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Abstract. In this paper, we describe recent work at Idiap Research Institute in the
domain of multilingual speech processing and provide some insights into emerging
challenges for the research community. Multilingual speech processing has been a
topic of ongoing interest to the research community for many years and the field is
now receiving renewed interest owing to two strong driving forces. Firstly, technical
advances in speech recognition and synthesis are posing new challenges and opportu-
nities to researchers. For example, discriminative features are seeing wide application
by the speech recognition community, but additional issues arise when using such
features in a multilingual setting. Another example is the apparent convergence of
speech recognition and speech synthesis technologies in the form of statistical para-
metric methodologies. This convergence enables the investigation of new approaches
to unified modelling for automatic speech recognition and text-to-speech synthesis
(TTS) as well as cross-lingual speaker adaptation for TTS. The second driving force is
the impetus being provided by both government and industry for technologies to help
break down domestic and international language barriers, these also being barriers to
the expansion of policy and commerce. Speech-to-speech and speech-to-text trans-
lation are thus emerging as key technologies at the heart of which lies multilingual
speech processing.

Keywords. Multilingual speech processing; speech synthesis; speech recognition;
speech-to-speech translation; language identification.

1. Introduction

Multilingual speech processing (MLSP) is a distinct field of research in speech and language
technology that combines many of the techniques developed for monolingual systems with
new approaches that address specific challenges of the multilingual domain. Research in MLSP
should be of particular interest to countries such as India and Switzerland where there are

∗For correspondence

885



886 Hervé Bourlard et al

several officially recognized languages and many more additional languages are commonly spo-
ken. In such multilingual environments, the language barrier can pose significant difficulties in
both commerce and government administration and technological advances that could help break
down this barrier would be of great cultural and economic value.

In this paper, we discuss current trends in MLSP and how these relate to advances in the
general domain of speech and language technology. Examples of current advances and trends in
the field of MLSP are provided in the form of case studies of research being conducted at Idiap
Research Institute in the framework of international and national research programmes. The first
case study presents work in personalized speech-to-speech translation, in which we have made
significant advances in developing methods for unsupervised cross-lingual adaptation of hidden
Markov model (HMM)-based speech synthesis. In addition, this work has been closely linked
with efforts to develop unified models for automatic speech recognition (ASR) and text-to-speech
synthesis (TTS), thus highlighting the potential of MLSP to impact broader research topics.

The second case study looks at discriminative methods in ASR and how these have been
applied to problems in MLSP. This includes a study of multilingual acoustic models, in par-
ticular in the context of multilayer perceptron (MLP)-based discriminative feature extraction.
The major component of this study is the use of hierarchical classification frameworks that have
the potential to provide more robust performance while simplifying means to perform cross-
language knowledge transfer. The third and final case study looks at the related tasks of language
identification and out-of-language detection using ASR.

The paper is organized as follows: in section 2, we present a brief literature review of mul-
tilingual speech processing, followed by a study of more recent trends in speech and language
technology and how these impact MLSP in section 3. In sections 4, 5 and 6, we present the three
case studies on work being conducted at Idiap on personalized speech-to-speech translation,
discriminative features in multilingual ASR, and language identification and out-of-language
detection, respectively. Finally, in section 7 we provide some insights into future opportunities
and challenges in MLSP.

2. Multilingual speech processing

In language, there are normally two forms of communication, namely, spoken form and writ-
ten form1. Depending upon the granularity of representation, both these forms can have
different or common representation in terms of basic units. For instance, in spoken form,
phonemes/syllables can be considered as the basic unit. Similarly, in the case of (most) written
forms, graphemes/characters are the smallest basic units. However, above the smaller units, a
word2 can be seen as a common unit for both spoken and written forms. The word then in turn
can be described in terms of the smaller basic units corresponding to the spoken form or writ-
ten form. For a given language, there can be a consistent relationship between spoken form and
written form. However, the relationship may not be same across languages. Addressing the issue
of a common basic representation across languages is central to MLSP, although this can raise
different challenges in applications such as ASR and TTS.

1It is important to note that not all languages spoken in the world have both forms. There are languages that have spoken
form but no written form.

2It should be noted that in case of some languages, the written form of word and the character representation may be
considered same; e.g. Mandarin language.
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Most commonly, the idea of a unified phonetic lexicon is often used as the binding element
in MLSP systems. Such a lexicon is available in the International Phonetic Association (IPA)
system (IPA 1999). Most phonetic lexicons are in practice just alternative parameterizations of
the IPA symbols. Some IPA symbols are difficult to represent in computers, and are catered to
by using the SAMPA3 and SAMPROSA4 systems. Although SAMPA was originally designed
for just European languages, it has occasionally been extended to others (e.g., Chinese (Chen
et al 2000)). The worldbet system described in (Hieronymus 1993) is more thorough. There is
a one-to-one mapping between, say, ARPABET5 symbols and IPA symbols; notation aside, the
former is just a subset of the latter. A drawback of such a common representation is that it can
preclude the possibility of tuning aspects of systems to the particular language. For instance, the
C–V syllable structure of Japanese and tonal nature of Chinese would normally be hardwired in
a monolingual system, but this may not be feasible in the multilingual case.

In the remainder of this section, we give a brief survey of MLSP in the context of specific
applications, concentrating on ASR and TTS.

2.1 Automatic speech recognition

In the field of ASR, advances have been largely promoted by the US government via the National
Institute of Science and Technology (NIST6). Besides running evaluations, one of the the main
contributions of this has been to provide databases (Paul & Baker 1992; Kubala et al 1994).
This has led naturally to an English language focus for ASR research and development. That is
not to say that ASR research is English centric; rather, many of the algorithmic advances have
been made initially in that language. Such advances have, however, translated easily to different
languages, largely owing to the robustness of statistical approaches to the different specificities
of languages.

State-of-the-art ASR systems are stochastic in nature and are typically based on HMM.
Figure 1 illustrates a typical HMM-based ASR system for English language. From a spo-
ken language perspective, the different components of the HMM-based ASR system are as
follows.

(i) Feature extractor that extracts the relevant information from the speech signal yielding a
sequence of feature observations/vectors. Feature extraction is typically considered a lan-
guage independent process (i.e., common feature extraction algorithms are used in most
systems regardless of language), although in some cases (such as tonal languages) specific
processing should be explored.

(ii) Acoustic model that models the relation between the feature vector and units of spoken form
(sound units such as phones).

(iii) Lexicon that integrates lexical constraints on top of spoken unit level representation yielding
a unit representation that is typically common to both spoken form and written form such
as, word or morpheme.

(iv) Language model that tends to model syntactical/grammatical constraints of the spoken
language using the unit representation resulting after integrating lexical constraints.

3http://www.phon.ucl.ac.uk/home/sampa/
4http://www.phon.ucl.ac.uk/home/sampa/samprosa.htm
5http://en.wikipedia.org/wiki/Arpabet
6http://www.nist.gov/index.html
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Figure 1. Illustration of a typical HMM-based ASR system.

The HMM-based ASR system using Gaussians to model the feature observations is referred to
as HMM/GMM system (Rabiner 1989). Similarly, hybrid HMM/ANN systems refer to the case
where artificial neural networks (ANNs), typically, MLPs, are used to model the feature obser-
vations (Bourlard & Morgan 1994) and estimate phone posteriors based on the input features
within some temporal context (typically 90 ms).

In ASR, we are generally attempting to address one of two issues in MLSP. The first issue
is that of building multilingual models; that is, models that can recognize speech of multiple
languages. In building such multilingual systems, a major issue is the availability of resources. At
present, there are various resources that enable multilingual speech research. An early example is
the OGI multi-language telephone speech corpus (Muthusamy et al 1992). More recent ones are
GlobalPhone (Schultz & Waibel 1997a), SpeechDat(M)7 and SPEECON (Siemund et al 2000).
Complementary to the issue of data resources, the second major area of research in MLSP for
ASR concerns cross-language transfer. Specifically, how data resources for a given language(s)
can be used to improve ASR in another language, in particular when resources for that language
are lacking. Much of the work in cross-language transfer has built upon progress already made
in multilingual modelling.

A trivial approach to building multilingual models is to construct separate acoustic and lan-
guage models for each desired language, i.e., a monolingual system for each language. During
recognition, multiple decoders corresponding to the different monolingual systems are run in
parallel, and the recognizer output yielding the maximum likelihood is selected. As a by-product,
the identity of language is also inferred. Such an approach is simple and feasible. However, in the
light of practical issues such as portability to new languages (especially with fewer resources),
system memory and computational requirements, it may not be the best approach. Given this,
there has been considerable effort devoted to build acoustic models and language models that
are shared across languages.

Along the direction of multilingual acoustic modelling, the emphasis has been towards find-
ing a common sound unit representation that is shared across languages (Schultz 2006). In
the literature, a popular approach towards this is the creation of a ‘universal/global’ phone
set by first pooling the phone sets of different languages together and then merging them (i)
based on heuristics/knowledge such as IPA-based (Köhler 1996) or SAMPA-based (Ackermann

7http://www.speechdat.org/SpeechDat.html
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et al 1996), articulatory features (Dalsgaard & Andersen 1992), (ii) in a data-driven man-
ner by clustering (Köhler 1999) or by measuring phoneme similarity such as using confusion
matrix (Andersen et al 1993), or (iii) both i.e., knowledge-based merging followed by data-
driven clustering (Schultz & Waibel 1998; Köhler 1999). The underlying assumption here is that
the articulatory representations of phones are similar across languages, and thus their acous-
tic realizations can be considered language independent. These studies were mostly done in
the framework of modelling context-independent phones. The approach of knowledge-based
merging followed by data-driven clustering for context-dependent phone models was further
investigated by Schultz & Waibel (2001).

In the literature (Schultz 2006), different studies have been reported for cross-language trans-
fer, where an acoustic model trained on a different language or many different languages
(excluding target language) is (i) used directly when no data from the target language is avail-
able (Constantinescu & Chollet 1997), (ii) adapted when limited data from target language is
available (Wheatley et al 1994; Köhler 1998), or (iii) used as seed model and then trained with
large amount of data (Osterholtz et al 1992; Schultz & Waibel 1997b; Maskey et al 2004).
When compared to the use of monolingual acoustic models, it has been typically observed that
multilingual acoustic models yield a better starting point for such cross-language transfer.

From the above brief literature overview, it is clear that there has been reasonable success in
constructing multilingual acoustic models. However, developing multilingual language models
is still an open issue (Khudanpur 2006). Standard ASR systems typically use N-gram language
models, where word sequences are modelled by a N th order Markov chain, i.e., the model con-
sists of probability to transit to a word given a word sequence of length N 8. When estimating
N-gram language models for different languages, the language-specific characteristic plays a
greater role. For instance, at the word level, the perplexity of the language can vary greatly
depending on the degree of morphological inflection. As a result, morphologically rich languages
can have many more words, thus leading to morphological-level rather than word-level repre-
sentations. Also, some morphologically rich languages tend to allow free word ordering, which
is clearly not well handled by simple N-gram models. Additionally, character-based languages,
such as Chinese and Japanese, do not explicitly identify word boundaries. In such cases, a system
for word segmentation is necessary. In spite of all these language-specific issues, there is need for
multilingual language models to handle, for example, instances of ‘code switching9’. Research
in the direction of building multilingual language models has mainly focussed on (Weng et al
1997; Fügen et al 2003; Khudanpur 2006) (i) estimation of a single language model using the
data from all languages, or (ii) estimation of a language model for each language separately
including the words from other languages and interpolation of these. It has been observed that
the latter approach yields better performance than the first approach.

2.2 Text-to-speech synthesis

In the domain of TTS, issues in multilingual speech processing have been dominated by two
main areas. This is partially due to the limitations of the dominant unit selection paradigm,
which directly uses the recordings from voice talents in the generation of synthesized speech. It
is clear that multilingual techniques in unit selection are thus bound by the limited availability

8 N = 0, 1, 2 refers to unigram, bigram, trigram, respectively.
9Code switching refers to the case where the user switches from one language to another language. The switch can
happen within an utterance or across utterances.
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of multilingual voice talents and more so by the availability of such recordings to the research
community, although some research has been conducted to overcome this (Kominek 2009).

The first area concerns the construction of TTS voices in multiple languages, which is dealt
with in detail by Sproat (1997). This area of research is largely concerned with the development
of methodologies that can be made portable across languages, and include issues in text parsing,
intonation and waveform generation. Many of these general issues are mirrored in challenges
faced by the multilingual ASR community, as has been discussed in the opening of this section,
although many of the related challenges are arguably more complex in TTS due to the extensive
use of supra-segmental features and the greater degree of language dependence of such features –
there is no ‘international prosodic alphabet’. Much progress in this direction has been made
owing to efforts of the research community towards the development of freely available corpora
and TTS tools (for example, see Festival (Black & Taylor 1997), Festvox (Black & Lenzo 2007)
and MBROLA (Dutoit et al 1996)), which has enabled the development of synthesis systems
in many languages. Although, the systems that have been developed using these resources have
remained largely independent of one another, these developments have laid the ground work for
future multilingual applications of TTS.

A second area of research that has a more evident emphasis on multilingual capabilities is
that of polyglot synthesis (Traber et al 1999). In polyglot synthesis, the goal is the synthesis
of mixed language utterances, hence, a major challenge is in proper text parsing that enables
correct pronunciation and intonation of such speech. Given appropriate text parsing, the main
concern of unit selection synthesis is the efficient design of a mixed-language inventory of
speech.

A related field of research, voice conversion, has helped overcome some of the limitations of
unit selection methods with respect to MLSP. In particular, the application of voice conversion
to cross-lignual scenarios has been investigated, especially in the context of speech-to-speech
translation (Suendermann et al 2006). Drawbacks of voice conversion techniques lie in their
limited ability to modify supra-segmental speech characteristics and the requirement of parallel
data for learning the conversion, although some progress in this direction has been made.

2.3 Automatic language recognition

The objective of automatic language recognition is to recognize the spoken language by auto-
matic analysis of speech data. Automatic language recognition can be classified into two tasks
(i) automatic language identification and (ii) automatic language detection. In principle, this
classification is similar to speaker identification and speaker verification in speaker recognition
research.

The goal of automatic language identification (LID) is to classify a given input speech utter-
ance as belonging to one out of L languages. Various possible applications of LID can be
found in multilingual speech processing, call routing, interactive voice response applications,
and front-end processing for speech translation translation. There are a variety of cues, includ-
ing phonological, morphological, syntactical or prosodic cues, that can be exploited by an LID
system (Zissman & Berkling 2001; Navratil 2006). In the literature, different approaches have
been proposed to perform LID, such as using only low-level spectral information (Sugiyama
1991), using phoneme recognizers in conjunction with phonotactic constraints (Navratil 2001;
Lamel & Gauvain 1993) or using medium- to high-level information (e.g. lexical constraints,
language models) through speech recognition (Schultz et al 1996). Among these, the most com-
mon approach is to use phoneme recognizers along with phonotactic constraints. The phoneme
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recognizer can be language-dependent (Lamel & Gauvain 1993) (using a language-specific pho-
neme set) or language-independent (Berkling & Barnard 1995) (using a multilingual phoneme
set). The phonotactic constraints are typically modelled by a phoneme bigram estimated on
phonetically labelled data.

Given a segment of speech signal and associated claimed language, the goal of automatic
language detection is to verify the claim or, in other words, choose one of the two possible
hypotheses. A null hypothesis that the given speech segment belongs to the claimed language
or the alternative hypothesis that the given segment does not belong to the claimed language.
Usually, this is achieved by training a model corresponding to the null hypothesis using data
from the target language, and a separate model corresponding to the alternate hypothesis using
data from different languages (Campbell et al 2006; Burget et al 2009).

3. Recent trends in speech and language processing

We can identify a number of advances in speech and language processing that have significantly
impacted MLSP. One of the most important developments has been the rise of statistical machine
translation that has resulted in substantial funding and, consequently, research activity being
directed towards machine translation and its related multilingual applications (speech-to-speech,
speech-to-text translation, etc.). Several notable projects have been pursued in recent years, to
mention only a few: Spoken Language Communication and Translation System for Tactical Use
(TRANSTAC DARPA initiative), Technology and Corpora for Speech to Speech Translation
(TC-STAR FP6 European project), and the Global Autonomous Language Exploitation (GALE
DARPA initiative10). Research in these projects not only needs to focus on the optimization of
individual components, but also on how the components can be integrated together effectively
to provide overall improved output. This is not a trivial task. For instance, speech recognition
systems are typically optimized to reduce word error rate (WER) (or character/letter error rate,
CER/LER, in some languages). The WER measure gives equal importance to the different types
of error that can be committed by the ASR system, namely, deletion, insertion and substitution.
Suppose, if the ASR system output (i.e., text transcript) is processed by a machine translation
system, then deletion error is probably more expensive compared to other two errors as all infor-
mation is lost. It then follows that the optimal performance with respect to WER may not provide
the best possible translated output and vice versa. Indeed, in the GALE project (in the context
of translation of Mandarin language speech data to English), it was observed that CER is less
correlated with translation error rate when compared to objective functions such as SParseval
(parsing-based word string scoring function) (Hillard et al 2008).

Similarly, the relatively recent emergence of statistical parametric speech synthesis (Zen et al
2009) has resulted in a flurry of new research activities and is contributing to substantial efforts
to ‘cross-pollinate’ ideas between ASR and TTS, as techniques in these two fields have become
increasingly interrelated (Ostendorf & Bulyko 2002; Gales & Young 2007). HMM-based TTS
has helped accelerate efforts in the development of multilingual TTS by providing a means to
easily train synthesis systems for new languages, where adaptive techniques may prove partic-
ularly useful (Latorre 2006; Kominek 2009). It is also evident that the dominant source-filter
model employed in HMM-based TTS (Koishida et al 1994; Kawahara et al 2001) may not be

10See respectively: http://www.darpa.mil/ipto/programs/transtac/transtac.asp; http://www.tc-star.org; http://www.darpa.
mil/ipto/programs/gale/gale.asp
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ideal for all languages and further work is being carried out to address this problem (Silén et al
2009).

There has also been increasing effort in the use of lightly supervised and unsupervised
training methods for ASR (Lamel et al 2002), which has more recently been applied to TTS
(Yamagishi et al 2009). Methods that use ‘found’ data from the internet have also been shown
to be useful (Bulyko et al 2007; Wan & Hain 2006). Such approaches have the potential to have
a great impact on efforts in MLSP for poorer resourced languages or languages with little tran-
scribed material, as has been demonstrated by Lööf et al (2009). There have also been efforts in
cross-lingual language modelling, where cross-lingual information retrieval and machine trans-
lation have been used with (i) sentence-aligned parallel corpus (Kim & Khudanpur 2002), (ii)
document-aligned corpus (Kim & Khudanpur 2003), and (iii) latent semantic analysis (Kim &
Khudanpur 2004) to improve language modelling for resource-deficient language.

Finally, relatively recent efforts have been introduced to integrate more appropriate training
criteria in machine learning algorithms that provide more discriminative models in the case of
ASR (Schlüter et al 2001) and better quality synthesis for TTS (Wu & Wang 2006). This has not
only been restricted to the estimation of model parameters, but has also been applied to feature
extraction, such as MLP features (Hermansky et al 2000). These methods have been shown to
provide significant improvements for monolingual ASR systems, but generalization to the mul-
tilingual case has not been extensively investigated. There are different ways for improvement
of these methods, such as use of hierarchical methods based on MLP (Pinto 2010) or conditional
random fields (Fosler-Lussier & Morris 2008), MLP regularization approach (Li & Bilmes 2006)
to handle resource (data) differences across languages through cross-language transfer.

3.1 Recent and ongoing MLSP research at Idiap Research Institute

At Idiap, multilingual speech processing is an important research objective given Switzerland’s
location within Europe, at the intersection of three major linguistic cultures, and Swiss soci-
ety itself being inherently multilingual. Towards this end, we have been conducting research in
MLSP as part of several internationally and nationally funded projects, including for instance:

(i) EMIME11 (Effective Multilingual Interaction in Mobile Environments): This FP7 EU
project commenced in March 2008 and is investigating the personalization of speech-to-
speech translation systems. The EMIME project aims to achieve its goal through the use of
HMM-based ASR and TTS, more specifically, the main research goal is the development of
techniques that enable unsupervised cross-lingual speaker adaptation for TTS.

(ii) GALE12 (Global Autonomous Language Exploitation): Idiap was involved in this DARPA-
funded project as part of the SRI-lead team. The project primarily involved machine
translation and information distillation. We have mostly studied the development of new dis-
criminative MLP-based features and MLP combination methods for the ASR components.
Despite cessation of the project, we have continued our research of this topic.

(iii) MULTI (MULTImodal Interaction and MULTImedia Data Mining) is a Swiss National
Science Foundation (SNSF) project carrying out fundamental research in several related
fields of multimodal interaction and multimedia data mining. A recently initiated MULTI
sub-project is conducting research in MLP-based methods for language identification and
multilingual speech recognition with a focus on Swiss languages.

11www.emime.org. See Wester et al (2010) for an overview of the project.
12http://www-speech.sri.com/projects/GALE
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(iv) COMTIS13 (Improving the coherence of machine translation output by modelling intersen-
tential relations) is a new machine translation project funded by the SNSF that was started
on March 2010. The project is concerned with modelling the coherency between sentences
in machine translation output, thereby improving overall translation performance.

In the remainder of the paper, we present three case studies conducted in MSLP at Idiap that
have resulted from participation in the above-mentioned research projects.

4. Personalizing speech-to-speech translation

One aspect which we take for granted in spoken communication that is largely missing from
current speech-to-speech translation (SST) technology is a means to facilitate the personal nature
of spoken dialogue. That is, state-of-the-art approaches lack or are limited in their ability to
be personalized in an effective and unobtrusive manner, thereby acting as a barrier to natural
communication. The use of a common framework for ASR and TTS provides several interesting
research opportunities in the framework of SST, including the development of unified approaches
for the modelling of speech for recognition and synthesis that will need to adapt across languages
to each user’s speaking characteristics. In this section, we present progress that has recently been
made by Idiap in the EMIME project, but firstly, we discuss the role of translation in our study.

4.1 Machine translation as the glue

Unlike in most other speech-to-speech translation projects, translation plays a less prominent
role in EMIME. The key focus of research is the personalization of SST, which essentially
requires the development of techniques for unsupervised cross-lingual speaker adaptation for
HMM-based TTS. Translation acts as the ‘glue’ that links the input and output languages for
cross-lingual adaptation and also links ASR and TTS for unsupervised adaptation. Thus, we can
consider our goal as comprising two main tasks:

• To bridge the gap between ASR and TTS by investigating techniques in unsupervised
adaptation for TTS.

• To bridge the gap between languages such that we can perform cross-lingual adaptation of
HMM-based TTS.

We are working with several languages that encompass a range of language families, geo-
graphical regions and partner competencies: English, Finnish, Japanese and Mandarin. English
always comprises one of the languages in each SST language pair. At Idiap, our research has pri-
marily focused on the English–Mandarin language pair. English–Mandarin is arguably the most
disparate of the language pairs under consideration. Although, this poses a greater challenge, it
may better enable us to ascertain and analyse differences between the different approaches under
investigation.

In performing unsupervised cross-lingual speaker adaptation within a speech-to-speech trans-
lation framework, we consider two possible approaches: a ‘pipeline’ framework, in which
individual components operate largely independent of one another; and a ‘unified’ framework in
which ASR and TTS modules share common components such as feature extraction and acoustic

13www.idiap.ch/comtis
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models. It should be clear that, while the pipeline framework contains a great deal of redundancy,
it allows each component to be separately optimized, whereas the unified framework minimizes
redundancy, but possibly at a cost to performance. Figure 2 illustrates these two frameworks.

(a)

(b)

Figure 2. Frameworks for speech-to-speech translation. ‘ASR ⇒ TTS’ denotes mapping of ASR (tri-
phone context) labels to TTS (full context) labels via a TTS front-end. ‘SrcLang ⇒ TrgLang’ denotes
cross-lingual speaker adaptation (CLSA) from the input language to the output language (see section 4.3
for further details). (a) Pipeline approach, whereby ASR and TTS feature extraction and models do not
share common components. Separate TTS models may also be employed in input and output languages.
(b) Unified approach, whereby feature extraction and acoustic models are shared between ASR and TTS
and across languages.
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4.2 Bridging the gap between ASR and TTS

Statistical parametric approaches have emerged in recent years as a dominant paradigm for TTS.
Training of such models is very similar to the training of models for ASR – acoustic features
are first generated that are used to train acoustic models given corresponding labels. During
synthesis, the label sequence is generated from the text to be synthesized. The acoustic model is
then used to generate the maximum a posteriori probability observation sequence for the given
labels, taking into account the explicit relationship between dynamic and static components of
the feature vector (Zen et al 2009). This can be considered the inverse of the inference procedure
carried out in ASR. Other major differences between ASR and TTS include14 the following

• Acoustic features: should provide necessary information to reconstruct the speech signal,
normally including pitch and excitation information

• Labels: take into account a much broader range of acoustic and prosodic contexts. Such
‘full’ context labels are normally produced by first parsing text with a TTS front-end; and

• Models: normally differ from standard HMM by including explicit duration modelling (hid-
den semi-Markov model – HSMM (Zen et al 2007)) and provide appropriate distributions
for modelling of discontinuous features such as pitch (multi-space probability distribution –
MSD (Tokuda et al 2002)).

To perform unsupervised speaker adaptation of TTS, we use ASR to generate transcriptions
that are necessary to adapt the TTS models. In the pipeline approach, ASR transcriptions form
the only link between the ASR and TTS modules. These erroneous ASR transcriptions are then
fed through a TTS front-end that is used to generate the ‘full-context’ labels for the adaptation
of the TTS models. In the unified approach, acoustic models and features also link the two and
adaptation of TTS is carried out implicitly during the adaptation of the ASR models without the
need for a TTS front-end.

As noted previously, paradigms for ASR and TTS have undergone a degree of convergence in
recent years and now the HMM-based approach is commonly employed for both. As part of our
initial studies, we conducted a comparison of feature extraction, acoustic modelling and adapta-
tion for ASR and TTS (Dines et al 2010). Although fully unified ASR and TTS models may be
sub-optimal, our goal was to quantify the differences between the two that would enable us to
better determine where and by how much these approaches differ. We did this by taking ASR and
TTS baselines built on a common corpus and then systematically interchanged ASR and TTS
components related to lexicon and phone set, feature extraction, model topology and speaker
adaptation. Our findings showed that many of the techniques used in ASR and TTS cannot be
simply applied to TTS and ASR, respectively without negative consequences. Despite this, we
are still interested in unified modelling – not necessarily as a means to explicitly model speech
jointly for both ASR and TTS, but rather as a means to transfer knowledge and approaches
between the two. We present two examples of this study which relate to feature extraction and
acoustic modelling.

Voice tract length normalization for speech synthesis Vocal tract length normalization
(VTLN) is a feature transformation technique that has been used extensively in speech recogni-
tion to provide robust and rapid speaker adaptation (Lee & Rose 1998). VTLN operates on the
principle that the vocal tract length varies across different speakers and the formant frequency

14Further details can be found in Dines et al (2010).
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Figure 3. Frequency warping with bilinear transform (0.42 approximates the mel-scale).

positions are inversely proportional to this. Thus, by warping the frequency scale during feature
extraction we are able to approximately account for this variability across listeners. An addi-
tional advantage of using VTLN in the context of cross-lingual adaptation is that it should be
inherently independent of the language being spoken. Building upon earlier studies in ASR, we
have been investigating the use of VTLN in statistical parametric speech synthesis.

In the context of speaker adaptive speech synthesis, the most commonly employed feature
extraction technique is the mel-generalized cepstrum (MGCEP) (Koishida et al 1994). MGCEP
analysis uses a bilinear transform to achieve spectral warping that can approximate that of
the mel auditory scale (see figure 3). The bilinear transform has also been used to perform
VTLN (McDonough 2000) and it follows that a cascade of bilinear transforms simply gives
another bilinear transform. Hence, VTLN can be made implicit to MGCEP analysis and can fur-
ther be formulated as a linear transform in the cepstral domain, which permits optimization via
grid-search or expectation-maximization.

We have shown that VTLN for TTS carries with it additional challenges. Firstly, the high-
dimensional nature of TTS features results in more severe impact of warping on the feature
space, not only making the use of Jacobian normalization imperative (Saheer et al 2010b), but
also requiring care with the initialization of the model (Saheer et al 2010c). Secondly, it is not
clear that the ideal criterion for VTLN in TTS is the same as that typically used in ASR. We
have noted that the warping factors inferred using the usual objective function do not result in
perceptible warping of the voice, while a modified criterion achieves warping that is subjectively
closer to the target speaker (but, in contrast, is detrimental to ASR performance) (Saheer et al
2010a). This result suggests, once again, the divergent nature of ASR and TTS in terms of direct
compatibility, but demonstrates the portability of fundamental techniques between the two.

Decision tree marginalization In unsupervised adaptation of TTS, we adapt synthesis models
from the noisy speech recognition output. If we wish to bypass the TTS front-end, this requires
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Figure 4. Illustration of decision tree marginalization. In the example, a question ‘Syllable_stressed?’
is marginalized out of the decision tree. Any distribution of a context that involves traversal of the
‘Syllable_stressed?’ branch will become the weighted sum of distributions reached by following both
children.

a means to adapt the full-context TTS acoustic models from the triphone-context labels gen-
erated by the ASR. Several approaches have been proposed to achieve this end, including a
method that transfers regression class trees from triphone models to full-context models (King
et al 2008) and approaches that consider triphone and full-context models using a shared set of
parameters (Dines et al 2009; Gibson 2009).

We have proposed the decision tree marginalization approach that takes a standard set of full-
context models trained for TTS and marginalizes out the contexts irrelevant to ASR (e.g., leaving
triphone only contexts) (see figure 4). The marginalized models can then be used to estimate
adaptation transforms from ASR transcriptions or can be used to directly perform the ASR,
although at a cost to performance (Dines et al 2009). We have shown that such models can be
used in unsupervised adaptation of TTS with minimal impact on synthesis quality compared to
supervised adaptation using the full-context models (Liang et al 2010).

4.3 Bridging the gap between languages

Another aspect of the EMIME project concerns the adaptation of speaker identity across lan-
guages for HMM-based TTS. As discussed earlier, multi-linguality for TTS has previously
been mostly concerned with polyglot synthesis. Likewise, ASR multilingual modelling has been
mostly concerned with building acoustic models that can recognize multiple languages or with
cross-language transfer in mind. Thus, cross-lingual speaker adaptation constitutes something of
a new task.

We define the input language as the language in which speech input is provided to the SST
system and the output language as the language in which spoken output is generated by the SST
system. To date, the main approaches that have been considered involve a mapping from mod-
els/states in the input language to models/states in the output language (Wu et al 2008, 2009).
The most successful approaches have involved state-mappings derived from KL-divergence
(KLD) between models trained on input and output language data. The mappings can then be
used to map either transforms or distributions between languages (see figure 5a).

• In transform mapping, intralingual adaptation is carried out in the input language. Gen-
erated transforms are then mapped to the output language acoustic models by associating
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Figure 5. State mapping approaches in which state emission pdfs from acoustic models for the input and
output languages are associated with each another. (a) State mapping using data mapping (shown) finds a
mapping from a state in the output language acoustic model to each state in the input language acoustic
model according to minimum KLD. Transform mapping (not shown) uses the same mapping principle, but
in the opposite direction, from input language to output language. (b) State mapping using decision tree
marginalization represents state distributions in the input language as a mixture of state distributions of the
output acoustic model.

each HMM state distribution in the output language acoustic model with a state distribu-
tion in the input language acoustic model according to the KLD criterion. Transforms are
then transferred from the input language states to the output language states according to
the defined mapping.

• In data mapping, each state in the input language acoustic model is associated with a
state from the output language acoustic model according to KLD criterion. Output lan-
guage states are then substituted for input language states according to this mapping and
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intralingual adaptation is performed. The generated transforms may then be directly applied
to the output language acoustic model.

We have concentrated on studying these HMM state mapping techniques in both supervised
and unsupervised adaptation (using decision tree marginalization) modes of operation (Liang
et al 2010). We also proposed an alternative stochastic mapping approach that uses decision tree
marginalization on the output language acoustic models to marginalize out all contexts that are
unique to the output language acoustic model, such that the resulting acoustic model can be used
directly on the input language (see figure 5b). The results of this first study showed that unsu-
pervised and supervised adaptation using maximum likelihood linear transformations (MLLT)
gave similar performance as in the intralingual adaptation scenario. This was a good result as it
demonstrated the robustness of adaptation algorithms vis-à-vis unsupervised and cross-lingual
scenarios. We also showed that the language of the reference speech plays an important role in
people’s ability to evaluate speaker similarity, a topic which is now under investigation (Wester
et al 2010; Wester 2010a,b). Finally, of the different cross-lingual adaptation approaches that
were investigated, it was apparent that those using the HMM state emission distributions of
the output language acoustic model for transform estimation were preferred over the transform
mapping approach.

In light of this final observation, we performed further analysis to ascertain where the state
mapping techniques may still be inferior to intralingual approaches specifically studying the
influence of language mismatch during adaptation and synthesis (Liang & Dines 2010). We
analysed adaptation performance with respect to differing number of transforms and amount of
adaptation data, from which it became clear that cross-lingual approaches were not effectively
able to benefit from the availability of larger quantities of adaptation data. In particular, the afore-
mentioned data mapping approach was more susceptible to take on characteristics associated
with the input language rather than input speaker, resulting in increasingly distorted synthe-
sized speech in the output language as the number of adaptation transforms was increased (see
figure 6). This behaviour was attributed to the inherent mismatch between phones in the source
and target languages and has made it clear that in order to further improve cross-lingual
adaptation, we will need to counter this mismatch during adaptation.
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Figure 6. Comparison of objective speech synthesis results for intralingual and cross-lingual adaptation.
Intralingual adaptation experiments show consistent reduction in distortion as a greater number of trans-
forms are used, whereas cross-lingual adaptation experiments show the converse. This increase in distortion
as the number of transforms increases is attributed to language mismatch between models and transforms.



900 Hervé Bourlard et al

4.4 Summary

We have presented work being conducted at Idiap as part of the EMIME speech-to-speech trans-
lation project. In this work we are not only having to deal with the challenges of multilingual
modelling for ASR and TTS, but are addressing more fundamental issues concerning unified
modelling. Our results so far indicate that direct attempts at unified modelling do not necessar-
ily present themselves as a realistic alternative to separate ASR and TTS modelling, but several
promising directions have emerged when unified modelling has been considered as a means to
port knowledge and approaches between ASR and TTS. Furthermore, our efforts towards unsu-
pervised cross-lingual adaptation have shown that good results can be achieved by using largely
conventional approaches. There have been shortcomings in the current approaches but efforts
are underway to overcome these issues.

5. MLP features and multilingual ASR

There has been sustained interest in using MLP-based discriminative features for automatic
speech recognition for several reasons.

(i) Discriminative nature of the features
(ii) Ability of MLP to handle different types of features and long temporal context at the input.

(iii) Robustness towards speaker (Zhu et al 2004) and environmental variation (Ikbal 2004)
(iv) Ability to combine multiple feature streams at MLP output level using probabilistic

methods (Misra et al 2003; Ikbal et al 2004; Valente 2009)
(v) Performance improvements obtained are scalable across different training criteria (Zheng

et al 2007), as well as with amount of data (Fousek et al 2008; Valente et al 2010).

Figure 7 depicts a typical MLP feature-based ASR system.
The main components of MLP feature extraction are (i) an MLP trained to classify

phonemes/phones and (ii) Karhunen Loeve transformation (KLT) matrix (estimated on a data
other than test data) to decorrelate the feature vectors. Optionally, during KLT dimensionality,

o

o

o

X MLP

Log
KL

Transform

prior to
final nonlinearity

MLP outputs

GMM
W

HMM
Features

MLP

Figure 7. Block diagram of ASR system based on stand-alone MLP features. X = {x1, · · · xn, · · · xN }
represents acoustic feature sequence of length N . W represents the recognized word sequence. P(qn =
i |xn) represents the a posteriori probability of phone class i ∈ {1, · · · I } estimated by MLP at time frame
n given acoustic feature vector xn , where I is the number of phone classes or output units of MLP. KL
transform refers to Karhunen Loeve transform, which can be either applied to the log of the MLP output
vectors or (more or less equivalently) to the MLP output values before the nonlinear (sigmoid/softmax)
function.
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reduction could be done. This helps in controlling the dimensionality of the feature space,
especially when the MLP features are concatenated with the standard spectral features.

Traditionally, a HMM/GMM system models acoustic features that are extracted from short-
term spectrum (usually 20–30 ms) of speech signal. The extraction of these acoustic features
is assumed to be language-independent (Schultz 2006). When compared to GMM-based mod-
elling, MLPs have the capability to model higher dimensional feature vector (e.g., standard
spectral features with temporal context). Furthermore, MLPs avoid the need to make assump-
tion about parametric distribution of input features. As a result, the use of MLP features has led
to exploration of spectro-temporal acoustic features (Morgan et al 2005; Hermansky & Fousek
2005), i.e., features that span across and characterize both time and frequency. The time span
or temporal context in this case can vary from about 250 ms to 1 s, which is about the duration
of a syllable. In literature, in the context of MLP feature, it has been found that a combination
of spectro-temporal feature processing and conventional spectral processing can lead to a better
ASR system. However, as the acoustic–phonetic relationship can differ across languages, one
may ask if such spectro-temporal speech processing techniques can also be considered language-
independent. Along this line, we present ASR studies using hierarchical MRASTA features for
two different languages in section 5.1.

An interesting aspect of MLP feature extraction is that the MLP can be trained on the data
that is different from the domain of the task (Sivadas & Hermansky 2004), while still yielding
good generalization performance. In the context of multilingual processing, this aspect can be
effectively used by training the MLP on a language which has more resources (in terms of data),
and using the MLP for languages that have fewer or no resources. This is similar to cross-lingual
transfer using acoustic models (discussed earlier in section 2.1), except that cross-lingual transfer
here is achieved at feature extraction level. Section 5.2 presents a study on cross-lingual transfer
using MLP features.

Similar to multilingual acoustic modelling, the MLP can be trained with data from different
languages to classify a ‘universal/global’ phone set. By sharing data from different languages,
such an approach not only helps in handling data issues related to multilingual ASR, but could
also help in extracting MLP features that yield a better multilingual ASR system. We present
one such recent study in section 5.3.

5.1 MLP features

In this section, we present a study using multi-resolution RASTA (MRASTA) feature and
hiearchical MRASTA feature (hier-MRASTA). These features were first investigated for English
language ASR system, and then extended to Mandarin language ASR system. These studies
were originally conducted as part of the DARPA GALE project. More description and details
can be found in (Valente & Hermansky 2008; Valente et al 2009).

In MRASTA feature extraction (Hermansky & Fousek 2005), first critical band auditory spec-
trum is extracted through short-term analysis of the speech signal. The number of critical bands
depends upon the bandwidth of the speech signal. On Bark scale, there are 15 and 19 critical
bands for speech signal of bandwidth 4 kHz and 8 kHz, respectively. A 600 ms long temporal
trajectory of each critical band auditory spectrum is then filtered by a bank of filters, also referred
to as MRASTA filters. The MRASTA filters are first- and second-order derivatives of Gaussian
filters with different variance/time width. In essence, MRASTA filters are multi-resolution band-
pass filters on modulation frequency. Finally, approximate derivatives across three consecutive
critical bands are computed. An MLP is then trained to classify phones/phonemes using these
features as input.
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Table 1. Comparing stand-alone MLP feature hier-MRASTA, MLP feature MRASTA,
and standard cepstral features across two different languages, namely, English and
Mandarin. The performance of English ASR system is expressed in terms of WER on
NIST RT05 evaluation data, whereas, the performance of Mandarin ASR system is
expressed in terms of CER on GALE Mandarin 2006 evaluation data.

English Mandarin

PLP MRASTA hier-MRASTA MFCC MRASTA hier-MRASTA

42.4% 45.8% 40.0% 29.9% 32.4% 27.8%

In hierarchical MRASTA feature extraction (Valente & Hermansky 2008) instead of training
a single MLP, the filter banks are split into two parts. The first part extracting high modulation
frequencies (above 10 Hz), and the second part extracting low modulation frequencies (below
10 Hz). The higher and lower modulation frequencies are then processed in a sequential fashion
using a hierarchy of MLPs. More specifically, the first stage MLP processes high modulation
frequencies, and the second stage MLP jointly processes low modulation frequencies along with
MLP features extracted using first stage MLP. For details, the reader is referred to (Valente et al
2009).

The MRASTA and hier-MRASTA features were first studied for English language. The train-
ing data consisted of 112 hours of meeting data from different sites (Valente & Hermansky
2008). Thirty-nine-dimensional PLP cepstral features consisting of 13 static coefficients, their
approximate first-order and second-order derivatives was used as baseline feature. The MLP of
MRASTA feature extractor and MLPs of hier-MRASTA feature extractor were trained to clas-
sify 45 context-independent phonemes. The HMM/GMM system was trained using HTK with
maximum likelihood criterion. The ASR systems were tested using NIST RT05 evaluation data.
The resulting WER for the systems using PLP feature, MRASTA feature and hier-MRASTA
feature are shown in table 1.

For Mandarin language ASR studies, we used 100 hours training data setup consisting of
broadcast news and broadcast conversation data. The spectral feature baseline system was trained
with 39-dimensional MFCC15 feature vector consisting of 13 static coefficients (extracted
after vocal tract length normalization), their approximate first-order and second-order time
derivatives. The MRASTA MLP and hier-MRASTA MLPs were trained to classify 71 context-
independent phonemes (with tone). During MLP feature extraction (i.e., during KLT), the
dimension of MLP feature was reduced to 35. The studies were conducted using SRI/UW/ICSI
Mandarin system with maximum likelihood training criteria. The ASR systems were tested using
GALE Mandarin 2006 evaluation data. Table 1 presents the the performance of the three systems
in terms of CER.

It can be observed that MRASTA features consistently yield the lowest recognition per-
formance across both the languages, while hier-MRASTA features consistently yield a better
system compared to the standard spectral feature PLP (in the case of English) and MFCC (in
the case of Mandarin). These results tend to show that the trends of MLP features MRASTA
and hier-MRASTA, which span longer temporal context, can generalize across languages. The
observation about generalization to other languages is further supported by studies reported in

15In Valente et al (2009), the baseline system was trained with 42-dimensional feature vector consisting of 39-
dimensional MFCC features and log pitch frequency and its approximate first- and second-time derivatives. We
dropped the log pitch frequency features as English study did not use these features.
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the literature for languages such as English, Mandarin and Arabic; where it has been observed
that MLP features (including MRASTA, hier-MRASTA, and similar processing techniques) are
complementary to standard short-term spectral-based features (Morgan et al 2005; Fousek et al
2008; Valente et al 2009). In other words, a system trained with standard cepstral features con-
catenated with MLP features consistently yield a better performance than a system trained with
only standard cepstral feature.

It has to be noted that while multilingual ASR systems aim to use the feature set that is
most language-independent, this feature set may not be the best set for an individual lan-
guage, i.e., there may be features that are more specific to a language or more specifically
applicable to a language. For instance, Mandarin is a tonal language; in this case, it has been
observed that using pitch frequency features in addition to cepstral feature usually leads to better
performance (Valente et al 2009).

5.2 Cross-lingual MLP features

MLP features are extracted by projecting spectral features along linguistic dimensions, while the
projection is ‘trained/learned’ from data. Given this, they can be applied to transfer knowledge
across domains or languages, especially for target domains or languages where less amount of
data or no data is available. In this section, we present a cross-lingual feature study, where the
MLP is trained on one language and used for feature extraction in another language. This study
was originally conducted as an extension of JHU WS0616, and as well as part of DARPA GALE
project.

The study was conducted on Mandarin language. The training data consisted of 97 hours of
broadcast news, specifically LDC Mandarin Hub4 and TDT4. The GALE 2004 Mandarin rich
transcription development and evaluation sets were used for tuning and evaluating the system,
respectively. A monolingual MLP was trained on the Mandarin data to classify 65 Mandarin
phones (with tone). A cross-lingual MLP was trained on 2000 hours of conversational telephone
speech data of English language to classify 46 context-independent phones. For both MLPs, the
spectral features used were 39-dimensional PLP cepstral coefficients with nine-frame temporal
context. For more details about the experiment, the reader is referred to Cetin et al (2007).

Table 2 shows the performance of three systems, (i) using only MFCC features, (ii) using
MFCC features appended with tandem features extracted from the Mandarin MLP (referred to
as monolingual tandem), and (iii) using MFCC feature appended with tandem feature extracted
from the English MLP (referred to as cross-lingual tandem). It can be observed that both
monolingual and cross-lingual MLP features in concatenation with MFCC feature lead to
improvement in the ASR performance. It can also be noted that the improvement using crosslin-
gual MLP features is not as significant as monolingual MLP features. This could be because
Mandarin and English are very different languages, i.e., English phonetic space may not rep-
resent well the Mandarin phonetic space. Further, it should be noted that the Mandarin MLP
was trained with speech signal of bandwidth 8 kHz whereas the English MLP was trained with
speech signal of bandwidth 4 kHz. Nevertheless, these results suggest that through MLP fea-
tures, speech data of other languages could be effectively utilized to improve ASR performance
of another language.

In the literature, similar cross-lingual studies have been reported. In Stolcke et al (2006), it
was shown that using MLP-based features extracted from English-trained MLP could improve

16http://www.clsp.jhu.edu/ws2006/groups/afsr
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Table 2. Performance of Mandarin ASR systems investigated
in the cross-lingual feature study. Monolingual tandem refers
to MLP feature extracted using MLP trained on Mandarin
data. Cross-lingual tandem refers to MLP feature extracted
using MLP trained on English data. The performance is mea-
sured in terms of CER.

Feature CER

MFCC 21.5%
MFCC+Monolingual tandem 19.5%
MFCC+Cross-lingual tandem 21.2%

Mandarin and Arabic ASR performance over the spectral feature baseline system. In a more
recent study (Toth et al 2008), cross-lingual portability of MLP features from English language
to Hungarian language was investigated by using English-trained phone and articulatory fea-
ture MLPs. In addition, a cross-lingual MLP adaptation approach was investigated where the
input-to-hidden weights and hidden biases of the MLP corresponding to Hungarian language
were initialized by English-trained MLP weights, while the hidden-to-output weights and out-
put biases were initialized randomly. The MLP was then trained on Hungarian data to classify
Hungarian context-independent phones. It has to be noted that in essence this cross-lingual MLP
adaptation approach is similar to the regularization approach proposed for MLP (Li & Bilmes
2006), where the input-to-hidden mapping is kept intact and the hidden-to-output mapping is
relearned. The ASR studies showed that cross-lingual adaptation approach often yields the best
system even when compared to the case where the MLP feature is extracted using monolingual
MLP (i.e., trained only on Hungarian data).

Although, the studies on cross-lingual MLP features are limited, it has been typically found
(including the study presented here) that using MLPs trained on a different language ‘directly’
may not yield a system better than MLP trained on target language data (if available). In other
words, to make better use of the MLPs trained on a different language, cross-lingual adaptation
or some kind of training on the target language may be necessary. The cross-lingual adapta-
tion approach discussed earlier (Toth et al 2008) is one way this could be achieved. Another
way would be to use the recently proposed hierarchical MLP-based phone posterior estimation
approach, where two stages (hierarchy) of MLPs are trained to classify context-independent
phones (Pinto et al 2008, 2011; Pinto 2010). In the first stage, the input feature to the MLPs is
a standard spectral-based feature. The input to the second stage MLP is phone posterior prob-
abilities estimated by the first stage MLP with temporal context of around 150–230 ms. This
approach has been shown to yield better phoneme recognition performance as well as ASR per-
formance than the single MLP-based approach. In the context of cross-lingual adaptation, the
first MLP can be trained on a resource rich language(s) and the second MLP can be trained on
the target language with the available data.

5.3 Multilingual MLP features

Cross-lingual MLP feature extraction considers training the MLP on a secondary language that
has more resources. In the context of multilingual speech recognition, it is possible to consider
an MLP trained to classify a universal/global phone set (instead of phone set belonging to a
particular language) using data from different languages. Similar to the case of multilingual
acoustic modelling, it can be expected that such an approach can help in sharing data from
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Table 3. Number of available utterances (utt.), and total duration in hours (h),
for each of the five involved languages. English (EN), Spanish (ES), Italian (IT),
Swiss French (SF) and Swiss German (SZ).

Lang. training dev test total

utt. h utt. h utt. h utt. h

EN 3512 1.2 390 0.1 1305 0.4 5207 1.7
ES 3932 1.4 438 0.2 1447 0.5 5817 2.0
IT 3632 1.5 416 0.2 1368 0.6 5416 2.3
SF 3809 1.4 430 0.2 1429 0.5 5668 2.1
SZ 3862 1.3 432 0.1 1426 0.5 5720 1.9
total 18747 6.8 2106 0.8 6975 2.5 27828 10.0

different languages, and can also yield a compact and better multilingual ASR system. In this
case, we refer to the MLP as a multilingual MLP, and the resulting features as multilingual MLP
features.

In a preliminary study, we investigated the multilingual MLP features on five European
languages, namely, English, Italian, Spanish, Swiss French, and Swiss German from the Speech-
Dat(II) corpus (Höge et al 1999). The data corresponding to the isolated/application words was
used for this study. Table 3 shows the data distribution for different languages. We used the dic-
tionary (based on the SAMPA phone set) provided along with the database. Table 4 shows the
number of context-independent phones, and the number of application words (size of lexicon)
for each language.

We trained a monolingual MLP corresponding to each language classifying their respective
context-independent phones. We adopted the knowledge-driven approach for universal phone
set creation, i.e., the phone sets of all the five languages were pooled together and then merged
based on their SAMPA symbols. This resulted in a universal phone set with 92 phones (including
silence). A multilingual MLP with 39-dimensional PLP cepstral features and nine frames of
temporal context as input was then trained to classify this universal phone set. We investigated
the following systems for MLP features.

(i) Mono-tandem: For each language, a separate acoustic model is built using PLP cepstral
features concatenated with MLP feature extracted from their respective monolingual MLP.

(ii) Multi-tandem: The multilingual MLP is used here as feature extractor. For each language,
the KLT statistics was estimated using only the data specific to the language, and then

Table 4. Information about the languages used in the experiments. The codes
are assigned by SpeechDat. The number of phonemes is given based on the
reduced lexicon of the application words (not all the phonemes of a language
are used).

Language Code No. of phonemes (P) No. of words

British English EN 33 31
Spanish ES 29 30
Italian IT 35 29
Swiss French SF 36 47
Swiss German SZ 46 45
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Table 5. Word accuracy of the different systems investigated is presented
for the two tasks, mono and mixed. Column 4 (rel. loss) presents the relative
difference in the performance of the system computed across mono task and
mixed task. Mono refers to monolingual speech recognition task. Mixed
refers to multilingual/mixed language speech recognition task.

System Mono Mixed Rel. loss

Mono-tandem 98.7% 77.2% 22%
Multi-tandem 98.8% 82.9% 16%
Shared-tandem 97.2% 95.3% 2%

while applying KLT the dimensionality was reduced to match the output dimension of the
corresponding monolingual MLP. This dimensionality was reduced to make the system
comparable to mono-tandem in terms of complexity. A separate acoustic model was then
built for each language separately using the PLP cepstral features concatenated with the
multilingual MLP features.

(iii) Shared-tandem: Similarly to the multi-tandem system, we used the multilingual MLP for
MLP feature extraction. However, in this system, data from all the languages was used for
KLT statistics estimation, thus yielding a multlingual MLP feature different from multi-
tandem system. In addition, we used the data from all the languages to train a common
acoustic model that is shared across languages. In other words, both MLP feature extraction
and acoustic modelling are language-independent. It should be noted that here again the
feature observation for acoustic model consists of the PLP cepstral features concatenated
with multilingual MLP features.

We evaluated the above systems on two different tasks.

(i) Mono-lingual task: In this case, it is assumed that the language identity is known a priori,
and the ASR system corresponding to the language is used for decoding the test utterance.
In other words, this task corresponds to monolingual speech recognition.

(ii) Mixed language task: In this case, it is assumed that the language identity is not known
a priori. While decoding the test utterance, all the five ASR systems are run in parallel and
the output hypothesis yielding maximum likelihood is selected as the recognized output17.
In other words, this task corresponds to multilingual speech recognition.

In the case of the mixed language task, it can be observed that mono-tandem and multi-tandem
systems have different complexities, i.e., the dimensionality of the feature vectors is different
across languages. To handle this, a recognizer dependent bias was subtracted from the respec-
tive log likelihood scores (similar to Zissman (1996)) before making a decision about the word
hypothesis. The recognizer dependent bias was estimated on the development set.

In table 5, we show the performances for the different systems and tasks. The performance of
each system is expressed as the average word accuracy computed across the five languages.

The results show that multilingual MLP features yield the best performance in terms of relative
loss in performance between mono and mixed tasks. Although, the shared-tandem system yields

17As the ASR system in this study is built to recognize isolated words, in case of shared-tandem system it amounts to
running a single system.
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slightly inferior performance compared to other systems on the mono task, it yields significantly
better performance on the mixed task. A similar trend has been previously reported in the context
of language independent acoustic modelling. In summary, the superiority of the shared-tandem
system on the mixed task can be attributed to the combination of two factors: (i) sharing of
data across languages which results in better acoustic model, and (ii) use of multilingual MLP
features.

5.4 Summary

In this section, we presented three studies on multilingual ASR using MLP features. In the first
study, we investigated the MRASTA and hierarchical MRASTA features across two different
languages. We found the trends to be similar across languages. The second study presented the
use of MLP features for cross-lingual transfer (without any adaptation or retraining), where we
found that it is possible to obtain improvements using cross-lingual MLP features. Finally, we
presented a preliminary study on the use of multilingual MLP features. Our studies indicate
that shared multilingual MLP feature extraction yields better performance when compared to
language-specific multilingual MLP feature extraction or monolingual MLP feature extraction.

6. Language identification/detection

In section 2.3, we briefly described that language identification systems use different levels of
abstraction related to spoken language processing, including the use of phonotactic constraints,
lexical constraints, or both lexical and language constraints through ASR system. Section 6.1
presents a preliminary study on hierarchical MLP-based LID system. This system tries to capture
implicitly phonotactic constraints and acoustic confusions present at the output of a multilingual
MLP to achieve language identification.

Another way of framing the language detection (LD) problem is in terms of out-of-vocabulary
(OOV) detection. Monolingual automatic speech recognition systems assume that the test utter-
ances contain only words from the target language. However, it is possible that segments of test
utterances can contain words from foreign language(s), especially in natural conversations. In
section 6.2, we present an approach to detect such out-of-language segments using confidence
measures.

6.1 Hierarchical MLP-based language identification

In section 5.2, we briefly described the recently proposed hierarchical MLP-based phoneme pos-
terior estimation approach and discussed about the potential of applying it for cross-lingual MLP
feature extraction. In Pinto et al (2011) and Pinto (2010), we have studied the role of the sec-
ond MLP layer in such hierarchical arrangements using Volterra series and have found that it is
predominantly responsible for learning phonetic-temporal patterns present in the posterior fea-
tures. The learned phonetic-temporal patterns consist of acoustic confusions among phonemes
and phonotactic constraints of the language.

In the context of LID, such phonetic-temporal patterns could possibly be exploited by first
training an MLP to classify the previously described universal phoneme set (multilingual speech
units), and then modelling a larger temporal context of the resulting posterior features by a
second MLP to classify languages. It can be expected that information related to phonotactic
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Table 6. Comparison of different LID systems. The
System Hier performance was obtained with a temporal
context of 290 ms at the input of the second stage MLP.

System Errors LID %

PC 1236 82.3
SR 360 94.8
Hier 248 96.4

constraints and acoustic confusion among phonemes (present in the posterior features spanning
a long temporal context) is language-specific.

We performed a preliminary study on hierarchical MLP-based LID system using the five
European language setup and the multilingual MLP described earlier in section 5.3. The second
stage MLP of the hierarchical MLP-based LID system was trained with the posterior features
(universal phone posterior probabilities) estimated at the output of the multilingual MLP. The
temporal context at the input of the second MLP was varied from 130–310 ms. During test-
ing, the decision about the language identity was made by choosing the language that scores
the highest log posterior probability over the whole test utterance. We refer to this system
as Hier.

We compared the hierarchical MLP-based LID system against two different reference sys-
tems. In both these systems, the phone posterior probabilities estimated at the output of the
multilingual MLP are used as a local score. In the first system, the language-specific phoneme
recognizers are run in parallel with their respective bigram phonotactic language model. The LID
is achieved by selecting the decoder output that yields the maximum likelihood. This system is
referred to as PC. In the second system, the language identity is inferred through speech recog-
nition. The second system is similar to the shared-tandem system described earlier in section 5.3
where the acoustic model is shared across languages. However, the recognition is done by using
hybrid HMM/MLP-based isolated word recognition system. This system is referred to as SR.

Table 6 shows the performance (measured in terms of percentage accuracy) of the different
LID systems investigated. In the case of System Hier, the performance is reported for the tempo-
ral context of 290 ms. For further details on the effect of temporal context, the reader is referred
to Imseng et al (2010).

It can be seen that the hierarchical LID system, i.e., Hier system yields the best perfor-
mance. When comparing the performance of SR and PC systems, the trend is similar to what
has been previously reported in the literature. More specifically, higher LID performance has
been typically reported (although for fewer number of language classes) using the large vocab-
ulary continuous speech recognition (LVCSR) system when compared to acoustic-phonotactic
based systems. Overall, the study shows that there is good potential in exploiting the hierarchial
MLP-based approach for language identification.

6.2 Out-of-language detection

In multilingual speech processing, the speech data can contain words from different/multiple
languages. Earlier in section 2.1, we mentioned that in the context of multilingual ASR this can
be possibly handled by the use of multilingual language models. In contrast, there are cases
where the goal is to perform monolingual speech recognition but the speech data may contain
words (or a sequence of words) from foreign language. For instance, it has been observed that
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in spontaneous meeting recordings, the interchangeable use of different languages in short time
periods by the same speaker can often be registered (Motlicek 2009). The existence of such
segments from foreign language can have an adverse effect on the performance of the ASR
system. The adverse effect may be limited by the detection of out-of-language (OOL) segments.

We have proposed a new approach to detect OOL segments through the use of word- and
phone-based confidence measures (Motlicek 2009; Motlicek & Valente 2010). In principle, OOL
detection can be compared to LD task. However, unlike the LD task, in our OOL detection
approach no data from other languages is used. Instead, given a test utterance/segment the OOL
detection is achieved by:

(i) Running LVCSR system of the target language to obtain phone lattices or word lattices.
(ii) Treating the lattices as the model and estimating frame level phone posterior probabilities

or word posterior probabilities by using standard forward–backward algorithm.
(iii) Estimating a posterior-based confidence measure (CM) from the posterior probability esti-

mate of either phones or words. This is followed by incorporation of temporal context via
median filtering of the CM.

(iv) Finally, using the posterior-based CM as threshold on the individual speech segments of the
one-best hypothesis obtained from the LVCSR system.

In our work, we have investigated different types of confidence measures and their combination
using maximum entropy classifier.

We evaluated the OOL detection technique on Klewel meeting recordings18. The evaluation
data consists of 3 h of recordings each from three languages, namely, English, French and Italian,
i.e., in total 9 h of recordings. English recordings represent in-language speech segments, while
French and Italian recordings represent out-of-language segments. This data was processed by
an English LVCSR system to obtain word and phone recognition lattices. Experiments on the
detection of OOL segments (caused by the French and Italian recordings) yield performances
of about 11% EER. Subsequent incorporation of temporal context significantly increased the
achieved performance. Median filter with a length of 3 s yield relative improvement of about
62% with respect to the system without application of temporal context.

6.3 Summary

In this section, we first presented a LID system based on hierarchical MLP-based approach.
Through preliminary studies, we demonstrated that this system could yield better performance
than standard approaches, such as modelling phonotactic constraints. We next presented an out-
of-language detection approach using confidence measures similar to out-of-vocabulary word
detection, and showed its application on real word data.

7. Future opportunities and challenges

We have presented an overview of multilingual speech processing – past progress and current
trends – from the perspective of our own research activities at Idiap Research Institute. We

18http://www.klewel.com
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have shown that a prime mover behind current trends has been the rise of statistical machine
translation, which has had a ripple on effect on the general field of MLSP. It also should be
apparent that future trends will still closely follow on from developments made in mainstream
speech and language technologies, but the distinct challenges of MLSP will also give rise to
novel solutions.

Similar to the influence of statistical machine translation on developments in MLSP in recent
years, we anticipate future activity will be strongly driven by web-based services, especially
those for mobile devices. We note that these services are becoming widely available and, com-
bined with affordable broadband wireless access, such services will provide an opportunity to
make available a broader range of capabilities to mobile devices, especially those based on com-
putationally demanding tasks in MLSP. Thus, we are already seeing services being provided
by major market players in the domain of speech processing and we can expect that will also
expand to a greater number of applications in MLSP and consequently an increase in research
and development activity in both academic and industry alike.

In our own work, two primary research directions that have emerged are cross-lingual speaker
adaptation for HMM-based TTS and hierarchical architectures for discriminative MLSP. Work
on cross-lingual speaker adaptation for HMM-based TTS has only just started to scratch the sur-
face and is apparent that the rise of statistical parametric TTS will likely lead to many more novel
challenges in MLSP for TTS. For example, we have already spoken of joint optimization of com-
bined systems for speech recognition and machine translation. Conceivably, similar principles
could be applied to combined machine translation and speech synthesis to produce more intel-
ligible translated output. The adaptive HMM-based framework also poses an attractive solution
for research in polyglot synthesis, without the need for developing extensive data resources for
multilingual speakers. Addressing the tasks of cross-corpus normalization and cross-language
contextual modelling will likely be challenges to overcome if we are to be successful in this.

In the domain of multilingual ASR, methods of cross-language knowledge transfer still
have considerable potential. With increasing use of lightly supervised techniques and data
mining, there is also increasing need to be able to effectively bootstrap models from other lan-
guages. Unfortunately, models trained using discriminative criteria are particularly susceptible
to transcription errors, possibly making them unsuitable for application in acoustic model boot-
strapping. By combining hierarchical approaches with discriminative techniques, we may obtain
an effective technique for acoustic model bootstrapping. Furthermore, in the context of MLP-
based features, there is also need to investigate extensively the use of other language-independent
representation of phonetic information, such as articulatory features, and modelling of subword
unit representations such as graphemes, especially Roman alphabets which is shared across many
different languages.
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