On the Induction of Postsynaptic Granule Cell-Purkinje Neuron LTP and LTD

Vogt, Kaspar ; Canepari, Marco

In: The Cerebellum, 2010, vol. 9, no. 3, p. 284-290

Ajouter à la liste personnelle
    Summary
    In the last decade, several experimental studies have demonstrated that particular patterns of synaptic activity can induce postsynaptic parallel fiber (PF) long-term potentiation (LTP). This form of plasticity can reverse postsynaptic PF long-term depression (LTD), which has been traditionally considered as the principal form of plasticity underlying cerebellar learning. Postsynaptic PF-LTP requires a transient increase in intracellular Ca2+ concentration and, in contrast to PF-LTD, is induced without concomitant climbing fiber (CF) activation. Thus, it has been postulated that the polarity of long-term synaptic plasticity is determined by the amplitude of the Ca2+ transient during the induction protocol, with PF-LTP induced by smaller Ca2+ signals without concomitant CF activation. However, this hypothesis is contradicted by recent studies. A quantitative analysis of Ca2+ signals associated with induction of PF-LTP indicates that the bidirectional induction of long-term plasticity is regulated by more complex mechanisms. Here we review the state-of-the-art of research on postsynaptic PF-LTP and PF-LTD and discuss the principal open questions on this topic