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Abstract. In recent years several nonequilibrium thermodynamic
frameworks have been developed capable of describing the dynamics
of multiphase systems with complex microstructured interfaces. In this
paper we present an overview of these frameworks. We will discuss
interfacial dynamics in the context of the classical irreversible ther-
modynamics, extended irreversible thermodynamics, extended rational
thermodynamics, and GENERIC framework, and compare the advan-
tages and disadvantages of these frameworks.

1 Introduction

In our daily existence we encounter numerous examples of dispersions with com-
plex microstructured interfaces. Examples are, biological fluids like blood, protein or
particle stabilized emulsions in food and cosmetics, or dispersions of liposomes or
polymer microcapsules used in pharmaceutical and medical diagnostics applications.
These dispersions are characterized by very high surface to volume ratios, and their
macroscopic rheology is affected significantly by the structure and properties of the
interfaces between dispersed and continuous phase. For dispersions with interfaces
stabilized by low molecular weight surfactants, the surface tension is typically the
only relevant surface property affecting the rheology of the dispersion. But for disper-
sions with microstructured interfaces also the rheological properties of the interfaces,
such as the surface shear modulus, surface dilatational modulus, and bending rigidity,
tend to affect the macroscopic response of the dispersion to an applied stress [1–8].
The structures we encounter in microstructured interfaces are very diverse [1]: sur-

face active species can form 2D emulsions and suspensions (mixtures of immiscible
lipids), 2D particle gels (globular proteins, colloidal particles), 2D glass phases (glob-
ular proteins, colloidal particles), 2D liquid crystalline phases (anisotropic colloidal
particles, anisotropic polymers), or even 2D composites (multilayers of flexible poly-
mers and rod-like particles) [9,10]. When these types of microstructured interfaces
are deformed, their structure changes, and even at small deformations these interfaces
therefore display a highly nonlinear rheological behavior [1]. A detailed fundamental

a e-mail: leonard.sagis@wur.nl

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2013-01830-3


106 The European Physical Journal Special Topics

Fig. 1. Density profile in the immediate neighborhood of a phase interface. The dividing
surface is located at z = 0. The shaded areas denote the difference between the extrapolated
bulk fields and the actual density field in the interfacial region.

understanding of this highly nonlinear behavior is essential for understanding the
complex macroscopic flow behavior of dispersions with structured interfaces.
Various experimental techniques have been developed to characterize the rheo-

logical properties of microstructured interfaces [1]. Surface shear moduli are most
commonly determined using stress-controlled rheometers, with either bi-cone [11–15]
or double-wall ring geometries [16,17]. Alternatively, oscillating needle rheometers
[18] can be used, in which the interface is deformed using a thin magnetic needle,
displaced by two magnetic coils. Surface dilatational moduli tend to be determined
using oscillating drop (or bubble) methods, bubble pressure tensiometry, or Langmuir
troughs [19]. Data from surface shear rheological experiments are in general analyzed
using linear viscoelastic models [1]. Such models describe the stress-deformation of
complex interfaces accurately only in the limit of small departures from equilibrium
(i.e. strains typically <0.01). Dilatational data for interfaces stabilized by low mole-
cular weight surfactants tend to be analyzed using the Lucassen and van Tempel
model [20,21], which assumes that the stress-deformation behavior of the interface is
completely determined by the transfer of surface active components between the bulk
phase and the interface. For complex microstructured interfaces both in-plane dynam-
ics, and mass transfer to the interface may affect the response of the interface [22–25],
and models have become available that incorporate both effects [26–32]. Again, such
models describe the rheology of microstructured interfaces accurately only for small
deformations.
Nonequilibrium thermodynamic (NET) frameworks are ideal for constructing con-

stitutive equations for the stress deformation behavior of microstructured interfaces,
valid also far from equilibrium. In NET interfaces are typically modeled as two-
dimensional dividing surfaces, placed sensibly within the three-dimensional interfacial
region (Fig. 1). Fields like the mass or momentum density change rapidly but con-
tinuously across this region, from their value in one bulk phase to their value in the
other bulk phase. In most multiphase NET frameworks the bulk fields are extrapo-
lated up to the dividing surface (Fig. 1), and the differences between actual fields and
extrapolated fields are accounted for by associating excess fields, like a surface mass
density or a surface momentum density, with every point on the dividing surface.
Including these excess variables in the conservation principles for mass, momen-

tum, energy, and entropy, we obtain, apart from the well known balance equations
for the bulk fields, an additional set of equations for the time evolution of the surface
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mass density, the surface momentum, the surface energy, and surface entropy. For
multicomponent systems we also obtain additional time evolution equations for each
component in the system. There are now several NET frameworks available that in-
clude surface excess variables in the set of independent system variables: rational ther-
modynamics [15], classical irreversible thermodynamics [33–36], extended irreversible
thermodynamics [37], extended rational thermodynamics [38], and GENERIC [39–41]
have all been generalized to multiphase systems with excess variables associated with
the dividing surfaces. All these frameworks give identical expressions for the time evo-
lutions for surface mass density, surface momentum, and surface energy. They differ
however significantly in the types of constitutive equations that can be constructed,
for the fluxes that appear in these time evolution equations.
Before we compare the constitutive equations that can be generated with these

NET frameworks, let us first discuss the properties we would like these equations to
have. First of all, for microstructured interfaces we would like to have a direct link
between the response of the system to an applied force, and the evolution of its mi-
crostructure. This can be accomplished by including structural variables in the set of
independent system variables. These variables can have a scalar, vectorial, or tensorial
nature, and are continuous fields describing some characteristic and locally averaged
properties of the microstructure. For example, for interfaces stabilized by polymers,
the structure could be characterized by one or more scalar variables, representing
the local segment density, or local stretching of polymer segments. The orientation of
the segments could be characterized by a tensorial variable, for example, the second
moment of the segment end-to-end vector distribution.
This type of structural modeling has been applied successfully to the rheological

modeling of complex bulk phases, such as polymer melts and solutions, liquid crys-
talline phases [42,43], and biopolymer solutions [44]. Sofar structural models have
found only limited application in the analysis of surface rheological data. Rey [45–47]
used structural variables to model the interfacial dynamics of interfaces between a
nematic polymer phase, and a viscous fluid. Oh and Slattery [48] used a structural
model to describe the interfacial behavior in single wall carbon nanotubes. Sagis [49]
developed a model for the surface extra stress tensor for an interface stabilized by
anisotropic colloidal particles.
Of the four NET frameworks we will compare in this paper (classical irreversible

thermodynamics (CIT), extended irreversible thermodynamics (EIT), extended ra-
tional thermodynamics (ERT), and GENERIC) microstructural variables can be in-
corporated most easily in the CIT and GENERIC formalism. We will see that in
EIT and ERT the coupling with the microstructure is introduced implicitly, by using
the stress (and other fluxes) as independent system variables. We will not discuss
the rational thermodynamics framework here, since the resulting constitutive models
obtained from it are quite similar to those obtained with the CIT framework.
A second property we would like constitutive models for the surface fluxes to

have is that the expressions for the surface fluxes should contain a coupling with the
corresponding fluxes in the adjoining bulk phases. In systems where both the inter-
faces and the adjoining bulk phases have a complex microstructure, we may expect
that the bulk structure in the immediate neighborhood of the interface will affect the
structure of the interface, and vice versa. For example, in a system with an interface
stabilized by anisotropic particles, separating a dense anisotropic particle phase from
a dilute particle phase, we may expect that the orientation of the particles in the
concentrated phase, close to the interface, will affect the orientation of the particles
in the interface. As we will see this coupling is most easily introduced in the ERT
and GENERIC frameworks.
A third and obvious property we would like the constitutive models for the sur-

face fluxes to have, is that they are valid also far from equilibrium. For constitutive



108 The European Physical Journal Special Topics

equations for the surface extra stress tensor this implies that they should describe
experimental data appropriately also for strains �1.
In the remainder of this paper we will compare the constitutive models that can

be constructed for interfaces with a complex microstructure, using the CIT, EIT,
ERT, and GENERIC frameworks, using the three criteria we discussed above. We
will limit ourselves to constitutive models for the surface extra stress tensor. Consti-
tutive models for the other fluxes (the surface heat flux vector, and surface mass flux
vectors) can be derived in a similar manner. We will consider only systems in which
bulk or interfacial chemical reactions between components are absent.

2 Classical irreversible thermodynamics

The classical irreversible thermodynamics framework is the oldest of the currently
available NET frameworks, and dates back to Onsager [50,51] (see also [52]). This
framework was generalized to multiphase systems with excess properties associ-
ated with the interfaces in the 1970s and 80s by Bedeaux et al. [33], Zielinska and
Bedeaux, [34], Bedeaux [35], Albano and Bedeaux [53], Bedeaux and Vlieger [36], and
Kjelstrup and Bedeaux [54]. In the classical irreversible thermodynamics framework
for multiphase systems we start with expressions for the time rate of change of the
bulk and surface entropy per unit mass, Ŝ and Ŝs. Since here we are interested only
in interfacial dynamics we will consider only the balance equation for the latter. This
has the following form [34,54]:

ρs
dsŜ

s

dt
= −∇s· jsS + ρsÊs − [[[ρ(Ŝ − Ŝs) (v − vs) · ξ + jS· ξ]]]. (1)

Here Ês is the rate of surface entropy production per unit mass. To satisfy the sec-
ond law of thermodynamics we must require Ês ≥ 0. The vector jsS is the surface
entropy flux vector, jS is the entropy flux vector in the bulk phase, and ρ and ρ

s

are respectively the overall bulk and surface mass densities. The operator ∇s is the
surface gradient operator, defined as ∇sΨ = (∂Ψ/∂yα)aα, where yα (α = 1, 2) are
the surface coordinates, and aα the dual tangential basis vector fields of the interface.
The vectors v and vs denote the bulk and surface velocities, and ξ is the unit vector,
normal to the surface. The time derivative in (1) is the surface material derivative,
defined by [15]

dsŜ
s

dt
=
∂Ŝs

∂t
+ (∇sŜs)· ẏ (2)

where ẏ is the intrinsic surface velocity, defined by (dsy
α/dt)aα [15]. The boldface

brackets describe contributions to surface balances from the adjoining bulk phases,
and this notation is defined as

[[[Ψξ]]] = Ψ(I)ξ(I,II) +Ψ(II)ξ(II,I) (3)

where Ψ(I) is the value of the arbitrary observable Ψ in bulk phase I, evaluated at

the interface Σ(I,II), and ξ(I,II) is the unit vector normal to that interface, pointing
in the direction of phase I.
The next step in the classical irreversible thermodynamics framework is to choose

a functional dependence for the surface entropy. A general practice is to assume
local equilibrium, which implies that locally the surface entropy depends on the same
variables as the entropy of an interface in global equilibrium. For the surface entropy
per unit mass of an N -component microstructured interface this assumption implies

Ŝs = Ŝs(Ûs, Â, ωs(1), ..., ωs(N−1),Γs,Cs) (4)
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where Ûs is the surface internal energy per unit mass, Â is the area per unit mass
(= 1/ρs), ωs(A) (A = 1, N) denotes the surface mass fraction of species A, and Γ

s and

Cs are respectively scalar and tensorial structural variables describing the microstruc-
ture of the interface. Note that here we assume that all surface excess variables are
curvature dependent [15], and we therefore do not include curvature variables such as
the mean or Gaussian in the set of independent variables. We have limited ourselves
here to a system described by one scalar and one tensorial variable. The extension
to systems with multiple scalar or tensorial variables, or even vectorial variables, is
straightforward. From equation (4) we find that the left hand side of (1) equals

ρs
dsŜ

s

dt
=
ρs

T s
dsÛ

s

dt
− γρs

T s
dsÂ
dt
− ρs

T s

N∑

A=1

μs(A)
dsω

s
(A)

dt

−ρ
sΞs

T s
dsΓ

s

dt
− ρs

T s
Ws :

dsC
s

dt
(5)

where T s is the surface temperature, γ is the surface tension, and μs(A) is the surface

chemical potential per unit mass of species A. The coefficients Ξs andWs are defined
as

Ξs ≡ T s
(
∂Ŝs

∂Γs

)

Ûs,Â,ωs
(A)
,Cs

(6)

Ws ≡ T s
(
∂Ŝs

∂Cs

)

Ûs,Â,ωs
(A)
,Γs

· (7)

The surface material derivatives of Ûs, Â, and ωs(A) in (5) can be eliminated using
the jump energy balance [15,34], the overall jump mass balance [15,34], and the
species jump mass balance [15,34]. After elimination of these three surface material
derivatives the right hand side of the resulting equation is set equal to the right hand
side of (1), which allows us to determine an expression for Ês and jsS . The expression
for Ês has the general form [34]

ρsÊs =
∑

k

JskX
s
k +

[[[
C (v − vs) · ξ +

∑

k

(Jk· ξ)Xk
]]]
≥ 0 (8)

where Jk and J
s
k represent the bulk and surface fluxes in the system (either scalar,

vectorial, or tensorial), and Xk and X
s
k are their respective driving forces. The first

contribution to the boldface bracket term describes the entropy production associ-
ated with convective transport of mass, momentum, energy, and entropy between the
interface and the adjoining bulk phases (all these contributions are collected in C,
which in view of its lengthy form, we will not specify here). Based on (8) and the
Curie principle [52], coupled linear constitutive equations for the in-plane interfacial
fluxes are constructed of the general form [15,34]

Jsk =
∑

m

LskmX
s
m. (9)

The Curie principle implies that fluxes in (9) couple only to driving forces of equal
tensorial order. Equation (8) also allows us to construct constitutive equations for
the fluxes Jk· ξ describing transport perpendicular to the interface, but these are
outside the scope of the current paper. They are discussed in detail in the papers
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by Zielinska and Bedeaux [34], and Bedeaux [35]. Note that the contraction with the
normal vector ξ reduces the order of the original flux Jk by one, and therefore for
vectorial fluxes Jk· ξ will couple to scalar driving forces. The constitutive equations
in (9) can be simplified using the Onsager reciprocal relations, which require that the
phenomenological coefficients Lskm satisfy [34,52]

Lskm = ±Lsmk (10)

where a positive sign describes the case where k and m are both even (or both odd)
under time reversal, and the negative sign must be used when k is even and m is
odd (or vise versa) under reversal of time. For the surface extra stress tensor of an
interface with a microstructure described by a single scalar and tensorial structural
variable, this analysis leads to the following set of constitutive equations (retaining
only terms linear in the driving forces) [34,49]:

σ̄s = Lsσd(T, Â, ωs(A),Γs,Cs) : ∇svs + Lsσw(T, Â, ωs(A),Γs,Cs) : Ws (11)

trσs = 2Lsσd(T, Â, ωs(A),Γs,Cs)tr(∇svs)
+2Lsσw(T, Â, ωs(A),Γs,Cs)trWs + 2Lsσξ(T, Â, ωs(A),Γs,Cs)Ξs (12)

ρs
dsC

s

dt
= Lscd(T, Â, ωs(A),Γs,Cs) : ∇svs + Lscw(T, Â, ωs(A),Γs,Cs) : Ws (13)

ρs
dsΓ

s

dt
= 2Lsγd(T, Â, ωs(A),Γs,Cs)tr(∇svs)
+2Lγw(T, Â, ωs(A),Γs,Cs)trWs + 2Lsγξ(T, Â, ωs(A),Γs,Cs)Ξs (14)

where σ̄s is the traceless symmetric part of the surface extra stress tensor, equal to
σs − 1

2 (trσ
s)P, and P is the surface projection tensor. According to equation (10)

the fourth order tensors Lsσw and L
s
cd are related by

Lsσw = −Lscd (15)

and the scalars Lsσξ and L
s
γd by

Lsσξ = −Lsγd. (16)

When the interface was initially in an isotropic state, and deformations are sufficiently
small for effects of anisotropy in the response of the interface to be negligible, the
fourth order tensors in (11) and (13) can be written as:

Lskm = 2L̃
s
km(T, Â, ωs(A),Γs,Cs)P(4) (17)

where L̃skm are scalar coefficients, and the fourth order isotropic surface tensor P
(4)

is equal to

P(4) ≡ 1
2
(aαμaβν + aανaβμ − aαβaμν)aαaβaμaν . (18)

In this expression aαβ denote the components of the surface metric tensor [15]. This
tensor transforms every second order surface tensor field into a symmetric traceless
tangential surface tensor field. With (17) equations (11) and (13) reduce to (for the
sake of brevity, omitting the dependencies of the coefficients on the system variables):

σ̄s = −[L̃sσdtrDs − L̃scdtrWs]P+ 2L̃sσdD
s − 2L̃scdWs (19)
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ρs
dsC

s

dt
= −[L̃scdtrDs + L̃scwtrWs]P+ 2L̃scdD

s + 2L̃scwW
s. (20)

Here Ds is the surface rate of deformation tensor defined by [15]

Ds ≡ P· ∇svs + (∇svs)T · P (21)

where the superscript-T denotes the transpose of a tensor. Combining equations (12)
and (19) we find for the surface extra stress tensor

σs = (Lsσd − L̃sσd) [trDs]P+ 2L̃sσdDs − 2L̃scdWs

+([Lsσw − L̃sσw]trWs + LsσξΞ
s)P. (22)

Note that when contributions of the interfacial microstructure to the surface extra
stress can be neglected, and we identify Lsσd = εd and L̃

s
σd = εs, where εd and εs

are the surface dilatational and shear viscosities, we recover the familiar Boussinesq
model for viscous interfaces [55–57].
Equations (14), (20), and (22) need to be closed with expressions for Ws and

Ξs. For this we need to choose an expression for the surface entropy per unit mass
in terms of the structural variables. For small departures from equilibrium we can
express Ŝs as a Taylor expansion in these variables:

Ŝs= Ŝs0(Û
s, Â, ωs(A))+

1

2
αγγ (Γ

s)
2
+αγcΓ

strCs+
1

2
αccC

s : Cs+O ([Γs]3, [Cs]3) (23)

where Ŝs0(Û
s, Â, ωs(A)) is the entropy of the non-deformed interface, and the αij (i, j =

γ, c) are coefficients which depend on composition and temperature of the interface.
With this expression, and equations (6) and (7), we find up to second order in the
structural variables Γs and Cs

Ξs

T s
= αγγΓ

s + αγctrC
s (24)

Ws

T s
= αγcΓ

sP+ αccC
s. (25)

Substituting these expressions in equations (14), (20), and (22) we find the following
set of coupled nonlinear equations for the rheological behavior of a microstructured
interface:

σs = (εd − εs) [trDs]P+ 2εsDs − 2L̃scdT sαccCs

+[2LsσwT
sαγcΓ

s + (Lsσw − L̃sσw)T sαcctrCs]P
+LsσξT

s (αγγΓ
s + αγctrC

s)P (26)

ρs
dsΓ

s

dt
= 2LsγdtrDs + 2

(
2Lsγwαγc + L

s
γξαγγ

)
T sΓs

+
(
Lsγwαcc + L

s
γξαγc

)
T strCs (27)

ρs
dsC

s

dt
= L̃scd (2D

s − [trDs]P) + L̃scwαccT s (2Cs − [trCs]P) . (28)

We see that the expression for the surface extra stress tensor depends on both Γs

and Cs, and through equations (27) and (28) depends on the time evolution of the
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structural variables. The latter equations have a similar structure. The first term
on the right hand side of these equations describes the time rate of change of the
structural variables as a result of an imposed deformation field. The second term in
these equations is a relaxation term, which after cessation of flow will drive the system
back to its equilibrium state.
Sagis [49] examined a model of this type for an interface stabilized by anisotropic

colloidal particles. The structural scalar parameter was chosen to be the particle
concentration (assumed to be constant in time), and the tensorial structural variable
was chosen to be the orientation tensor Qs = 〈nsns− 12P〉s, where ns is a tangential
vector field characterizing the orientation of the particles in the interface, and 〈...〉s
denotes a local average over a portion of the interface. When assuming constant
coefficients in this model, it predicts thixotropic behavior: exposing the interface to a
steady surface shear field causes the effective surface shear viscosity of the interface to
decrease in time until a steady state value is reached [49]. With constant coefficients
the model did not predict the often observed shear thinning behavior, a decrease of the
effective surface shear viscosity with increasing applied shear rate. Such a dependence
on shear rate can be included in the model in two ways. The first option is to expand
equation (23) to higher orders in both Γs and Cs. The second option is to include a
dependence on the tensorQs in the expression for the tensorial coefficients in equation
(17). These coefficients then take a form equal to

Lskm(T, Â, ωs(A),Qs) = 2Lskm1(T, Â, ωs(A))P(4) + 2Lskm2(T, Â, ωs(A))P(4)Q
+2Lskm3(T, Â, ωs(A))P(4)QQ (29)

where the tensors P
(4)
Q , and P

(4)
QQ are given by

P
(4)
Q =

1

2
[Qsαμaβν +Q

s
ανaβμ +Q

s
αβaμν + aαμQ

s
βν

+aανQ
s
βμ + aαβQ

s
μν ]a

αaβaμaν (30)

P̃
(4)
QQ =

(
1

2

[
QsαμQ

s
βν +Q

s
ανQ

s
βμ +Q

s
αβQ

s
μν

]
− 1
4
[aαβQ

s
μεQ

s
εν

+aμνQ
s
αεQ

s
εβ + aανQ

s
μεQ

s
εβ + aαμQ

s
βεQ

s
εν + aβνQ

s
αεQ

s
εμ + aβμQ

s
αεQ

s
εν ]

+
1

8
[aαμaβνQ

s
δεQ

s
εδ + aανaβμQ

s
δεQ

s
εδ + aαβaμνQ

s
δεQ

s
εδ]

)
aαaβaμaν . (31)

Both tensors are traceless, symmetric in the index pairs αβ and μν, and symmetric
under exchange of α → μ and β → ν. Sagis showed that with expressions of the
form of (29) the resulting model for the surface extra stress tensor does predict shear
thinning behavior [49]. However, the model gives realistic predictions for the orienta-
tion of the particles only for shear rates <0.1 s−1. It is not surprising that this model
is valid only for small deformation rates. After all, it is based on linear flux-driving
force relations, and both the entropy as well as the coefficients in the model are all
expanded in Taylor series in terms of the structural variables, around the equilibrium
state.
Another drawback of this CIT approach is the high number of coefficients that

appear in the constitutive equations. There are no clear procedures on how to de-
termine all these phenomenological coefficients. Finally, the desired coupling of the
surface structural variables with the bulk phase structural variables cannot easily be
constructed in this framework. An advantage of this framework is that constitutive
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equations are easy to construct, without the considerable mathematical effort typi-
cally involved in deriving models using the GENERIC framework. The simple models
we have shown in this section do provide a lot of insight in how microstructural
changes cause nonlinear behavior in surface rheological experiments.

3 Extended irreversible thermodynamics

Since interfacial regions typically have a thickness of only a few nanometers, infor-
mation on the microstructure of the interface is hard to obtain. If such information
is not available a more phenomenological approach can be used. We see in equation
(26) that at least for small departures from equilibrium the stress has a linear depen-
dence on the structural tensor Cs. This suggest that rather than the true structural
parameters Γs and Cs, we choose the trace of the surface extra stress tensor, and its
traceless part as independent system variables. This would mean we replace (4) by

Ŝs = Ŝs(Ûs, Â, ωs(1), ..., ωs(N−1), trσs, σ̄s). (32)

Of course other fluxes could also be included in this expression, but here we will limit
ourselves to the rheological fluxes. Equation (32) is the starting point for the extended
irreversible thermodynamics framework [58,59], which was recently generalized to
multiphase systems with excess variables associated with the dividing surfaces [37].
To construct constitutive equations for the surface extra stress tensor within the

EIT framework, we proceed in the same manner presented in the previous section. We
take the material time derivative of (32), eliminate the surface material derivatives

of Ûs, Â, and ωs(A) using the jump energy balance [15,34], the overall jump mass
balance [15,34], and the species jump mass balance [15,34], and substitute the result
in (1). We then obtain an expression for the surface entropy production per unit mass
of the form

ρsÊs =
∑

k

Jsk

(
Xsk −

∑

m

αkm
dsJ

s
m

dt

)
+
[
[
[C′ (v − vs) · ξ +

∑

k

(Jk· ξ)Xk]]] ≥ 0 (33)

where αkm is a scalar coefficient, associated with the material time derivative of
the surface flux Jsm. Equation (33) suggests the following form for the constitutive
equations for the traceless part of the surface extra stress, and its trace:

σ̄s = σ̄s
(
D̄s,

dsσ̄
s

dt

)
(34)

and

trσs = trσs
(
trDs,

dstrσ
s

dt

)
· (35)

Expanding these functionals up to linear order in their arguments, we obtain

σ̄s + τs
dsσ̄

s

dt
= 2εsD̄

s (36)

trσs + τd
dstrσ

s

dt
= 2εdtr(∇svs) (37)
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where the coefficients εs and εd again denote the surface shear and dilatational viscosi-
ties, and τs and τd are the surface shear and dilatational relaxation times. Combining
(36) and (37) we find that the surface extra stress tensor is given by

τs
dsσ

s

dt
+ σs +

1

2
(τd−τs)Pdstrσ

s

dt
− 1
2
τstrσ

s dsP

dt
= 2εsD

s + (εd − εs)[trDs]P. (38)

This is the surface equivalent of the linear viscoelastic fluid model, also referred to as
linear Maxwell fluid model. This type of model, or simplified versions of it, are often
used in the analysis of surface rheological experiments [1]. The simplified versions
are usually straightforward generalizations of the 3D linear Maxwell model to 2D
interfaces, and tend to neglect the fact the stress response may have contributions
from both shear and dilatational deformations, as illustrated by equation (38). This
is particularly true for dilatational experiments using Langmuir troughs or oscillating
bubble methods [1].
For microstructured interfaces, equations (36) and (37) are not particularly use-

ful, since these linear equations are not capable of describing the highly nonlinear
response of these interfaces. We can however make several simple modifications to
these expressions to make them nonlinear. Let us first consider (36). The surface
material derivative of the stress tensor appearing in this equation is not invariant
under orthogonal changes of the frame of observation. We can alleviate this problem
by replacing the surface material derivative by an invariant derivative such as the
co-rotational or upper-convective derivatives. These are defined as, respectively

∇
δ σ̄

s =
dsσ̄

s

dt
−Ωs· σ̄s + σ̄s· Ωs (39)

�
δ σ̄

s =
dsσ̄

s

dt
− ([∇svs]T · P)· σ̄s − σ̄s· (P· ∇svs) . (40)

Here the surface vorticity tensor is defined as

Ωs =
1

2
(P· ∇svs − [∇svs]T · P). (41)

If we choose to use an upper-convective derivative, (36) is modified to

τs
�
δ σ̄

s + σ̄s = 2εsD̄
s. (42)

This is the surface rheological equivalent of the upper-convected Maxwell model. A
further modification we can make to this model is, to replace it by

τs
�
δ σ̄

s +Bs· σ̄s = 2εsD̄s (43)

where the anisotropic surface mobility tensor Bs is defined as

Bs = P+ αs (C
s −P) = (1− αs)P+ αsCs (44)

where αs is a dimensionless parameter, and C
s is again a configuration tensor, as-

sumed to be related to the surface extra stress tensor by

σs =
εs

τs
(Cs −P) . (45)

Substituting (44) and (45) in (43) we obtain

τs
�
δ σ̄

s + σ̄s +
αsτs

εs
σ̄s· σ̄s = 2εsD̄s (46)
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which is the surface version of the single mode Giesekus model [60]. In a similar
manner we can extend equation (37) to find

τd

(
dstrσ

s

dt

)
+ trσs +

αdτd

εd
(trσs)

2
= 2εdtrD

s. (47)

Using the entropy balance we can show that the coefficients αs and αd should satisfy
0 ≤ αd, αs ≤ 1 [37]. The Giesekus model and its multi-mode generalizations have
been used successfully to model the rheological behavior of 3D bulk phases with
a complex microstructure, such as polymer melts and polymer solutions. It has so
far not found widespread application in surface rheology, in spite of the significant
number of experimental studies on polymer stabilized interfaces, currently reported
in the literature on surface rheology [1].
When comparing the constitutive equations we derived with the EIT framework

to those in the previous section derived within the CIT framework, we see that the
former are much simpler and contain fewer coefficients, which need to be determined
by experiment. However, these more phenomenological EIT models do not provide a
direct coupling to the microstructure of the surface, and therefore provide less funda-
mental insight on the structural rearrangements responsible for the highly nonlinear
rheological behavior of microstructured interfaces. Moreover, just like in the CIT
models, the coupling of the surface stresses with stresses in the adjoining bulk phases
is not present in these models. In the next section we will show how to incorporate
such a coupling within the ERT framework.

4 Extended rational thermodynamics

In the recent literature on nonequilibrium thermodynamics there are a number of
frameworks which are commonly referred to as extended rational thermodynamics.
A well know version is the one developed by Liu and Müller [61], and Liu [62], who
add balance equations for the momentum flux density ρvv, and energy flux density
ρvv· v, to the set of classical balance equations for the density, momentum density,
and energy density. This approach is inspired by kinetic theory.
Here we will use a simpler version of ERT, suggested by Lebon and Rubi [63], Jou

and Perez-Garcia [64], Lebon and Jou [65], Boukary and Lebon [66], and Lebon and
Boukary [67]. In this version of ERT, which was recently generalized to multiphase
systems [38], the total traceless extra stress is defined as

Σ ≡
∫

R

ρσ̄ dV +

∫

Σ

ρsσ̄s dA. (48)

and the total trace of the extra stress tensor is defined as

Θ ≡
∫

R

ρtrσ dV +

∫

Σ

ρstrσs dA. (49)

Here R denotes the bulk domain of the system, Σ is the domain of the interior
interfaces, and dV and dA denote an integration over respectively volume, and area.
Subsequently it is assumed the time rate of change of the total traceless extra stress
is equal to a flux term through the boundaries of the system, and a source term,
describing generation in the interior of the body. For the traceless part of the total
extra stress, this assumption leads to

dΣ

dt
= −

∫

S

Jσ· n dA+
∫

R

Sσ dV −
∫

C

Jsσ· μ ds+
∫

Σ

Ssσ dA (50)
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where S is the outer bounding surface of the system, C is the line of intersection
between Σ and S, and Jσ is a third order tensor field, describing the flux of the
symmetric traceless part of the extra stress tensor to the bulk phase through the
bounding surface. The second order tensor field Sσ is the source term for the sym-
metric traceless part of the extra stress tensor in the bulk phase. The third order
tangential surface tensor Jsσ and second order tangential surface tensor S

s
σ represent

the flux and source term for the traceless symmetric part of the surface extra stress
tensor. The vector n is the outwardly directed unit normal vector on S, and μ is the
unit vector normal to the curve C, tangential to Σ, and directed outwardly from the
system. The symbol ds denotes an integration over arc length.
Using the transport theorem for multiphase systems [15], the divergence theorem,

and the surface divergence theorem, we find the following balance equations for the
traceless symmetric parts of the extra stress tensor and the surface extra stress tensor:

ρ
dbσ̄

dt
= −∇· Jσ + Sσ (51)

ρs
dsσ̄s

dt
= −∇s· Jsσ + Ssσ − [[[ρ (σ̄ − σ̄s) (v − vs) · ξ + Jσ· ξ]]]. (52)

The material derivative appearing in equation (51) is defined as [15]

dbψ

dt
=
∂ψ

∂t
+ (∇ψ) · v. (53)

The operator ∇ denotes the three dimensional gradient operator.
The jump terms give us the explicit connection between the surface fluxes, and

their corresponding fluxes in the adjacent bulk phases. In (52) the first contribution to
the jump term represents the convective transfer of σ̄ from the bulk to the interface,
and the second term represents the flux of σ̄ from the bulk to the interface. The
physical interpretation of these contributions will become more clear when we discuss
specific forms of the balances for the extra stresses.
Applying the same approach to the traces of the extra stress tensors we obtain

ρ
dbtrσ

dt
= −∇· jtrσ + Strσ (54)

ρs
dstrσ

s

dt
= −∇s· jstrσ + Sstrσ − [[[ρ (trσ − trσs) (v − vs) · ξ + jtrσ· ξ]]]. (55)

Here the vectors jtrσ and j
s
trσ denote the flux vectors for the trace of the extra stress

tensor and trace of the surface extra stress tensor. Finally, the scalars Strσ and S
s
trσ

are the source terms for the trace of the extra stress tensor and trace of the surface
extra stress tensor.
To construct expressions for the fluxes and sources in the above equations, we

proceed in the same manner as we did in the CIT and EIT frameworks. We derive
an expression for the bulk and surface entropy production, and use those balances to
guide us in the construction of the constitutive relations for the fluxes and sources.
Proceeding in this manner we find for the surface fluxes [38]

Jsσ = J
s
σ (∇sσ̄s) (56)

jstrσ = j
s
trσ (∇strσs) (57)

and for the surface sources

Ssσ = S
s
σ (σ̄

s,∇svs) (58)
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Sstrσ = S
s
trσ (trσ

s, tr[∇svs]) . (59)

Expanding these functionals up to linear order in their arguments, we find

Jsσ = αJ∇sσ̄s (60)

jstrσ = αj∇s [trσs] (61)

Ssσ = −
ρs

τs
σ̄s +

2ρsεs
τs
D̄s (62)

Sstrσ = −
ρs

τd
trσs +

ρsεd

τd
tr[∇svs] (63)

where αJ and αj are scalar coefficients, and again, εs is the surface shear viscosity, τs
is the surface shear relaxation time, εd is the surface dilatational viscosity, and τd is
the surface dilatational relaxation time. Substituting these expressions in equations
(52) and (55), we obtain

ρs
dsσ̄s

dt
+
ρs

τs
σ̄s = −αJ∇2sσ̄s −∇sαJ · ∇sσ̄s

+
2ρsεs
τs
D̄s − [[[ρ (σ̄ − σ̄s) (v − vs) · ξ + Jσ· ξ

]]]
(64)

and

ρs
dstrσ

s

dt
+
ρs

τd
trσs = −αj∇2s [trσs]−∇sαj· ∇s [trσs]

+
ρsεd

τd
tr[∇svs]−

[[[
ρ (trσ − trσs) (v − vs) · ξ + jtrσ· ξ

]]]
. (65)

To complete these balances we need to specify the constitutive relations for the bulk
fluxes appearing in the jump terms. Again using the entropy balance as a guide, we
assume these to be given by

J(I)σ · ξ(I,J) = k(I)σ (σ̄(I) − σ̄s)− ρ(I)σ̄(I) (v − vs) · ξ(I,J) (66)

and

j
(I)
trσ· ξ(I,J) = k(I)trσ(trσ(I) − trσs)− ρ(I)trσ(I) (v − vs) · ξ(I,J) (67)

where kσ and ktrσ are scalar coefficients. This gives us the final form of our balance
equations for the traceless part of the surface extra stress tensor, and the trace of this
tensor:

ρs
dsσ̄s

dt
= −ρ

s

τs
σ̄s − α3∇2sσ̄s −∇sα3· ∇sσ̄s

+
2ρsεs
τs
D̄s +

[[[
ρσ̄s (v − vs) · ξ − kσ (σ̄ − σ̄s)

]]]
(68)

ρs
dstrσ

s

dt
= −ρ

s

τd
trσs − α4∇2s [trσs]−∇sα4· ∇s [trσs]

+
ρsεd

τd
tr[∇svs] +

[[[
ρtrσs (v − vs) · ξ − ktrσ (trσ − trσs)

]]]
. (69)
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Looking at the structure of these equations, we see that they have the form of a
relaxation-diffusion equation. In both equations the first term on the right hand side
is a relaxation term. When the flow is stopped these terms are responsible for the
relaxation of the stress back to is equilibrium value (typically zero). The second
and third terms on the right hand side of both equations are important when an
imposed deformation field causes inhomogeneities in the stress fields, for example, as
a result of gradients in the structural elements that stabilize the interface. Examples
of such gradients can be seen in particle stabilized droplets deformed in a flow field,
where particles tend to accumulate at the ends of a spheroidally shaped droplet. The
diffusive terms in both equations tend to smoothen any gradients in the stress field,
that originate from the imposed deformation field. Terms like these arise naturally
in the ERT framework, and are much harder to incorporate in the CIT and EIT
frameworks. The forth term on the right hand side of these equations represents the
applied deformation, driving the interface out of equilibrium. The boldface bracket
terms couple the surface stresses to the stresses in the adjoining bulk phases, and
these represent a simple phenomenological example of this type of coupling, through
the stress tensors, rather than through the microstructural variables. They describe
the “transfer of stress” between the bulk phases and the interface. As we see, these
coupling terms arise naturally in the ERT framework, whereas in the CIT and EIT
these couplings did not appear.
Let us now take a closer look at equation (68), and assume that the surface stress

diffusion coefficient in this expression is independent of position on the interface.
In addition, we replace the surface material derivative on the left hand side of this
equation by an upper-convected derivative (since the surface material derivative of
a tensor is not invariant under orthogonal changes of the frame of observation). We
then find

ρs
�
δ σ̄

s = −ρ
s

τs
σ̄s − α3∇2sσ̄s +

2ρsεs
τs
D̄s +

[[[
ρσ̄s (v − vs) · ξ − kσ (σ̄ − σ̄s)

]]]
. (70)

If we now replace σ̄s in the first term on the right hand side of (70) by Bs· σ̄s, where
Bs is again the surface mobility tensor defined in equation (44), we obtain

ρs
�
δ σ̄

s = −ρ
s

τs
σ̄s − ρsαs

εs
σ̄s· σ̄s − α3∇2sσ̄s

+
2ρsεs
τs
D̄s +

[[[
ρσ̄s (v − vs) · ξ − kσ (σ̄ − σ̄s)

]]]
. (71)

We see that we have now obtained a generalization of the surface Giesekus model we
derived in the previous section. This version accounts for the smoothing of inhomo-
geneities in the surface stress field by a diffusive process, and introduces a coupling of
the surface stresses with the stresses in the adjoining bulk phases. So far this type of
equation has not been applied to the analysis of surface rheological data, so its true
value still needs to be established. We have seen that the incorporation of these addi-
tional effects in the time evolution of the surface stresses is relatively straightforward
within the ERT framework. This type of model satisfies most of the requirements
we outlined in the introduction. A drawback of this approach is that the model is
purely phenomenological, since it produces time evolution equations for the surface
stresses, and not for the underlying microstructural changes responsible for this stress
evolution. To find similar models, but in terms of microstructural tensors we can use
the GENERIC framework, discussed in the next section.
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5 GENERIC

General Equation for the Nonequilibrium Reversible Irreversible Coupling
(GENERIC) is a nonequilibrium thermodynamic framework in which the dynam-
ics of a system is expressed by a single equation. The framework was developed in
the mid 90s of the previous century by Grmela and Öttinger [68,69], and recently
extended to multiphase systems with inviscid interfaces [39]. Sagis extended it to
systems with viscous interfaces [40], and systems with interfaces with a complex mi-
crostructure [1,41].
For multiphase systems with a complex microstructure, the GENERIC takes the

following form [39–41]

dA

dt
= {A,E}+ [A,S] + {A,E}mint. (72)

Here A is an arbitrary observable of the system (for example its total mass, or its
total energy), the first term on the right hand side is a Poisson bracket, describing
the reversible part of the dynamics, and the second term (square brackets) describes
the irreversible or dissipative contributions to the dynamics of the system. E is the
total Hamiltonian of the system, and S is its total entropy. The term {A,E}mint is the
moving interface normal transfer term, a term that is needed to guarantee consistency
of the GENERIC with the chain rule of functional calculus, when moving interfaces
are present in the system [39]. The Poisson bracket is defined by

{A,B} ≡ δA(x)

δx
· L· δB(x)

δx
(73)

where L is the Poisson matrix, and x denotes a vector whose components are the
independent system variables. The derivatives in this expression are functional deriv-
atives. The Poisson bracket must satisfy the following two conditions:

{A,B} = −{B,A} (74)

{A, {B,C}}+ {C, {A,B}}+ {B, {C,A}} = 0. (75)

The first condition implies the bracket (and hence L) is antisymmetric, and the second
condition is referred to as the Jacobi identity. The Poisson bracket is further restricted
by the degeneracy conditions

{S,B}+ {S,B}mint = 0 (76)

{M, B}+ {M, B}mint = 0 (77)

whereM is the total momentum of the system. The dissipative bracket is defined as

[A,B] ≡ δA(x)

δx
·M· δB(x)

δx
(78)

where M is a symmetric positive semi-definite matrix. The dissipative bracket must
be constructed in such a way that

[A,B] = [B,A] (79)

[A,A] ≥ 0 (80)

which ensures that M is indeed a symmetric positive semi-definite matrix.
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An important step in every GENERIC model is the selection of the independent
system variables. For a multiphase material in which both bulk phases and interfaces
have a complex microstructure, we will choose the set of system variables to be

{
ρ,m, Ū∗, ρ(1), ..., ρ(N−1), Γ̄,C, ρs,ms, Ūs∗, ρs(1), ..., ρ

s
(N−1), Γ̄

s,Cs
}

(81)

where m = ρv is the momentum density, ρ(J) (J = 1, ..., N) are the mass densities

of the individual components in the bulk phase, Γ̄ is a scalar density characterizing
the microstructure of the bulk phases, C is a tensorial variable describing the mi-
crostructure of the bulk phase, ms = ρsvs is the surface momentum density, ρs(J)
(J = 1, ..., N) are the mass densities of the individual components in the interface,
Γ̄s is a scalar density characterizing the microstructure of the interfaces, and Cs is
again a tensorial variable describing the microstructure of the interfaces. The sym-
bol Ū∗ = Ū + Ūc is the total internal energy per unit mass of the bulk phase, split
in a non-configurational contribution Ū and a configurational contribution Ūc. The
surface equivalent of this variable is Ūs∗ = Ūs + Ūsc .
Next we assume that the Hamiltonian and total entropy of the system is given by

E =

∫

R

(
m2

2ρ
+ Ū(r) + Ūc(ρ(r), Γ̄

s(r),Cs(r))

)
dV

+

∫

Σ

(
(ms)2

2ρs
+ Ūs(r) + Ūsc (ρ

s(r), Γ̄s(r),Cs(r))

)
dA (82)

S =

∫

R

[S̄
(
ρ, Ū , ρ(1), ..., ρ(N−1)

)
+ ρŜc

(
Γ̄(r),C(r)

)
]dV

+

∫

Σ

[S̄s
(
ρs, Ūs, ρs(1), ..., ρ

s
(N−1)

)
+ ρsŜsc (Γ̄

s(r),Cs(r))]dA (83)

where the parameter Ŝc is the configurational contribution to the entropy per unit
mass, Ŝ = S̄/ρ, and Ŝsc denotes the contribution of the microstructure of the interface

to the surface entropy per unit mass, Ŝs. We will assume that the separation in terms
of bulk and interfacial contributions introduced in (82) and (83), can also be applied to
the observable A in equation (72), which implies that this observable can by written as

A =

∫

R

adV +

∫

Σ

asdA (84)

where a denotes the density of A in the bulk phase, and as the surface density of A
in the interface. With such an expression for the observable A, the left hand side of
equation (72) reduces to

dA

dt
=

∫

R

∂a

∂xj

∂xj

∂t
dV +

∫

Σ

∂as

∂xsj

∂xsj

∂t
dA

−
∫

Σ

(
2Hasvs· ξ + ∂as

∂xsj
∇sxsj· u+ [[[avs· ξ]]]

)
dA (85)

where xj denote the bulk variables from the set of independent system variables,
defined in (81), xsj are the surface variables, H is the mean curvature of the interface,
and u is the speed of displacement of the interface [15].
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With equations (73), (78), and (81) through (83) we can construct the Poisson and
dissipative brackets appearing in (72), consistent with equations (74) through (77),
(79), and (80). In view of the length of these expressions we will not repeat these
here, and instead refer the reader to references [39–41,70]. Substituting (85) in (72),
and using the expressions for the Poisson and dissipative brackets, we obtain, after
collecting all terms on the left hand side of (72) and integrating by parts, an expression
with two main contributions. The first term is an integral over the bulk domain R,
containing terms proportional to the partial derivatives ∂a/∂xj . The second term is an
integral over the interfacial domain Σ, and contains terms proportional to the partial
derivatives ∂as/∂xsj , terms proportional to a

s, and jump terms, proportional to either
a or ∂a/∂xj . Since the observable A and the domains R and Σ were chosen arbitrarily,
we must set the integrands of both integrals to zero, in order to satisfy (72) identically.
Setting the integrand of the first integral to zero will give us the balance equations for
the bulk variables ρ,m, Ū , ρ(J), Γ̄, and C. Setting the integrand of the second integral
to zero gives us the balance equations for the corresponding surface excess variables,
and a set of consistency requirements for the transport of mass, momentum, energy,
and the structural variables to and from the interface [39,40]. Here we will focus only
on the constitutive equations for the surface extra stress tensor generated by this
approach. For the complete set of balance equations, consistency requirements and
constitutive relations produced by (72) we refer the reader to reference [70]. The total
surface extra stress tensor for an interface with complex microstructure described by
(72), is given by:

σstot = (εd − εs) [∇s· vs]P+ 2εsDs + 2Cs·
∂F̄ sc
∂Cs

+Gs
∂F̄ sc
∂Γ̄s
· (86)

Here F̄ sc = Ūsc − T sρsŜsc is the surface Helmholtz free energy per unit area of the
interfaces. The tensor Gs describes the coupling of the scalar structural field Γ̄s with
the surface velocity gradient, and a typical choice for this tensor is [43]

Gs = gs1C
s + gs2I+ g

s
3 (C

s)
−1

(87)

where the coefficients gsi , are functions of Γ̄
s, and the three invariants of Cs. The

first two terms in equation (86) represent the contributions from the bare interface
to the total surface extra stress tensor, and this contribution is described by a linear
Boussinesq model. For interfaces stabilized by colloidal particles or polymers, in the
high surface loading regime, these contributions will be negligible and can be omitted.
To complete the model we need time evolution equations for the structural vari-

ables. For the GENERIC we introduced here, the jump balance for Γ̄s takes the
form [70]

dsΓ̄
s

dt
+ Γ̄s∇s· vs −Gs : ∇svs − 2Hvs· Gs· ξ + Rs1

T s
∂F̄ sc
∂Γ̄s

−∇s·
[
DsΓ· ∇s

(
1

T s
∂F̄ sc
∂Γ̄s

)]
−
[[[
Φs : JΓC :

(
Φ

T

∂F̄c

∂Γ̄

−Φ
s

T s
∂F̄ sc
∂Γ̄s

+
1

T

∂F̄c

∂C
− 1
T s

∂F̄ sc
∂Cs

)]]]
= 0 (88)

where Rs1 is a scalar characterizing relaxation processes for Γ̄
s, DsΓ is a second order

surface tensor, describing diffusion process for Γ̄s, JΓC is a forth order tensor field
quantifying the transfer of Γ̄, and C between the interface and the adjoining bulk
phases, and Φs is second order surface tensor, describing the coupling between the
transfer of these two variables. From dimensional arguments we find that this tensor
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satisfies Φs ∼ Γ̄s(Cs)−1. This type of coupling is important in systems where Γ̄s
represents a surface concentration, and particles or polymer segments first have to
adopt a preferred orientation, before they can adsorb to an interface. The consistency
requirement for transfer of the scalar structural variable between bulk phase and
interface, obtained from the integral over Σ, is given by (M = I, II) [70]

ΦM : JMΓC :

(
ΦM

TM
∂F̄Mc
∂Γ̄M

− Φ
s

T s
∂F̄ sc
∂Γ̄s

+
1

TM
∂F̄Mc
∂CM

− 1
T s

∂F̄ sc
∂Cs

)

= −Γ̄M (vM − vs) · ξ +DMΓ · ∇
(
1

TM
∂F̄Mc
∂Γ̄M

)
· ξM. (89)

These consistency requirements (one for each adjoining bulk phase) are boundary
conditions that couple equation (88) to the corresponding equations for the bulk

variables Γ̄ in the adjoining bulk phases. Here ΦM is the bulk coupling tensor in
phase M , proportional to Γ̄(C)−1, and DMΓ is a second order tensor field describing
diffusion processes for Γ̄ in bulk phase M .
For the jump balance for the surface tensorial structural variable we find [70]:

�
δs C

s − 4Hvs· Csξ +Rs2 :
(
1

T s
∂F̄ sc
∂Cs

)
−∇s·

[
DsC
... ∇s

(
1

T s
∂F̄ sc
∂Cs

)]

−
[[[
JΓC :

(
Φ

T

∂F̄c

∂Γ̄
− Φ

s

T s
∂F̄ sc
∂Γ̄s

+
1

T

∂F̄c

∂C
− 1
T s

∂F̄ sc
∂Cs

)]]]
= 0 (90)

where
�
δs C

s denotes the upper convected surface derivative, defined in Section 3. The
forth order surface tensorRs2 characterizes relaxation processes for the tensor variable
Cs, and the sixth order surface tensor DsC is associated with diffusion processes of
Cs. The triple dots in the last term of the first line of this expression denote a
triple contraction. The consistency requirements for transfer of the tensorial structural
variable between bulk phases and interface take the form (M = I, II) [70]

JMΓC :

(
ΦM

TM
∂F̄Mc
∂Γ̄M

− Φ
s

T s
∂F̄ sc
∂Γ̄s

+
1

TM
∂F̄Mc
∂CM

− 1
T s

∂F̄ sc
∂Cs

)

= DMC
... ∇
(
1

TM
∂F̄Mc
∂CM

)
· ξM (91)

where DMC is a sixth order tensor field associated with diffusive processes for C in
bulk phase M . Again, equation (91) couples (90) to the corresponding equations for
C in the adjoining bulk phases.
With equations (86) through (91), supplemented with equations for the bulk struc-

tural variables [70], we have a general model for the rheological behavior of interfaces
in multiphase materials with a complex microstructure. By choosing specific forms for
the configurational Helmholtz free energies F̄c and F̄

s
c , the scalar R

s
1, and the tensors

Rs2, DΓ, D
s
Γ, DC , D

s
C , and JΓC , we can construct models for specific systems, such

as materials with particle or polymer stabilized interfaces.
A simple example of such a specific model was recently presented in reference

[71], for a system with simple Newtonian bulk phases, and interfaces stabilized by
rigid anisotropic colloidal particles, in the dilute surface concentration regime. The
relevant structural variables for this system are Γ̄s = ρsp, where ρ

s
p is the surface mass

density of the particles, and Cs = 2〈nsns〉s, the second moment of the distribution
of the vector ns, which denotes the direction of the length axis of the particles. Since
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the bulk phases in such a system do not have a complex microstructure, F̄c = 0. For
the configurational Helmholtz free energy of the interface an expression was chosen
of the form [43,72]

F̄ sc =
kBT

sρsωsp

m

(
lnωsp −

1

2
[tr (P−Cs) + ln detCs]

)
(92)

where kB is the Boltzmann constant, ω
s
p is the surface mass fraction of the particles,

and m is the mass of a single colloidal particle. The tensor Rs2 was set equal to

Rs2 =
m

kBρsωsp

1

τ
(aαμC

s
βν + aανC

s
βμ + β

[
CsαμC

s
βν + C

s
ανC

s
βμ

]
) aαaβaμaν (93)

where τ is a relaxation time associated with in-plane orientational relaxation processes
of the particles. The coefficient β characterizes the magnitude of the nonlinear cor-
rections for the linear relaxation behavior described by the first two terms on de right
hand side of (93). These corrections become important when the system is highly
anisotropic [43].
The model in [71] further assumes that the imposed surface shear and dilatational

deformations do not cause in-plane spacial inhomogeneities in the particle concentra-
tion or orientation of the particles. Another assumption is that there is no exchange of
the structural variables between bulk phases and interface. These assumptions imply
that the balance equation for Γ̄s is satisfied identically, and that the diffusion and
boldface bracket terms in equation (90) can be neglected. Together with (92) and (93)
the assumptions result in the following specific forms of (86)and (90):

σstot = (εd − εs) [∇s· vs]P+ 2εsDs +
kBT

sρsωsP
m

(Cs −P) (94)

∂Cs

∂t
− Cs· (∇svs)T − (∇svs) · Cs − 4Hvs· Csξ

+
1

τ
([1− β]Cs −P+ βCs· Cs) = 0. (95)

This two parameter model was compared to a model derived using the CIT frame-
work discussed in Sect. 2 [49], for a flat interface deformed in both surface shear
and dilatational mode. The model produced by the GENERIC framework is clearly
superior to the one derived using the CIT framework. Realistic predictions for the
average orientation of the particles are obtained even for shear rates much higher
than 1 s−1, whereas the CIT model gives accurate predictions only for shear rates
lower than 0.1 s−1 [71]. The GENERIC model also has fewer adjustable parameters,
which makes it easier to use in the evaluation of experimental data.
We see that the GENERIC framework produces models for the dynamics of mate-

rials with microstructured interfaces, which are valid also far from equilibrium (strains
�1). They link the nonlinear stress deformation of complex interfaces directly to mi-
crostructural changes induced by the applied deformation, and include a coupling
of the time evolution of the interfacial microstructure with the evolution of the mi-
crostructure of the adjoining bulk phases. The GENERIC framework satisfies best
the desired properties of surface rheological constitutive equations we outlined in the
introduction of this paper. An obvious drawback of the framework is that it is mathe-
matically very involved, which may hamper its widespread use in surface rheology. It
also requires detailed knowledge of the physics of the interfaces on microscopic length
scales, to produce specific models from the general balance equations. Here kinetic
theory, mesoscopic nonequilibrium thermodynamics, and computational methods on
both molecular and mesoscopic length scales, could play an important role, by provid-
ing input for the development of the coarse-grained continuum models we discussed
here.
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6 Conclusions and outlook

In this paper we compared four nonequilibrium thermodynamics frameworks with
respect to their capability of generating constitutive equations capable of describing
the highly nonlinear rheology of interfaces with a complex microstructure. We exam-
ined the classical irreversible thermodynamics framework and found that although
in CIT it is straightforward to incorporate a dependence of the surface stresses on
the time evolution of the interfacial microstructure, the resulting equations are valid
only for small departures from equilibrium (strains smaller than 0.1). The extended
irreversible thermodynamics framework incorporates the stresses in the set of indepen-
dent system variables, instead of structural variables describing the microstructure.
We have seen that it is relatively straightforward to generate nonlinear viscoelastic
models like the surface upper-convected Maxwell model or surface Giesekus model
within this framework. But these models are phenomenological and do not have an
explicit coupling with the microstructure of the interface. In both the CIT and EIT
framework it is not straightforward to introduce a coupling of the surface stresses
with the stresses in the adjoining bulk phases. This can easily be done in the ex-
tended rational thermodynamics framework. With expressions generated within this
framework we can also describe interfaces with inhomogeneous stress distributions.
Again these expressions do not have a direct link to the microstructure of the interface.
For similar expressions in terms of scalar and tensorial structural variables GENERIC
is the most suited framework. Although this framework is the most ideal framework
to create constitutive equations for the surface stresses, that link the stresses directly
to the time evolution equations for the structural variables, are capable of dealing
with structural inhomogeneities, and include contributions from the adjoining bulk
phases, it is also the most mathematically involved framework. This may hamper its
future use in surface rheology.
We have seen that with the recent progress in nonequilibrium thermodynamics of

multiphase systems it is now possible to construct nonlinear constitutive equations
to model the stress-deformation behavior of complex fluid-fluid interfaces. An im-
portant questions that remains to be discussed is how to implement these equations
in the analysis of surface rheology experiments, or in the analysis of droplet defor-
mation studies. Most of the expressions we discussed are highly nonlinear, and will
have to be solved numerically, along with the mass and momentum balances for the
interfaces and bulk phases of the system. Recent advances in numerical simulations
(see for example the reviews by Gross and Reusken [73], Krüger et al. [74], and Park
et al. [75], elsewhere in this issue) suggest that at least for single droplets or systems
with a limited number of droplets such implementations are now feasible, albeit time
consuming.
On the experimental side, evaluation of the coefficients in the nonlinear constitu-

tive models would be greatly facilitated if information on structure evolution during
deformation is available. For that purpose there is a need to develop two-dimensional
rheo-optics experiments [76]. For interfaces stabilized by (anisotropic) colloidal parti-
cles with sizes in excess of 1μm, structural evolution during surface shear deformations
can be evaluated using microscopy [77–81]. Interfaces stabilized by smaller particles
could be examined using scanning angle reflectometry [82,83], and polymer or lipid
stabilized interfaces by grazing incidence X-ray or neutron reflectivity measurements.
To the authors knowledge none of these techniques have been combined with simul-
taneous surface shear measurements, and doing so would be quite a challenge. For
dilatational measurements rheo-optics experiments could be performed in Langmuir
troughs, in combination with reflectivity measurements. But again, such experiments
are difficult to perform.
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Mesoscopic simulations could be a valuable tool to analyze surface rheological
data, whenever detailed experimental observations on structure evolution are not
available. But the field of mesoscopic surface simulation of complex fluid-fluid inter-
faces is still a largely unexplored field. The mesoscopic nonequilibrium thermody-
namics framework discussed elsewhere in this issue by Lervik and Kjelstrup [84], and
Santamaria-Holek et al. [85], may prove to be a valuable tool to construct mesoscopic
models for complex interfaces. In conclusion, to improve our understanding of the
dynamics of complex deformable interfaces we need significant advances in both the-
oretical modeling, experimental characterization, and computational methods, and
there is a particular need for the integration of these disciplines.
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