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Abstract

Phytoextraction has been proposed in recent years as an environmentally and cost-efficient treatment
technique for the remediation of heavy-metal contaminated sites. In particular, plants that are fast growing,
metal accumulating, and economically interesting, such as sunflowers or trees, recently became more
important in research on phytoextraction. Heavy metal uptake of trees can be strongly influenced by
ectomycorrhizal fungi. We investigated the possibility of enhancing phytoextraction of Cd by willows (Salix
viminalis) and poplars (Populus canadensis) in association with three well known ectomycorrhizal fungi
(Hebeloma crustuliniforme, Paxillus involutus and Pisolithus tinctorius). A pot experiment was conducted
using Cd polluted soil from a contaminated site. Four replicates of each combination of fungus and tree
species, and controls without fungal inoculum, were set up. After a growth period of 11 weeks, yields and
Cd concentrations in roots, stems, and leaves were measured. In addition, the total Cd uptake, the transfer
to roots, and the translocation to stems and leaves were calculated. The association of P. canadensis with
P. involutus led to a highly significant increase of Cd concentrations, in particular in the leaves, which
contained 2.74 ± 0.34 mg Cd per kg dry matter. Compared to the control this is an enhancement of nearly
100%. The fungi also significantly enhanced the translocation from the roots to the leaves, leading to a
concentration ratio (leaves/roots) of 0.32 ± 0.06 compared to 0.20 ± 0.02 of the control plants. Addi-
tionally, P. involutus significantly enhanced the total Cd extraction by P. canadensis. Similar effects were not
observed by other fungi or in association with S. viminalis.

Introduction

Apart from �hot spots� of very high concentration
of pollutants confined in rather small areas, there
also exist large pollution areas with relatively low
heavy metal concentration levels (ETCS, 1998;

Vogel et al., 1989). These may originate from
atmospheric deposition of industrial and traffic
emissions or pesticides, mineral fertilizers, and
sewage sludges by agricultural application. While
there is usually little danger of immediate toxicity
effects in these cases, the problem is the large
mass of metals introduced into the environment
that may, in the long term, accumulate and poi-
son food chains and water resources (Hämmann
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and Gupta, 1997). Prevention of such accumula-
tion must be the primary strategy of soil protec-
tion, but additional measures should be
envisaged to reduce existing concentration levels
in soils, if possible.

In recent years, phytoextraction has been
proposed as a cost-efficient and sustainable tech-
nology for this purpose, particularly for soils
that are intended to be kept under use for plant
production (McGrath et al., 2001). In contrast
to such techniques as soil washing, phytoextrac-
tion is a gentle soil treatment, as it conserves
physical soil structure and restores ecological soil
quality (Saxena et al., 1999, Schulin et al., 1997).
Its major disadvantage is the comparatively long
time span required. This may be of a lesser
problem on sites on which land-use can be com-
bined with the growth of metal-accumulating
trees, e.g. the stabilization of slopes by willows,
the production of woods or fuel by poplar culti-
vation or mixed agroforestry systems (McIntyre,
2003; Rockwood et al., 2004). The industrial use
of plants, however, depends on the metal con-
tents and their location in plants. It would be
favorable if the plant parts used (e.g. stems)
showed low metal contents. For the disposal of
the contaminated not-usable plant material sev-
eral measures have been proposed, including
incineration (Prasad and de Oliveira Freitas,
2003).

In particular in soils with near-neutral or
basic pH, low phytoavailability of metals has
been considered as a major limitation for phy-
toextraction of metal pollutants (Kayser et al.,
2000). The uptake of rather mobile metals such
as zinc and cadmium can be significantly in-
creased by solubilization of the metals through
acidification of the soil (Kayser et al., 2001) or
reactions with ligands forming mobile com-
plexes (Meers et al., 2004; Wenger et al., 2002).
These approaches rely on an enhanced trans-
port of dissolved metals to the roots by diffu-
sion.

Among the biological factors governing metal
extraction, the role of microorganisms, in partic-
ular fungi, is important. The various influences
of ectomycorrhizal fungi on the uptake of heavy
metals in plants is widely documented in litera-
ture, but so far not specifically with respect to a
possible technical application in phytoremedia-
tion. Literature reports that when there is low

metal concentration in the soil the fungi enhance
the uptake in plants (Colpaert and Van Assche,
1987; Smith and Read, 1997), whereas at high
metal concentrations the fungi provide a filter
function that leads to improved metal tolerance
by plants (Bücking and Heyser, 1994; Jentschke
and Godbold, 2000; Jones and Hutchinson, 1988;
Leyval et al., 1997). But also enhanced uptake
(Colpaert and Van Assche, 1992) or increased
toxicity of heavy metals (Godbold, 1994) due to
the presence of fungi are mentioned, even though
these effects have not been observed in many
studies.

The main effects, enhancement of metal up-
take or filter function, respectively, may change
under different growing conditions with different
plant and fungal species and the metals consid-
ered (Hartley et al., 1997). These effects cannot
simply be generalized on any plant-fungus asso-
ciation in any experimental set-up (Godbold
et al., 1998; Jentschke and Godbold, 2000). This
large variability of ectomycorrhizal effects on
heavy metal uptake by plants can be seen as an
opportunity for successful screening of suitable
plant-fungus formations in technical applications
such as phytoremediation. In addition, the ecto-
mycorrhizal fungi preferable are located in the
upper soil layers where the highest concentra-
tions of heavy metals are found. Berthelsen
et al. (1995) showed that in the soil of a conifer-
ous forest of southern Norway, contaminated
with Cd, Cu, and Zn, most of the heavy metals
were accumulated in the mycelia of mycorrhizal
fungi.

This survey investigated the contribution of
three well known ectomycorrhizal fungi (Hebeloma
crustuliniforme, Paxillus involutus, and Pisolithus
tinctorius) to the Cd uptake of a proofed Cd
accumulator (Salix viminalis; Greger (1999)) and
a fast growing common tree species (Populus
canadensis). In order to provide conditions with
relevance for phytoextraction a pot experiment
was conducted using soil from a contaminated
site. The results present Cd concentrations in dif-
ferent plant parts, the transfer of Cd to the plant
roots, and the translocation to stems and leaves.
The impacts of fungi on Cd uptake are analyzed
by ANOVA. We discuss the plant-fungus associ-
ations with respect to potential applications in
phytoextraction of heavy metals from contami-
nated soils.
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Materials and methods

Soil

The soil used in the pot experiment originated
from Dornach (Canton of Solothurn), which is the
main case study of Swiss research projects con-
cerning phytoremediation (Hesske et al., 1998).
The site had been contaminated during decades of
air pollution from a metal smelter. The soil was
classified as calcaric regosol. The main soil param-
eters are characterized as follows: clay 32%, silt
50%, sand 18%; Corg 4.4%, CaCO3 13.5%;
CECpot 26 meqÆ100 g)1; pH (CaCl2) 7.4 (Keller
et al., 2003). Thus, this calcareous soil is not
favorable for phytoremediation, since heavy met-
als are strongly adsorbed to the solid phase (Meers
et al., 2004). The Cd total concentration (2 M
HNO3 extraction; (FAC, 1989) is 1.91 mg kg)1,
the soluble concentration (0.1 M NaNO3 extrac-
tion; (FAC, 1989) is 0.003 mg kg)1 soil. In addi-
tion, the soil is contaminated with Zn (soluble
concentration 0.075 mg kg)1) and Cu (soluble
concentration 0.79 mg kg)1). Previously to the
experiment the soil was homogenized and steril-
ized by means of gamma-radiation with 60Co.

Fungi

The mycelia of three different fungi species,
Hebeloma crustuliniforme (Bull.:St. Amans) Quél.
(WSL #6.2), Paxillus involutus (Batsch:Fr.) Fr.
(WSL #37.7), and Pisolithus tinctorius (Pers.)
Desv. (WSL #10.1), were grown on nutrient agar
in Petri dishes, cut with a sterilized scalpel into
square pieces of 5 · 5 mm, and added in auto-
claved 3 L polycarbonate flasks (Le Lion flask)
containing 2 L vermiculite:peat mixture (9:1; v:v),
moistened with 450 mL MMN nutrient solution
(Marx and Bryan, 1975). After an incubation
time of three months at 20 �C, demineralized wa-
ter was flushed through the substrate in order to
wash out the remaining nutrient solutions.

The fungal strains used were not specifically
isolated from polluted sites; H. crustuliniforme
was isolated from fruiting bodies from an unpol-
luted Picea-forest stand, and P. involutus was iso-
lated from fruiting bodies from an unpolluted
Salix- and Betula-stand. Both stands were located
in Switzerland. P. tinctorius was orginally obtained
from Athens, Georgia, USA.

Plants

In winter cuttings of Populus canadensis (Populus ·
euramericana (Dode) Guinier cv. Dorskramp,
proceeding from the Swiss Federal Institute for
Forest, Snow and Landscape Research) and of
Salix viminalis L. (clone number 78198, from the
Department of Botany, University of Stockholm)
were cut in pieces of 20 cm length, sealed at the
ends with wax, and stored at low temperature
until the start of the pot experiment.

Pot experiment

In spring the three different fungi, inclusively the
vermiculite, were inoculated in 1.5 L pots of
polyethylene filled with 1400 g of air dried,
homogenized, and sterile contaminated soil of
Dornach. The fungal inoculums were posed in
the middle of the pot using approximately
200 mL of substrate. Each treatment was repli-
cated four times with four control pots without
any fungal inoculum. Each replicate grew in its
own pot. The cuttings were planted directly in
the middle of the inoculate and then covered
with inoculate and soil.

Plants were grown in a greenhouse with tem-
peratures set between 10 and 25 �C, with air
humidity at least 70%. Pots were irrigated from
polyethylene containers by means of wicks made
of glass fiber. No fertilizers were applied.

After 11 weeks the plants were harvested and
separated into roots, stems, and leaves. Roots
were washed carefully with flowing demineralized
water. The presence of ectomycorrhizal fungal
hyphae or of ectomycorrhizas was determined
using a dissecting microscope.

The material was dried at 60 �C, cut in a cen-
trifugal mill (Retsch ZM-1) and digested (about
100 mg material) in a microwave oven (MLS-
ETHOS) using 5 mL of an agent containing
HNO3 (65%), H2O2 (30%) and H2O in the ratio
2.5:1:1. In order to provide a quality control, a
standard material (ray grass, CRM 281) was
integrated in each series.

The Cd content of the dissolved plant mate-
rial was determined by means of atomic absorp-
tion spectrometry (Varian SpectrAA 300,
6TA96). Each sample was measured three times,
repeating the measurements if the standard devi-
ation exceeded 10%.
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Differences between treatments were assessed
by one- or two-factorial analysis of variance
(ANOVA). Least significant differences were cal-
culated at P £ 0.05 using Fisher’s PLSD test. All
tests were conducted using StatView 4.5.

Results

Biomass and Cd concentrations

Fungal hyphae were found along plant roots in
all inoculated pots. However, formation of
mycorrhizas containing a typical fungal mantel
were only observed in P. canadensis inoculated
with P. involutus in about 5% of all short roots.
In the controls without inoculums no fungal
hyphae were found.

The contribution of the three different fungi
to the biomass and the Cd concentrations in the
plants are shown in Table 1 for P. canadensis
and Table 2 for S. viminalis, respectively. Obvi-
ously, the biomass production of P. canadensis
was higher than that of S. viminalis, particularly
in the leaves. Neither of the two plant species
were strongly influenced on their biomass produc-
tion by the different fungi, even though in both
cases the controls tended to show the lowest bio-
mass (not significant), and P. canadensis tended to
show (not significant) enhanced biomass in treat-
ments with P. involutus and H. crustuliniforme.

Both plant species showed comparable Cd
concentrations in the roots and stems, whereas

concentrations in the leaves of S. viminalis were
much higher than in P. canadensis (Tables 1 and 2).

Paxillus involutus significantly enhanced Cd
concentrations in the above ground material of
P. canadensis, compared to the controls and to
the treatment with H. crustuliniforme (Table 1).
The treatment with P. tinctorius also led to sig-
nificantly higher above ground concentrations,
but this effect was less pronounced than ob-
served in P. involutus. Regarding the different
plant parts, Cd concentrations were highest in
the roots. The results in Table 2 show that
S. viminalis contained similar or higher Cd con-
centrations in the leaves than in the roots. Com-
pared to the controls, P. involutus did not
significantly affect Cd concentrations. Treatments
with H. crustuliniforme and P. tinctorius showed
reduced Cd concentrations in the leaves or roots,
respectively, and higher concentrations in the
stems.

Cadmium uptake and root to shoot translocation

Pisolithus tinctorius and P. involutus led to a
higher transfer of Cd from the soil into the roots
of P. canadensis (Table 3), when compared to the
effect of H. crustuliniforme. Regarding the above
ground material, P. involutus supported the
translocation of Cd to the leaves when compared
to the controls. In the case of S. viminalis, the
treatment with P. tinctorius showed a signifi-
cantly reduced transfer to the roots. No other
significant effects were observed.

Table 1. Biomass and Cd concentrations of Populus canadensis inoculated with three different mycorrhizal fungi or non-inoculated
controls

Roots Stem Leaves

Biomass (g)

Control 0.52 ± 0.10 a 2.70 ± 0.39 b 6.01 ± 0.95 a

H. crustuliniforme 0.66 ± 0.21 a 4.05 ± 0.44 a 7.52 ± 0.54 a

P. involutus 0.71 ± 0.14 a 4.28 ± 0.52 a 7.26 ± 0.53 a

P. tinctorius 0.43 ± 0.09 a 3.43 ± 0.37 ab 6.35 ± 0.45 a

Cd concentration (mg kg)1 dry matter)

Control 7.97 ± 0.13 ab 0.69 ± 0.09 b 1.51 ± 0.16 c

H. crustuliniforme 6.63 ± 0.35 b 0.77 ± 0.04 b 1.96 ± 0.11 bc

P. involutus 8.66 ± 0.44 a 1.02 ± 0.06 a 2.74 ± 0.34 a

P. tinctorius 9.61 ± 1.04 a 0.85 ± 0.07 ab 2.20 ± 0.07 ab

Values are means and standard errors of four replicates. Values within columns followed by different letters are significantly different at
P £ 0.05.

248



Total cadmium uptake

In general, the data revealed that the Cd uptake
of P. canadensis was comparable to that of
S. viminalis (Figure 1). In both plants most Cd
was accumulated in the leaves, compared to
stems and roots.

In the case of P. canadensis, P. involutus sig-
nificantly enhanced total Cd accumulation in the
leaves compared to all other treatments, being
more than 100% higher than in the control treat-
ments. In addition, the uptake in the stems was
significantly increased. The presence of the two
other fungi also led to significantly enhanced
accumulation in the leaves.

In contrast, the fungi seemed to have little
influence on the total Cd removal of S. viminalis.

The effects observed were not statistically signifi-
cant.

Discussion

Fungal and plant growth

Even though fungal hyphae were present in all
root samples of both plant species, mycorrhizal
mantle could only be observed in the association
of P. canadensis with P. involutus. However, both
plant species are known from the literature to
form ectomycorrhiza. Püttsepp et al. (2004),
studying a S. viminalis plantation, found ectomy-
corrhizas of several genera and species, including
one species of Hebeloma. Jones et al. (1990)

Table 2. Biomass and Cd concentrations of Salix viminalis inoculated with three different mycorrhizal fungi or non-inoculated
controls

Roots Stem Leaves

Biomass (g)

Control 0.40 ± 0.18 a 2.73 ± 0.92 a 2.25 ± 0–65 a

H. crustuliniforme 0.61 ± 0.33 a 3.33 ± 1.11 a 2.66 ± 0.56 a

P. involutus 0.55 ± 0.18 a 3.95 ± 0.75 a 2.98 ± 0.50 a

P. tinctorius 0.65 ± 0.10 a 4.12 ± 0.43 a 3.21 ± 0.30 a

Cd concentration (mg kg)1 dry matter)

Control 7.42 ± 0.30 a 1.54 ± 0.18 b 7.75 ± 0.59 a

H. crustuliniforme 6.00 ± 0.21 ab 2.38 ± 0.22 a 6.30 ± 0.44 b

P. involutus 7.36 ± 0.49 a 1.97 ± 0.03 ab 7.77 ± 0.41 a

P. tinctorius 4.50 ± 1.00 b 2.06 ± 0.04 a 6.83 ± 0.24 ab

Values are means and standard errors of four replicates. Values within columns followed by different letters are significantly different at
P £ 0.05.

Table 3. Transfer (soil to root) and translocation (root to stems or leaves) coefficients of Cd for P. canadensis and S. viminalis
inoculated with three different mycorrhizal fungi or non-inoculated controls

Transfer (roots/soil) Translocation I (stem/root) Translocation II (leaves/roots)

P. canadensis

Control 4.17 ± 0.07 ab 0.10 ± 0.00 a 0.20 ± 0.02 b

H. crustuliniforme 3.47 ± 0.18 b 0.12 ± 0.01 a 0.30 ± 0.01 ab

P. involutus 4.54 ± 0.23 a 0.12 ± 0.01 a 0.32 ± 0.06 a

P. tinctorius 5.03 ± 0.55 a 0.09 ± 0.01 a 0.24 ± 0.03 ab

S. viminalis

Control 3.89 ± 0.16 a 0.18 ± 0.02 a 1.13 ± 0.04 a

H. crustuliniforme 3.14 ± 0.11 ab 0.40 ± 0.04 a 1.06 ± 0.09 a

P. involutus 3.85 ± 0.26 a 0.27 ± 0.02 a 1.08 ± 0.14 a

P. tinctorius 2.35 ± 0.52 b 0.60 ± 0.21 a 1.94 ± 0.64 a

Values are means and standard errors of four replicates. Values within columns followed by different letters are significantly different at
P £ 0.05.
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combined S. viminalis plants with Laccaria prox-
ima and Telephora terrestris and observed typical
features of ectomycorrhiza. A study conducted
by Heslin and Douglas (1986) found typical
mycorrhiza in combination with the three fungi
used in our study and a poplar hybrid. In pot and
field experiments Loree et al. (1989) observed mycor-
rhizal structures with S. viminalis and H. crustulini-
forme and P. involutus, respectively.

One reason for the poor formation of mycor-
rhizas is very likely the unfavorable soil condi-
tions, e.g. the high pH. However, it remains
unclear which soil parameters hampered the
mycorrhiza formation. Since the soil was under
agricultural use it is also possible that high nutri-
ent levels impaired the mycorrhiza formation.
However, nutrient levels were not examined in
this survey since focus was laid on parameters
affecting the Cd availability. It could also have
been that the presence of high heavy metal con-
centrations, or the combination of the three met-
als, prevented the fungi from rapidly growing
and forming the mycorrhiza within the time
frame of the experiment. However, an in vitro
experiment, described in Tam (1995), showed
that e.g. P. tinctorius showed high resistance to a

variety of heavy metals (including Cd, Cu and
Zn) when compared to other fungi.

Besides of a qualitative check on the plants’
aspect, the biomass was used as an indicator for
heavy metal tolerance or vitality of the plants
(Godbold et al., 1998; Turner, 1994). The fact
that none of the treatments led to significantly
lower biomass, combined with the absence of
typical insufficiency symptoms in the aspect of
the plants, is interpreted as an indication that in
no case the heavy metal concentrations endan-
gered the vitality of the plants in the time frame
of this experiment. The fact that the poplars pro-
duced even more biomass than the fast growing
willows, particularly in the leaves, is important
for the total Cd uptake, and consequently, for
successful use as phytoremediation plant.

Contribution of mycorrhiza

The association of P. canadensis with P. involutus
clearly showed that the presence of fungi and
mycorrhization enhanced the total Cd uptake by
the plants. In literature it is well documented that
mycorrhiza can support the heavy metal uptake of
plants in the case of low soil concentrations

Figure 1. Total Cd content of P. canadensis and S. viminalis showing the different treatments. Values are means and standard er-
rors of four individual plants. Bars with different letters are significantly different at P £ 0.05. Probability level for ANOVA:
ns = not significant; * = significant at P £ 0.05; **** = significant at P £ 0.0001.
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(Colpaert and Van Assche, 1987; Godbold et al.,
1998). However, an enhancement of heavy metal
uptake in plants, induced by mycorrhiza, in the
case of high contaminations is not often found. In
an experiment from Colpaert and Van Assche
(1992) some strains of ectomycorrhizal fungi
caused decreased Zn concentrations in the needles
of Pinus sylvestris, whereas the fungus Telephora
terrestris enhanced the contents. As discussed la-
ter, the augmentation of Cd concentration in the
present study went hand in hand with an increased
translocation, which is of main importance for
phytoextraction. Thus, the data indeed suggests
that an appropriate application of ectomycorrhi-
zal fungi can significantly support the capacity of
Cd extraction in the case of P. canadensis.

As shown, the significant enhancements of Cd
uptake are not necessarily dependent on the for-
mation of mycorrhizas, but are due to the simple
presence of fungal mycelia in the pots. This was
observed in the case of Cd concentration in pop-
lar leaves with the treatment P. tinctorius com-
pared to the control (see Table 1). It has been
demonstrated that mycorrhizal fungal hyphae
and plant roots can interact through phytohor-
mones such as auxins or IAA (Beyrle, 1995; Sal-
zer and Hager, 1993). For example, Allen (1991)
described reduced metal tolerance of non-mycor-
rhizal plants in the presence of mycorrhizal fun-
gi, showing that influences on metal physiology
may occur without the formation of mycorrhiza.
In addition, fungi are known to release organic
acids that enhance availability of Cd in the rhi-
zosphere and thus support the uptake (Leyval
et al., 1993; Turnau et al., 1995).

The above mentioned increase of Cd uptake
in the association of poplars with P. involutus
could be the result of fungal exudates such as or-
ganic acids or siderophores (Leyval et al., 1997).
Such an effect of the fungi might be more clearly
observed in a natural soil with various metal
binding sites, as was used in the present study.
This is unlike most laboratory experiments where
usually soluble metal salts are combined with
substrates such as sand. In particular, P. involu-
tus is able to dissolve minerals by exuding oxalic
acid, particularly in calcareous soils (Lapeyrie
et al., 1987, 1991).

Baker and Walker (1990) suggested a classifi-
cation system of plant strategies for heavy metal
pollutions, distinguishing between excluder, accu-

mulator, and indicator strategies. The observed
influence of P. involutus on the Cd uptake of
P. canadensis is interpreted in the sense of the
accumulator strategy, since high Cd concentra-
tions and high translocation rates are combined
with high (or at least not low) yields. In an anal-
ogy for proposed combinations of heavy metal
tolerant fungi with an excluder plant (Allen,
1991; Wilkinson and Dickinson, 1995) we suggest
that an association of a fungus that enhances the
metal uptake with a heavy metal accumulator
plant can also be a potential strategy to cope
with heavy metal pollutions. Yet it is not clear if
this can lead to mutual advantages for the sym-
bionts in longer time frames, e.g. indicated by in-
creased biomass. In this context it should be
mentioned that in some cases fungi were found
to enhance toxicity of heavy metals for plants
(Godbold, 1994). These accumulator associations
are of major interest for phytoremediation and
should be further investigated in this context.

Similarly, the high translocation factors of
S. viminalis with P. tinctorius are correlated with
low root concentrations and high yields that are
typical symptoms of the excluder strategy (Baker
and Walker, 1990). In this case a protective func-
tion (filter function) of the fungi is supposed, as
reported in several studies (Bücking and Heyser,
1994; Colpaert and Van Assche, 1992; Jones and
Hutchinson, 1988; Tam, 1995) in the case of high
heavy metal pollutions.

Conclusions for phytoremediation

In order to combine the Cd concentrations in
plant tissue with the biomass the total Cd uptake
was calculated for plant parts and compared be-
tween the different treatments and plants. This
parameter is crucial for successful use of the
plants as phytoextractors. Generally, P. canaden-
sis shows a relatively high total Cd uptake,
which makes it a potential alternative to other
suggested accumulators such as S. viminalis or
Nicotiana tabacum (Hammer et al., 2003; Kayser
et al., 2000) for the phytoremediation of Cd con-
taminated sites.

Generally, S. viminalis had higher Cd concen-
trations in leaves and stems than P. canadensis,
which is in line with the literature (e.g. Robinson
et al., 2000). Robinson et al. (2000) conducted
pot experiments using several poplar and willow
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varieties exposed to soil contaminated with dif-
fering levels of Cd. At relatively low soil concen-
trations (0.6–5.6 mg kg)1 dry matter) the plant
tissues showed concentrations in the range found
in this study. However, in a field trial on a heav-
ily polluted soil, Robinson et al. (2000) report Cd
concentrations in the leaves of a poplar variety
of up to 200 mg kg)1. That is almost ten times
more than discovered in this study, and gives a
hint for the potential of at least some fast grow-
ing poplar varieties for phytoextraction.

The Cd concentration (mg kg)1 dry matter) in
all parts of both plants, except the stems of
P. canadensis, showed higher concentrations than
the soil total Cd concentration. However, the
maximum total Cd content in plants (around
0.003 mg in the case of P. canadensis in associa-
tion with P. involutus, and 0.0035 mg in the case
of S. viminalis with the same fungus) corresponds
only to approximately 1% of total Cd content in
the soil per pot. Accordingly, a remediation of
this soil would require a great deal of time. As
mentioned before, the soil used here is not favor-
able for phytoremediation due to its high pH
and CEC (see materials and methods). However,
the proper scale to discuss plants’ performance in
phytoremediation is the long term field trial.
Here we refer to a survey describing a five year
field trial using S. viminalis on heavy metal con-
taminated sites (Hammer et al., 2003).

Even though the filter function of fungi, in
the case of high contaminated soils, dominates
the literature, this study shows that a 100%
enhancement of the total Cd uptake is possible.
This makes the respective association an interest-
ing option for the improvement of the efficacy of
phytoremediation. The technical application of
fungi in phytoremediation can lean on the experi-
ences gained in inoculation programs concerning
reforestation activities in case of industrial tree
species (Haselwandter and Bowen, 1996; Saxena
et al., 1999; Smith and Read, 1997).

However, it needs to be investigated whether
or not the effects found can also be observed in
field experiments. Jones and Hutchinson (1988)
suggest that the heavy metal tolerance of fungi
found in in-vitro experiments cannot be trans-
ferred to field conditions in any case. Wallenda
and Kottke (1998) provided a review about phys-
iological adaptations of ectomycorrhiza with re-
gard to nitrogen supply suggesting mycorrhizal

adaptation to site-specific conditions. Wilkinson
and Dickinson (1995) mentioned the capacity of
adaptation and the genetic variation found in
fungi, emphasizing that genotypes of tolerant
fungi are selected by their tolerance at heavy me-
tal contaminated sites. This variation and adap-
tation capacity can be seen as an opportunity to
successfully combine tolerant fungi with tolerant
plant varieties, leading to associations in the
sense of the accumulator strategy. These associa-
tions, as found in the case of P. canadensis with
P. involutus, should be taken into account in at-
tempts to optimize phytoremediation in forth-
coming pot trials and on the field scale.
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