History of the Middle Berriasian transgression on the Jura carbonate platform: revealed by high-resolution sequence- and cyclostratigraphy (Switzerland and France)

Tresch, Jonas ; Strasser, André

In: International Journal of Earth Sciences, 2010, vol. 99, no. 1, p. 139-163

Ajouter à la liste personnelle
    Summary
    The Middle Berriasian deposits of the Jura platform in Switzerland and France have already been well studied in terms of high-resolution sequence stratigraphy and different orders of depositional sequences (large-, medium-, and small-scale) have been defined. The hierarchical stacking pattern of the sequences and the time span represented by the investigated interval imply that sea-level fluctuations in the Milankovitch frequency band as well as differential subsidence caused the observed changes of accommodation on the Jura platform. The present study focuses on three small-scale sequences within the transgressive interval of a large-scale sequence. The initial flooding of the platform is marked by a facies change from supra- and intertidal (Goldberg Formation) to shallow-marine subtidal deposits (Pierre Châtel Formation). Detailed logging and facies analysis of 11 sections allow recognizing small environmental changes that define elementary sequences within the well-established small-scale sequences and distinguishing between autocyclic and allocyclic processes in sequence formation. It is concluded that the small-scale sequences correspond to the 100-ka orbital eccentricity cycle, while allocyclic elementary sequences formed in tune with the 20-ka precession cycle. Based on the correlation of elementary and small-scale sequences it can be shown that the Jura platform has been flooded stepwise by repeated transgressive pulses. Differential subsidence and pre-existing platform morphology further controlled sediment accumulation and distribution during the transgression. The combination of high-resolution sequence stratigraphy and cyclostratigraphy then enables the reconstruction of hypothetical palaeogeographic maps in time increments of a few ten thousand years