lemma.

Lemma 4.1 If for 0 ≤ a < b ≤ T and Ψ ∈ L
2
H,T

(H)

E

(∫ b

a

∥∥Ψ (s)
∥∥2

L(U,H)
ds

)
< +∞
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and there exist constants C1,C2 > 0 such that the eigenvalues of the covariance Q

of L satisfy γi ≤ C1i
−δ for δ > 1, i ∈ N and κ ≥ C2h

−β for some β > 0, then there
exists a constant C(δ) such that

∥∥∥∥

∫ b

a

Ψ (s) dL(s) −
∫ b

a

Ψ (s) dLκ(s)

∥∥∥∥
H,L2

≤ C(δ)

(
E

(∫ b

a

∥∥Ψ (s)
∥∥2

L(U,H)
ds

))1/2

h
β(δ−1)

2 .

Proof We first observe that

∥∥
∥∥

∫ b

a

Ψ (s) dL(s) −
∫ b

a

Ψ (s) dLκ(s)

∥∥
∥∥

2

H,L2
=

∥∥
∥∥

∫ b

a

Ψ (s) dLcκ(s)

∥∥
∥∥

2

H,L2

= E

(∫ b

a

∥∥Ψ (s)
∥∥2

LHS((Qcκ )1/2U,H)
ds

)

by Eqs. (4.2) and (2.2), where in this case equality holds (see Corollary 8.17 in [42]).
Next, we calculate the Hilbert–Schmidt norm. We have that

E

(∫ b

a

∥∥Ψ (s)
∥∥2

LHS((Qcκ )1/2U,H)
ds

)
= E

(∫ b

a

∞∑

i=κ+1

γi

∥∥Ψ (s)ei

∥∥2
H

ds

)

.

With the properties of Ψ it holds that

E

(∫ b

a

∞∑

i=κ+1

γi

∥∥Ψ (s)ei

∥∥2
H

ds

)

≤ CE

(∫ b

a

∥∥Ψ (s)
∥∥2

L(U,H)
ds

) ∞∑

i=κ+1

γi,

and the decay of the eigenvalues and the assumptions on κ imply that

∞∑

i=κ+1

γi ≤ C1

∞∑

i=κ+1

i−δ = C1

∞∑

i=1

(i + κ)−δ ≤ C1

∫ ∞

0
(x + κ)−δdx

= C1C
1−δ
2 (δ − 1)−1hβ(δ−1).

This proves the lemma. �

We remark that the estimates stay true, if Ψ also depends on the upper integration
limit, i.e., the stochastic integral is a convolutional integral with respect to a semi-
group, since Eq. (2.2) also holds for this type of integrands (see [21]).

Next, we approximate the double stochastic integral, which is the additional term
when extending an Euler–Maruyama scheme to a Milstein scheme. In Eq. (3.4) this
term is

∫ tnj

tnj−1

(
R

n,h
j−1PhG

(∫ s

tnj−1

G
(
Xn

j−1

)
dM(r)

))
dM(s). (4.3)
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We discuss this term for Lévy processes but in the more general setting, where we
introduce separable Hilbert spaces H and U . The Hilbert space H can then be set to
L2(D) or some approximation space Vh to apply the theory to Theorem 3.2. Further,
we consider a linear map Γ : H → L(U,H) satisfying Assumption 2.1(d) for β = 0
and the norm in L(U,H). In addition, we have a bounded map σ : τ → L(H,H).
For 0 ≤ a < b ≤ T and an H -valued, adapted stochastic process ψ = (ψ(t), t ∈ τ),
we rewrite Eq. (4.3) more generally as

∫ b

a

σ (a)Γ

(∫ s

a

Γ
(
ψ(a)

)
dL(r)

)
dL(s). (4.4)

Using the Karhunen–Loève expansion of L given in Eq. (4.1), we have that
∫ b

a

σ (a)Γ

(∫ s

a

Γ
(
ψ(a)

)
dL(r)

)
dL(s)

=
∞∑

i,j=1

√
γi

√
γjσ (a)Γ

(
Γ

(
ψ(a)

)
ei

)
ej

∫ b

a

∫ s

a

dLi(r) dLj (s).

With Itô’s formula the iterated Itô integral is given, for i = j , by
∫ b

a

∫ s

a

dLi(r) dLi(s) = 1

2

((
Li(b)−Li(a)

)2 −(b−a)−
∑

a<s≤b

(
Li(s)−Li(s−)

)2
)

.

By the same argument, the mixed terms, i.e., for i �= j , satisfy
∫ b

a

∫ s

a

dLi(r) dLj (s) +
∫ b

a

∫ s

a

dLj (r) dLi(s)

= (
Li(b) − Li(a)

) · (Lj(b) − Lj (a)
)

−
∑

a<s≤b

(
Li(s) − Li(s−)

) · (Lj (s) − Lj (s−)
)

= �Lij .

If

Γ
(
Γ (ψ)ei

)
ej = Γ

(
Γ (ψ)ej

)
ei, (4.5)

for i, j ∈ N—this is for example satisfied for multiplicative noise (see Eq. (27)
in [25]) and especially in the case where Γ is a pointwise multiplication with a suit-
able function g, e.g. g ∈ Cα

b (D), U = L2(D), where the eigenbasis and eigenvalues
of Q satisfy that

∑
i∈N

γi‖ei‖2
W 2,∞(D)

< +∞—we rewrite Eq. (4.4) as

∫ b

a

σ (a)Γ

(∫ s

a

Γ (ψ)dL(r)

)
dL(s)

= 1

2

∞∑

i,j=1

√
γi

√
γjσ (a)Γ

(
Γ (ψ)ei

)
ej

(
�Lij − δij (b − a)

)
.
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This implies that the stochastic integrals can be simulated, if we assume that we are
able to simulate the real-valued processes exactly as discussed in the beginning of the
section. Approximation of the small jumps would lead to an additional error contribu-
tion. Still, the number of processes to be simulated might be infinite. To approximate
the series by a finite number of stochastic processes, we truncate the Karhunen–Loève
expansion as in Lemma 4.1 and simulate

∫ b

a

σ (a)Γ

(∫ s

a

Γ (ψ)dLκ(r)

)
dLκ(s)

= 1

2

κ∑

i,j=1

√
γi

√
γjσ (a)Γ

(
Γ (ψ)ei

)
ej

(
�Lij − δij (b − a)

)
.

The resulting error is given in the following lemma.

Lemma 4.2 For n ∈ N, let σ : Tn → L(H,H), Γ : H → LHS(H,H) be linear and
satisfy Assumption 2.1(d) for β = 0 and the norm in L(U,H) as well as Eq. (4.5).
Further, let ψ = (ψ(t), t ∈ Tn) be an adapted, H -valued stochastic process. For
t ∈ Tn, if

E

(∫ t

0

∥∥ψ
(
πn(s)

)∥∥2
H

ds

)
< +∞

and there exist constants C1,C2 > 0 such that the eigenvalues of the covariance Q

of L satisfy γi ≤ C1i
−δ for δ > 1, i ∈ N and κ ≥ C2h

−β for some β > 0, then there
exists a constant C such that

∥∥∥∥

∫ t

0
σ
(
πn(s)

)
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dL(r)

)
dL(s)

−
∫ t

0
σ
(
πn(s)

)
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dLκ(r)

)
dLκ(s)

∥∥∥∥
H,L2

≤ C sup
t∈Tn

∥∥σ(t)
∥∥

L(H,H)

(∫ t

0

∥∥ψ
(
πn(s)

)∥∥2
H,L2 ds

)1/2(
knh

β(δ−1)
)1/2

.

Proof We calculate the error using Eq. (2.2), the properties of σ and Γ , and in the
last step the estimate in the proof of Lemma 4.1

∥∥∥∥

∫ t

0
σ
(
πn(s)

)
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dL(r)

)
dL(s)

−
∫ t

0
σ
(
πn(s)

)
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dLκ(r)

)
dLκ(s)

∥
∥∥∥

2

H,L2

≤ 2

(∥∥∥∥

∫ t

0
σ
(
πn(s)

)
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dLcκ(r)

)
dL(s)

∥∥∥∥

2

H,L2



Appl Math Optim (2012) 66:387–413 407

+
∥∥∥∥

∫ t

0
σ
(
πn(s)

)
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dLκ(r)

)
dLcκ(s)

∥∥∥∥

2

H,L2

)

≤ C sup
t∈Tn

∥∥σ(t)
∥∥2

L(H,H)

(∫ t

0

∥∥∥∥

∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dLcκ(r)

∥∥∥∥

2

H,L2
ds

+
∞∑

i=κ+1

γi

∫ t

0

∥∥∥∥

∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dLκ(r)

∥∥∥∥

2

H,L2
ds

)

≤ C sup
t∈Tn

∥∥σ(t)
∥∥2

L(H,H)

∫ t

0

∥∥ψ
(
πn(s)

)∥∥2
H,L2 dskn

∞∑

i=κ+1

γi

≤ C sup
t∈Tn

∥∥σ(t)
∥∥2

L(H,H)

∫ t

0

∥∥ψ
(
πn(s)

)∥∥2
H,L2 dsknh

β(δ−1). �

Let δ > 1 be given. For a convergence of h2 of the Euler–Maruyama term in
Lemma 4.1, we have to choose β ≥ 4/(δ − 1) and therefore κ1 = κ ≥ C h−4/(δ−1)

for some constant C. At the same time, a convergence of h2 of the Milstein term is
achieved if β ≥ 2/(δ−1), which implies that κ2 = κ ≥ C h−2/(δ−1) for some constant
C. Therefore, the overall convergence of h2 in Theorem 3.2 is preserved if the noise
in the Euler–Maruyama and in the Milstein term are truncated according to κ1 and κ2.
So, to balance the errors, we have to use the first κ1 terms of the Karhunen–Loève ex-
pansion for the Euler–Maruyama term and

√
κ1 terms for the Milstein term. With this

observation we conclude that the simulation of the Milstein term is computationally
not more expensive than the Euler–Maruyama term. For the Milstein term we have
to sum over all mixed stochastic processes, i.e., κ2

2 resp. κ2
2 /2 terms, if we use the

symmetry of Γ . If the simulation of the Euler–Maruyama term needs computational
effort O(κ1) and κ1 = κ2

2 , the overall work for the Milstein term is also O(κ1). There-
fore, by adding the Milstein term, we increase the order of convergence but with the
correct truncation of the Karhunen–Loève expansion, the overall work does not in-
crease. We remark that the efficient simulation of the Milstein term in [25] is possible
in O(N logN), where N is the number of grid points of the underlying domain, since
the special structure of the domain and the chosen discretization grid allow the use of
fast Fourier methods. In the general case, when Finite Element methods on arbitrary
bounded polyhedrons are used, this approach does not apply.

Overall, the fully approximation scheme reads

X̃n
j = R

n,h
(j−1:0)PhX0 +

∫ tnj

0
R

n,h
(j−1:κn(s))PhBX̃n

κn(s) ds

+
∫ tnj

0
R

n,h
(j−1:κn(s))

PhG
(
X̃n

κn(s)

)
dLκ(s)

+
∫ tnj

0

(
R

n,h
(j−1:κn(s))PhG

(∫ s

πn(s)

G
(
X̃n

κn(s)

)
dL

√
κ(r)

))
dL

√
κ (s),
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where we included beside a space and time discretization, the (according to
Lemma 4.2) truncated driving noise process. Then, Lemma 4.1 and 4.2 together
with Theorem 3.2 imply the following corollary, where we set σ(t) = R

n,h
(j−1:κn(t))Ph

and Γ = G.

Corollary 4.3 Assume that κ ≥ C�h−2 max(α,2)/(δ−1)� for some constant C, where
δ > 1 with γi ≤ C̃ i−δ for i ∈ N and a fixed constant C̃. Then, the fully discrete
approximation X̃n converges in mean square to the mild solution X of the stochastic
partial differential equation (2.1) and satisfies for constants C1 and C2 that depend
on T and δ that

sup
0≤j≤ln

∥∥X
(
tnj

) − X̃n
j

∥∥
H,L2 ≤ C1

(
hα + k

α/2
n

)‖X‖Hα,L2,∞τ
+ C2kn‖X‖H 1,L2,∞τ

.

Especially for α = 2 and X ∈ H 2, it holds that

sup
0≤j≤ln

∥∥X
(
tnj

) − X̃n
j

∥∥
H,L2 = O

(
h2 + kn

)
.

5 Examples and Simulation

A compensated Poisson process showcases that a noncontinuous, square integrable
martingale exhibits the order of convergence in time described in Sect. 3. In general,
for a noncontinuous martingale convergence of order kn represents a sharp bound in
L2. The example is followed by simulations on the order of convergence for Euler–
Maruyama and Milstein type terms.

Example 5.1 Let L = (L(t), t ≥ 0) be a Poisson process with intensity λ > 0, i.e., L

has distribution

PL(t) = e−λt
∞∑

n=0

(λt)n

n! εn.

Then, the corresponding compensated Poisson process

M(t) = L(t) − λt

is a square integrable martingale. The quadratic variation [M] of M = (M(t), t ≥ 0)

is again the Poisson process L, i.e., we have [M]t = L(t) for all t ≥ 0. The
Burkholder–Davis–Gundy inequality for martingales implies

E

(∥∥∥∥

∫ t

0
dM(s)

∥∥∥∥

p)
≤ CE

((∫ t

0
d[M]s

)p/2)
= CE

((∫ t

0
dL(s)

)p/2)

= CE
(
L(t)p/2)
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and for n ∈ N, the n-th moment of L is given by

E
(
L(t)n

) =
n−1∑

k=0

(
n − 1

k

)
λtE

(
L(t)k

)
.

This implies for t ↓ 0

E

(∥∥∥∥

∫ t

0
dM(s)

∥∥∥∥

p)
= O(t)

and for t ↑ +∞

E

(∥∥
∥∥

∫ t

0
dM(s)

∥∥
∥∥

p)
= O

(
tp/2).

If we look at the (trivial) stochastic differential equation

dX(t) = dM(t)

with initial condition X(0) = M(0), the regularity of the solution satisfies for t > r

E
(∥∥X(t) − X(r)

∥
∥p) = E

(∥∥
∥∥

∫ t

r

dM(s)

∥∥
∥∥

p)
≤ C

p/2−1∑

k=0

(
p/2 − 1

k

)
λ(t − r)E

(
L(t)k

)
.

So convergence in Lp for r → t is of order (t − r)1/p and this cannot be improved
with the chosen methods. By Hölder’s inequality, Lp convergence implies Lq con-
vergence for p ≥ q , since for φ ∈ Lp

‖φ‖H,Lq ≤ ‖φ‖H,Lp .

Therefore, using the estimate in Lp instead of a direct calculation in Lq for p > q ,
we obtain that

∥∥X(t) − X(r)
∥∥

H,Lq ≤ (t − r)1/p,

i.e., the order of convergence reduces by a factor of q/p.

In the simulation we compare the convergence of the Euler–Maruyama and the
Milstein term with domain D = (0,1) on the time interval [0,1], i.e., we approximate
the integrals

∫ 1

0
Γ

(
ψ

(
πn(s)

))
dL(s) and

∫ 1

0
Γ

(∫ s

πn(s)

Γ
(
ψ

(
πn(s)

))
dL(r)

)
dL(s)

and compare for κ chosen according to Lemma 4.1 and Lemma 4.2 the convergence
rates with those proven in Sect. 4. Next, we introduce the parameters that were chosen
for the simulation. The constructed Lévy process L = (L(t), t ∈ τ) is given by

L(t) =
∞∑

i=1

√
γieiLi(t)
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and

Li(t) = Wi(t) + Pi(t),

where (Wi(t), i ∈ N) is a family of independent, real-valued Wiener processes and
(Pi(t), i ∈ N) is a family of independent, real-valued compound Poisson processes,
where the jump intensity is λ = 1 and the jump sizes are symmetric Gamma dis-
tributed with parameters 2 and 5, i.e., the jump size J = Y · Z is given by Y ∼
Γ (2,5) and Z ∼ U {−1,1}. We set the kernel of the covariance operator Cov(x, y) =
exp(−10|x −y|), for x, y ∈ D. This implies that the covariance operator Q has eigen-
values (γk, k ∈ Z) given by

γk = 20

100 + 4π2k2
,

for k ∈ Z, and corresponding eigenfunctions (ek, k ∈ Z) given by

ek(x) = c−1
k

(
cos(2πkx) − 10

2πk
sin(2πkx)

)
,

for k ∈ Z and x ∈ D, where

c2
k = 100

8π2k2
+ 1

2
.

Therefore, the chosen covariance has the property that δ = 2 in Lemma 4.1 and 4.2.
Furthermore, we set

(
Γ (ψ)φ

)
(x) = g(x) · ψ(x) · φ(x),

for x ∈ D, where g(x) = x and ψ ≡ 1. Here, we can choose a constant ψ to sim-
plify the simulation since otherwise, in both terms the same approximate solution of
the stochastic partial differential equation would be plugged in. We choose β = 1 in
Lemma 4.1 and in Lemma 4.2 and equal step sizes in space and time. The assumption
that h2 = O(kn) is in this simulation superfluous and would just increase the compu-
tational costs in both simulations, since the convergence results in Lemma 4.1 and 4.2
do not depend on the relation of h and kn. Then, Lemma 4.1 implies for the Euler–
Maruyama term that it converges with order O(h1/2) and for the corresponding Mil-
stein term, Lemma 4.2 leads to convergence of order O(h). The experimental results
are shown in Fig. 1 and confirm the theory. For each plot, we simulated N = 1000
paths. As exact solution we chose the finest grid with 25 grid points in space and in
time. We calculated the error

eN =
√√√√ 1

N

N∑

i=1

max
j=0,...,2n

1

2m

2m∑

k=1

(
Ŷi (tj , xk) − Yi(tj , xk)

)2
,

for n,m = 1, . . . ,4. Here, (Yi, i = 1, . . . ,N) is the set of simulated paths on a time
grid (tj , j = 0, . . . ,2n) and a space grid (xk, k = 0, . . . ,2m), and (Ŷi , i = 1, . . . ,N)

the family of simulated paths of the “exact” solution on the fine grid in time and
space.
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Fig. 1 Statistical error with 1000 sample paths
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