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Abstract Floral features used for characterization of

higher-level angiosperm taxa (families, orders, and above)

are assessed following a comparison of earlier (pre-

cladistic/premolecular) and current classifications. Cron-

quist (An integrated system of classification of flowering

plants. Columbia University Press, New York, 1981) and

APG (Angiosperm Phylogeny Group) (Bot J Linn Soc

161:105–121, 2009) were mainly used as the basis for this

comparison. Although current circumscriptions of taxo-

nomic groups (clades) are largely based on molecular

markers, it is also important to morphologically charac-

terize these new groups, as, in many cases, they are com-

pletely novel assemblages, especially at the level of orders

and above. Features used in precladistic/premolecular

classifications are often much more evolutionarily plastic

than earlier assumed. A number of earlier neglected but

potentially useful features at higher levels are discussed

based on our own and other recent studies. As certain

features tend to evolve repeatedly in a clade, it appears that

apomorphic features in the strict sense are less helpful to

characterize larger clades than earlier assumed, and rather

apomorphic tendencies of features are more useful at this

level.
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Introduction

Plant species, genera, families, orders, and even higher

categories have long been characterized by structural fea-

tures, mainly by floral morphology. Certain features have

generally been regarded as of special value to characterize

higher-level taxa (families and above) in traditional clas-

sifications, with the assumption that they are relatively

stable. Earlier, classifications were developed whereby

larger primary groups were formed based upon shared

structural similarity. These groups then constituted the

nuclei around which other groups were assembled by

concatenation according to their least dissimilarity. By this

tentative association of similar groups, ‘‘islands’’ were

created that were relatively parsimonious but did not nec-

essarily represent ‘‘natural’’ groups (i.e., groups of related

components but not defined whether monophyletic or

paraphyletic). Earlier errors in macrosystematics may have

been caused by a bias to use central European herbaceous

plants as textbook examples for illustration. Floral mor-

phology and systematics would probably have had a dif-

ferent history had they started in South America, Africa, or

Australia, instead of Europe.

In the premolecular era certain floral features were

regarded as primitive and others as advanced at a global

level in angiosperms. Such features were, for instance,

large versus small number of floral organs, spiral versus

whorled floral phyllotaxis, free versus united petals, free

versus united carpels, and superior versus inferior ovary.

However, this somewhat simplistic and vague view on

flower evolution has been challenged by the impressive

new insights provided by molecular phylogenetic studies

over the past 20 years, beginning forcibly with the

groundbreaking comparative molecular study on 500 seed

plant taxa by Chase et al. (1993) and further advanced by
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many authors since (e.g., Soltis et al. 2011). We now have

a much better picture of relationships between families

and orders than 20 years ago (Fig. 1). This is important to

emphasize, even if many new higher-level relationships

are not yet well supported and substantial changes are still

to be expected. Specifically, the APG (Angiosperm Phy-

logeny Group) classifications (most recently APG 2009;

see also Stevens 2001 onward) review the current state of

relationships in a concise way and reflect the profound

changes and (to some extent) the relationships that are still

uncertain. The continuing refinement in these phylogenetic

studies with more taxa and more nucleotides studied fur-

ther sharpens this picture at all levels of the systematic

hierarchy. As a consequence, various problems of flower

morphology need to be tackled in a new way. The aim of

this review is therefore an assessment of the floral features

used in characterization of higher taxonomic groups before

the molecular revolution and now. The work by Cronquist

(1981) is used for comparison because the average size of

his orders (83 orders, 383 families) and families is com-

parable to that in APG (2009) (63 orders, 415 families)

and is therefore convenient for comparison, whereas it is

smaller in the pre-APG [APG (angiosperm phylogeny

group) 1998] classifications by Takhtajan (1987, 1997)

and larger in those by Thorne (1983, 1992), and also

because Cronquist (1981) describes his groups in more

detail than the other authors. We should emphasize that

the newly recognized clades in molecular phylogenetic

analyses are in most cases morphologically unstudied and

thus black boxes. A large effort is necessary to remedy

this situation (Crane et al. 2004; Endress and Friis 2006;

Endress and Matthews 2006b; Schönenberger and von

Balthazar 2006). Thus, what does a comparison of old and

new classifications tell us about our earlier mistakes in the

systematic evaluation of floral structure? Because flower

structure (incl. embryology) was a primary basis for the

building of earlier classifications, it is useful to focus on

flowers for such a comparison. Even in the molecular era,

comparative morphological analyses are used for tree

building, often in combination with molecular studies.

Such combined studies may give better resolution of the

trees (e.g., Nandi et al. 1998; Doyle and Endress 2000).

Morphological analyses are also important for the place-

ment of fossils (e.g., Endress and Doyle 2009; Doyle and

Endress 2010) and become even more important as more

fossils become available (Friis et al. 2011). They may also

be helpful in resolving uncertain topologies, such as those

of a number of rosid orders and the relationship between

fabids and malvids (Endress and Matthews 2006b; Qiu

et al. 2010).

Several topics are addressed in this review: (1) Stabil-

ity: in spite of the revolution in angiosperm classification,

not everything has changed. A few larger groupings that

have remained unchanged are shown; (2) Former cir-

cumscriptions with considerable changes: a number of

premolecular groups (mainly orders, mainly from Cron-

quist 1981) that have been greatly disassembled are

selected to show how their flowers were formerly used

for group characterization. Orders with massive changes

occur, especially in the basal angiosperms and in rosids,

whereas asterids and monocots are less affected. We

explore which floral features may have been used to hold

them together at that time; (3) Groups with new cir-

cumscriptions: a number of new groups (mainly orders)

that are completely new or have been greatly reassembled

are selected to show first results on their floral morpho-

logical characterization. Such clades newly established by

molecular phylogenetic studies are largely unknown in

their structure and biology; (4) Floral features used to

characterize former groups of the premolecular/pre-

cladistic era: these may serve to show why morphologists

were misled in the composition and characterization of

clades in this era; (5) Floral features of new groups: some

floral features that have been identified as interesting at

the new family or order level are discussed, mainly

resulting from comparative studies in orders of rosids by

our laboratory and other colleagues; (6) Floral features to

be further explored: a number of potentially interest-

ing features have been identified that need to be explored

in a wider range of families, orders, and supraordinal

groups.

Stability in the classification

Despite the great revolution in our understanding of higher-

level angiosperm clades, not everything at this level has

changed since the premolecular era. Such stability reflects

the sound use of morphological criteria in the premolecular

era for the groups where this stability occurs. Some orders

of several families (of Cronquist 1981) have not changed in

their circumscription, such as Zingiberales and Santalales

(in Santalales two families that were already doubtful to

Cronquist were removed). In Zingiberales, in addition,

even the family circumscriptions did not change (Bartlett

and Specht 2010).

In Santalales, however, there are changes in the family

circumscriptions (Nickrent et al. 2010). Here the phylo-

genetic topology prompted recognition of additional fam-

ilies in order to have monophyletic units. The former

Olacaceae and Santalaceae were split into several new

families: the Olacaceae to avoid paraphyletic groups, and

the Santalaceae in order to keep the nested Viscaceae as a

family (Malécot and Nickrent 2008; Nickrent et al. 2010).
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As a result the order now contains 18 families (Nickrent

et al. 2010) versus 8 in Cronquist (1981), not counting the

two doubtful families.

Another case of relative stability are Scrophulariales, in

which the members of all 12 earlier families are still

included, but the order (now named Lamiales) has become

enlarged by the addition of families from other earlier

orders (Lamiales, Callitrichales, and Plantaginales), in

addition to changes in family circumscriptions (Tank et al.

2006; APG 2009)

Fig. 1 Cladogram of

angiosperm orders from APG

(Angiosperm Phylogeny Group)

(2009), modified. Highlighted in

blue are those orders discussed

in the text that have undergone

considerable changes in their

circumscription. The numbers

after each name represent the

number of orders and subclasses

from Cronquist (1981) in which

the families of the new order

were placed. Highlighted in red
are the two examples of families

discussed in the text that have

undergone an extreme change in

their position
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Former circumscriptions with considerable changes

Former subclasses

Three of the 11 subclasses of Cronquist (1981) were dis-

mantled and the components relegated to other subclasses

as a consequence of molecular phylogenetics.

Arecidae (Arecales, Cyclanthales, Pandanales, and

Arales) are now positioned in Alismatales, Pandanales,

commelinids (APG 2009). They were superficially united

by the presence of numerous small, inconspicuous flowers

in spikes or spadices. Molecular phylogenetic studies

identified these orders as not forming a clade, except for

Cyclanthales and Pandanales (Chase et al. 1993, and later

works).

Dilleniidae (Dilleniales, Theales, Malvales, Lecythi-

dales, Nepenthales, Violales, Salicales, Capparales, Batales,

Ericales, Diapensiales, Ebenales, and Primulales) are now

positioned in many different rosids and asterids and some

incertae sedis. Dilleniidae were conceived as a major group

of dicots by Cronquist (1957, there called Dilleniales) and

Takhtajan (1964). This was mainly based on the discovery

of centrifugal stamen initiation in a number of mainly

large-flowered dicot families by Corner (1946) (Fig. 2a–f).

However, molecular phylogenetic analyses showed that

these centrifugal groups do not form a clade (Chase et al.

1993, and later works; see also below).

Hamamelididae (Trochodendrales, Hamamelidales,

Daphniphyllales, Didymelales, Eucommiales, Urticales,

Leitneriales, Juglandales, Myricales, Fagales, and Casu-

arinales) are now mainly positioned in Saxifragales and

Fagales, some also in Rosales, Sapindales, in basal eudicots

(Trochodendrales, Buxales) and asterids (Garryales).

Hamamelididae were recognized by Takhtajan (1964) as a

subclass (Cronquist 1981, used the incorrect spelling

‘‘Hamamelidae’’). Earlier they were called Amentiferae

(Takhtajan 1959). This grouping goes back to Hallier

(1896), based on often small, apetalous, unisexual flowers

in dense spikes or thyrses (‘‘catkins’’). In the 1960s there

was still debate about whether angiosperms were mono-

phyletic or polyphyletic (diphyletic), with the adherents of

polyphyly (diphyly) tending to believe that a fundamental

split existed between stachyosporous and phyllosporous

groups of angiosperms, although no critical comparative

study had ever been made between them (discussion in

Endress 1967).

To critically study this issue, Endress (1967) compared

two families, one of each group: Hamamelidaceae

(believed to be phyllosporous) and Betulaceae (believed to

be stachyosporous by some authors). The result was great

congruence, and no fundamental difference in gynoecium

structure. This lack of a fundamental split was later con-

firmed in molecular phylogenetic studies. Great further

similarities in floral and vegetative structures prompted

Endress (1967, 1977) to assume even close relationships

between the two families, in support of earlier ideas by

Hallier (1896) and Takhtajan (1959). This, however, was

later shown to be erroneous by molecular phylogenetic

studies (Chase et al. 1993; Manos and Steele 1997; Qiu

et al. 1998; Wang et al. 2009) and Cretaceous flowers of

Fagales (Friis et al. 2006). This was also already antici-

pated by Walker and Doyle (1975) and Wolfe et al. (1975)

because of the much more derived pollen in Fagales

(derived from tricolporate rather than tricolpate forms as in

Fig. 2 Large polystemonous flowers in different core eudicot orders

(earlier all in Dilleniidae). a Paeonia officinalis L. (Paeoniaceae,

Saxifragales, basal core eudicots). b Dillenia alata (R. Br. ex DC.)

Banks ex Martelli (Dilleniaceae, Dilleniales, basal core eudicots).

c Oncoba spinosa Forssk. (Achariaceae, Malpighiales, rosids).

d Clusia rosea Jacq. (Clusiaceae, Malpighiales, rosids). e Camellia
sasanqua Thunb. (Theaceae, Ericales, asterids). f Gustavia gracillima
Miers (Lecythidaceae, Ericales, asterids)
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Hamamelidaceae). The current position of Hamamelida-

ceae and Betulaceae is in the rosid alliance (name used in

Endress 2010a) or Superrosidae (name used in Soltis et al.

2011) but at different positions in this group: the former in

Saxifragales and the latter in Fagales (APG 2009). In

addition, a few families of Cronquist’s (1981) Hamam-

elid(id)ae are now positioned in basal eudicots; these have

largely dimerous flowers and a poorly differentiated peri-

anth or no perianth at all (Didymeles of Didymelaceae; von

Balthazar et al. 2003; Tetracentron of Trochodendraceae;

Endress 1986; Chen et al. 2007).

Former orders

Out of the 83 orders in Cronquist (1981), 18 that underwent

considerable changes in their composition are selected here

to show which floral features were used earlier for char-

acterization and where their components were transferred

following molecular phylogenetic results.

Magnoliales (Winteraceae, Degeneriaceae, Himant-

andraceae, Eupomatiaceae, Austrobaileyaceae, Annona-

ceae, Magnoliaceae, Lactoridaceae, Myristicaceae, and

Canellaceae) in Magnoliidae. These families are now in

Canellales, Magnoliales, Austrobaileyales, and Piperales,

dispersed in the ANITA grade and magnoliids. Old uni-

fying features: flowers mostly large, often with trimerous

whorls or spiral, apocarpous, carpels with several or

numerous lateral ovules.

Laurales (Amborellaceae, Trimeniaceae, Monimiaceae,

Gomortegaceae, Calycanthaceae, Idiospermaceae, Laura-

ceae, and Hernandiaceae) in Magnoliidae. These families

are now in Amborellales, Austrobaileyales, and Laurales,

dispersed in the ANITA grade and magnoliids. Old unifying

features: flowers often with trimerous whorls or spiral, often

with floral cup, apocarpous, carpels with a single median

ovule (in Calycanthaceae two lateral ovules).

Nymphaeales (Nelumbonaceae, Nymphaeaceae, Bar-

clayaceae, Cabombaceae, and Ceratophyllaceae) in

Magnoliidae. These families are now in Proteales, Nymp-

haeales, and Ceratophyllales, dispersed in the ANITA

grade, basal eudicots, and of unknown position. Old uni-

fying features: water plants, polystemonous, apocarpous

(except for Nymphaeaceae, Barclayaceae).

Liliales (Philydraceae, Pontederiaceae, Haemodoraceae,

Cyanastraceae, Liliaceae, Iridaceae, Velloziaceae, Aloea-

ceae, Agavaceae, Xanthorrhoeaceae, Hanguanaceae,

Taccaceae, Stemonaceae, Smilacaceae, and Dioscoreaceae)

in Liliidae. These families are now in Commelinales, Lil-

iales, Asparagales, Pandanales, and Dioscoreales, all in

monocots. Old unifying features: flowers trimerous, outer

and inner perianth organs similar, diplostemonous.

Hamamelidales (Cercidiphyllaceae, Eupteleaceae, Pla-

tanaceae, Hamamelidaceae, and Myrothamnaceae) in

Hamamelid(id)ae. These families are now in Ranunculales,

Proteales, and Gunnerales (basal eudicots), and Saxifra-

gales (core eudicots). Old unifying features: early flower-

ing, wind-pollinated, perianth inconspicuous or lacking,

stamens basifixed, anthers with valves, connective protru-

sion, pollen tricolpate, long, free style, large stigma.

Dilleniales (Dilleniaceae and Paeoniaceae) in Dillenii-

dae. These families are now in Dilleniales and Saxifra-

gales, both in basal core eudicots. Old unifying features:

flowers large, outer floral phyllotaxis spiral, polystemony,

centrifugal stamen initiation (Corner 1946), apocarpous.

Theales (Caryocaraceae, Ochnaceae, Sphaerosepalaceae,

Sarcolaenaceae, Dipterocarpaceae, Theaceae, Actinidia-

ceae, Scytopetalaceae, Tetrameristaceae, Pellicieraceae,

Oncothecaceae, Marcgraviaceae, Quiinaceae, Elatinaceae,

Paracryphiaceae, Medusagynaceae, and Clusiaceae) in

Dilleniidae. These families are now in Malpighiales, Mal-

vales, Ericales, and Paracryphiales, or not yet placed, dis-

persed in rosids and asterids. Old unifying features:

flowers ± large, often polystemonous, placenta axile (plus

concatenation of families with partly similar features).

Violales (Flacourtiaceae, Peridiscaceae, Bixaceae, Cista-

ceae, Huaceae, Lacistemataceae, Scyphostegiaceae, Stac-

hyuraceae, Violaceae, Tamaricaceae, Frankeniaceae,

Dioncophyllaceae, Ancistrocladaceae, Turneraceae, Males-

herbiaceae, Passifloraceae, Achariaceae, Caricaceae, Fou-

quieriaceae, Hoplestigmataceae, Cucurbitaceae, Datiscaceae,

Begoniaceae, and Loasaceae) in Dilleniidae. These families

are now in as many as 11 orders: Malpighiales, Saxifragales,

Malvales, Oxalidales, Crossosomatales, Caryophyllales,

Brassicales, Ericales, Boraginales (Hoplestigmataceae),

Cucurbitales, and Cornales, dispersed in rosids and asterids

(incl. Caryophyllales). Old unifying features: gynoecium

often trimerous, placentae often parietal (plus concatenation

of families with partly similar features).

Rosales (Brunelliaceae, Connaraceae, Eucryphiaceae,

Cunoniaceae, Dialypetalanthaceae, Pittosporaceae, Byblid-

aceae, Hydrangeaceae, Columelliaceae, Grossulariaceae,

Greyiaceae, Bruniaceae, Alseuosmiaceae, Crassulaceae,

Cephalotaceae, Saxifragaceae, Davidsoniaceae, Aniso-

phylleaceae, Crossosomataceae, Rosaceae, Neuradaceae,

Chrysobalanaceae, Surianaceae, and Rhabdodendraceae) in

Rosidae. These families are now in as many as 15 orders:

Oxalidales, Gentianales, Apiales, Ericales, Cornales,

Bruniales, Saxifragales, Geraniales, Asterales, Cucurbi-

tales, Crossosomatales, Rosales, Malvales, Malpighiales,

and Fabales, dispersed in rosids and asterids and in Saxi-

fragales and Caryophyllales. Old unifying features: in case

of polystemony centripetal stamen initiation, mostly free

styles, sometimes apocarpy (many with apocarpy placed

here: Brunelliaceae, Connaraceae, Crassulaceae, Cepha-

lotaceae, Crossosomataceae, Rosaceae, and Surianaceae)

(plus concatenation of families with partly similar
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features–almost a rubbish bin of families that are otherwise

difficult to place).

Rafflesiales (Hydnoraceae, Mitrastemonaceae, and

Rafflesiaceae) in Rosidae. These families are now in

Piperales, Ericales, Malpighiales, and additional families

(such as Cytinaceae and Apodanthaceae that were part of

Cronquist’s Rafflesiaceae) in Malvales, and Cucurbitales

(?), dispersed in magnoliids, rosids, and asterids. Old uni-

fying features: parasites with mycelium-like or massive

haustoria, androecium often without thecal organization.

Celastrales (Geissolomataceae, Celastraceae, Hippo-

crateaceae, Stackhousiaceae, Salvadoraceae, Aquifolia-

ceae, Icacinaceae, Aextoxicaceae, Cardiopteridaceae,

Corynocarpaceae, and Dichapetalaceae) in Rosidae. These

families are now in Crossosomatales, Celastrales, Brassi-

cales, Aquifoliales, Berberidopsidales, Cucurbitales, and

unplaced in lamiids, dispersed in rosids and asterids, and

Berberidopsidales. Old unifying features: flowers small,

haplostemonous, stamens antesepalous.

Euphorbiales (Buxaceae, Simmondsiaceae, Pandaceae,

and Euphorbiaceae) in Rosidae. These families are now in

Buxales, Caryophyllales, Malpighiales, dispersed in basal

eudicots, Caryophyllales, and rosids. Old unifying features:

flowers unisexual, petals mostly lacking, gynoecium and

often also outer floral whorls trimerous, fruits cocci or

capsules. This is a very mixed bag of rosids, Caryophyll-

ales, and basal eudicots. Trimerous gynoecia or flowers are

derived from several different origins. Buxaceae are

primitively dimerous, and trimery, in the few genera where

it occurs, is derived (von Balthazar and Endress 2002a, b;

von Balthazar et al. 2000). In Euphorbiaceae and Panda-

ceae it is most probably derived from pentamery (Wurdack

and Davis 2009).

Polygalales (Malpighiaceae, Vochysiaceae, Trigonia-

ceae, Tremandraceae, Polygalaceae, Xanthophyllaceae,

and Krameriaceae) in Rosidae. These families are now in

Malpighiales, Myrtales, Oxalidales, Fabales, and Zygo-

phyllales, all in rosids. Old unifying features: flowers

mostly monosymmetric, gynoecium tri- or dimerous.

Sapindales (Zygophyllaceae, Staphyleaceae, Melian-

thacae, Bretschneideraceae, Akaniaceae, Sapindaceae,

Hippocastanaceae, Aceraceae, Burseracaee, Anacardia-

ceae, Julianiaceae, Simaroubaceae, Cneoraceae, Meliaceae,

and Rutaceae) in Rosidae. These families are now in

Zygophyllales, Crossosomatales, Geraniales, Brassicales,

and Sapindales, all in rosids. Old unifying features: flowers

often obliquely monosymmetric, flowers (ob)diplostemo-

nous, gynoecium pentamerous or trimerous.

Malvales (Elaeocarpaceae, Tiliaceae, Sterculiaceae,

Bombacaceae, and Malvaceae) in Dilleniidae. These fam-

ilies are now in Oxalidales and Malvales, both in rosids.

Old unifying features: flowers often large, sepals valvate,

petals contort, polystemonous, gynoecium pentamerous.

Geraniales (Oxalidaceae, Geraniaceae, Limnanthaceae,

Tropaeolaceae, and Balsaminaceae) in Rosidae. These

families are now in Oxalidales, Geraniales, Brassicales,

and Ericales, dispersed in rosids and asterids. Old unifying

features: flowers often isomerous (ob)diplostemonous,

gynoecium mostly pentamerous.

Solanales (Duckeodendraceae, Nolanaceae, Solanaceae,

Convolvulaceae, Menyanthaceae, Polemoniaceae, and

Hydrophyllaceae) in Asteridae. These families are now in

Solanales, Asterales, Ericales, and Boraginales, all in

asterids (basal asterids, lamiids, and campanulids). Old

unifying features: flowers mostly polysymmetric, sympet-

alous, carpels with numerous ovules.

Lamiales (Lennoaceae, Boraginaceae, Verbenaceae, and

Lamiaceae) in Asteridae. These families are now in Bor-

aginales and Lamiales, both in lamiids. Old unifying fea-

tures: carpels with two ovules, ovaries with false septum,

each part bulging, giving rise to mostly four schizocarps.

Former families

Three of the families that underwent extreme changes are

addressed here: Scrophulariaceae and Icacinaceae in

Cronquist’s (1981) circumscription, and Saxifragaceae in

Engler’s (1930) circumscription.

Scrophulariaceae are now in ca. seven families, all in

Lamiales [Scrophulariaceae, Plantaginaceae, Orobancha-

ceae, Calceolariaceae, Linderniaceae, Phrymaceae, Reh-

manniaceae (Reveal 2011; Rehmannia not mentioned in

Cronquist 1981, but in Takhtajan 1997, in Scrophularia-

ceae)]. The old Scrophulariaceae were characterized by:

flowers monosymmetric, perianth 5-merous, four stamens,

two carpels, fruit capsules with several to numerous seeds.

Icacinaceae are now in four families and in two (or

perhaps three?) orders of asterids and there in lamiids and

campanulids (Karehed 2001): Metteniusaceae are placed in

Metteniusales (Reveal and Chase 2011, or, unplaced to

order, in lamiids, APG 2009; see also González et al. 2007;

González and Rudall 2010). Icacinaceae are placed in

Icacinales (Reveal and Chase 2011, or, unplaced to order,

in lamiids, APG 2009). Stemonuraceae and Cardiopterid-

aceae are placed in Aquifoliales, in campanulids (APG

2009). The old Icacinaceae were characterized by: flowers

small, 4–5-merous, petals valvate, stamens antesepalous,

filaments often hairy near the tip, mostly three carpels,

usually functionally unilocular, ovules (1)–2, pendant,

unitegmic, crassinucellar to tenuinucellar.

One of the most extreme examples of dismantled fam-

ilies are Engler’s (1930) Saxifragaceae, although Cronquist

(1981) had already somewhat improved their classification

(see also Wagenitz 1997). Their components are now

placed in 20 families and 12 orders (Saxifragales, Gera-

niales, Celastrales, Crossosomatales, Myrtales, Oxalidales,
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Cornales, Aquifoliales, Solanales, Escalloniales, Paracry-

phiales, and Asterales), in basal core eudicots, rosids (both

fabids and malvids), and in asterids (both lamiids and

campanulids). Engler’s Saxifragaceae show a simple type

of flowers of moderate synorganization: 5-merous, chori-

petalous, diplostemonous or haplostemonous, two carpels,

more or less united, numerous ovules.

Groups with new circumscriptions

New orders or previous orders with fundamental

reorganization

Of interest are also completely newly established orders of

several families or previous orders with extensive reorga-

nization. Fifteen such orders as recognized in APG (2009)

are selected to be addressed here (Fig. 1).

Pandanales (Pandanaceae, Cyclanthaceae, Stemona-

ceae, Triuridaceae, and Velloziaceae; Chase et al. 2000).

Earlier Pandanales consisted only of Pandanaceae. The

current five families were in four earlier orders (Panda-

nales, Cyclanthales, Liliales, and Triuridales), of three

subclasses (Arecidae, Liliidae, and Alismatidae). Floral

merism is labile in contrast to most other monocot groups,

and there are trends to polystemonous flowers in four of the

five families, and to dimerous flowers in two families

(Rudall and Bateman 2006).

Proteales (Proteaceae, Platanaceae, Nelumbonaceae,

and perhaps also Sabiaceae; Chase et al. 1993). Proteales

are a completely new order. The current three or four

families were in three or four different earlier orders

(Proteales, Hamamelidales, Nymphaeales, and Ranuncul-

ales), of three subclasses (Rosidae, Hamamelididae, and

Magnoliidae). Flowers show almost no syncarpy, di- or

trimery in perianth and androecium (not in Nelumbona-

ceae), and show a trend to orthotropous ovules (not in

Nelumbonaceae) (Endress and Igersheim 1999; von Bal-

thazar and Schönenberger 2009). This is one of the most

puzzling new assemblages. It is an ancient group.

Platanaceae were very diverse in the lower Cretaceous

(Friis et al. 1988; Crane et al. 1993; Magallón et al.

1997), but only one genus is left today. The giant flowers

of Nelumbo are derived as suggested by the much smaller

lower Cretaceous fossil Nelumbites (Upchurch et al. 1994;

Doyle and Endress 2010). This high divergence is

believed to be due to early adaptation to very different

habitats. There is some coherence in the floral organi-

zation of Proteaceae, Sabiaceae, and Platanaceae, but

Nelumbonaceae have diverged greatly from the ancestral

structure concomitant with the advent of floral gigantism.

A similar divergence is present in Nymphaeales with the

giant flowers of Nymphaeaceae in contrast to the much

smaller flowers of Cabombaceae and Hydatellaceae

(Davis et al. 2008).

Saxifragales (Altingiaceae, Aphanopetalaceae, Cercid-

iphyllaceae, Crassulaceae, Daphniphyllaceae, Grossu-

lariaceae, Haloragaceae, Hamamelidaceae, Iteaceae,

Pterostemonaceae, Paeoniaceae, Penthoraceae, Peridisca-

ceae, Saxifragaceae, and Tetracarpaeaceae; Jian et al.

2008). Saxifragaceae were earlier in Rosales, together with

23 other families, among them only 2 other families now in

Saxifragales; the current 15 families of Saxifragales were

in five earlier orders (Hamamelidales, Daphniphyllales,

Dilleniales, Rosales, and Haloragales), of three subclasses

(Hamamelididae, Dilleniidae, and Rosidae). Flowers have

basifixed or centrifixed anthers, a bicarpellate gynoecium

or the flowers are isomerous in all organ categories; there is

a tendency to apocarpy or at least free styles, often also free

upper part of ovary (Endress 1989b; Endress and Stumpf

1991; Magallón 2007).

Fabales (Fabaceae, Polygalaceae, Surianaceae, and

Quillajaceae; Bello et al. 2009). This is a completely new

assemblage of families. The current four families were in

three earlier orders (Fabales, Polygalales, and Rosales), all

from subclass Rosidae. There is a tendency towards

monosymmetric and in some cases even pronouncedly

asymmetric flowers (keel flowers), and a tendency of dor-

sally upwards-bulging ovaries (Bello et al. 2007, 2010).

Cucurbitales (Anisophylleaceae, Coriariaceae, Coryno-

carpaceae, Cucurbitaceae, Begoniaceae, Datiscaceae, and

Tetramelaceae; Zhang et al. 2006; uncertain: Apodantha-

ceae; Filipowicz and Renner 2010; Schaefer and Renner

2011). This is a largely new assemblage of families.

Cucurbitaceae, with Datiscaceae and Begoniaceae, were

earlier in Violales (Cronquist 1981). The current seven

families were in four earlier orders (Violales, Ranuncul-

ales, Rosales, and Celastrales), of three subclasses

(Magnoliidae, Dilleniidae, and Rosidae). There is a ten-

dency to unisexual, nectarless flowers; sepals and petals are

often similar, both pointed (Matthews and Endress 2004);

Coriariaceae were misinterpreted by Cronquist (1981) as

apocarpous. They are clearly syncarpous with a normal

compitum (Matthews and Endress 2004).

Oxalidales (Oxalidaceae, Connaraceae, Brunelliaceae,

Cephalotaceae, Cunoniaceae, Elaeocarpaceae, and Tre-

mandraceae; Savolainen et al. 2000). The current seven

families were in four earlier orders (Geraniales, Rosales,

Malvales, and Polygalales), of two subclasses (Dilleniidae

and Rosidae). The flowers show a tendency to (ob)dip-

lostemony and isomery and a tendency to apocarpy or at

least free styles; ovules often have an endothelium, even if

crassinucellar, and a medianly directed slit-like micropyle

(Matthews and Endress 2002).

Celastrales (Celastraceae, Parnassiaceae, and Lepidob-

otryaceae; Zhang and Simmons 2006). The current three
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families were in three earlier orders (Celastrales, Rosales,

and Geraniales), all of subclass Rosidae. Petals are not

retarded in development and form protective organs in bud.

Stamens are united with ovaries; gynoecia have locules that

are dorsally bulged upward combined with apical septa,

and commissural stigmas associated with strong commis-

sural vascular bundles (not in Lepidobotryaceae); the car-

pel ventral slits are closed by long interlocking epidermal

cells and have conspicuous pollen tube transmitting tracts

encompassing several cell layers; they have only weakly

crassinucellar or incompletely tenuinucellar ovules with an

endothelium (crassinucellar without endothelium in Lepi-

dobotryaceae) (Matthews and Endress 2005a).

Malpighiales (Achariaceae, Balanopaceae, Bonnetia-

ceae, Calophyllaceae, Caryocaraceae, Centroplacaceae,

Chrysobalanaceae, Clusiaceae, Ctenolophonaceae, Dichap-

etalaceae, Elatinaceae, Erythroxylaceae, Euphorbiaceae,

Euphroniaceae, Goupiaceae, Humiriaceae, Hypericaceae,

Irvingiaceae, Ixonanthaceae, Lacistemaceae, Linaceae,

Lophopyxidaceae, Malesherbiaceae, Malpighiaceae, Ochn-

aceae, Medusagynaceae, Quiinaceae, Pandaceae, Passi-

floraceae, Peraceae, Phyllanthaceae, Picrodendraceae,

Podostemaceae, Putranjivaceae, Rafflesiaceae, Rhizophor-

aceae, Salicaceae, Trigoniaceae, Turneraceae, and Viola-

ceae; Wurdack and Davis 2009; Ruhfel et al. 2011). This is a

new order with many components that were earlier regarded

as unrelated. The current 40 families (as in Wurdack and

Davis 2009) were in 12 earlier orders (Fagales, Violales,

Theales, Rosales, Linales, Celastrales, Euphorbiales,

Polygalales, Sapindales, Podostemales, Rafflesiales, and

Rhizophorales), of three subclasses (Hamamelididae,

Dilleniidae, and Rosidae); Centroplacus is not mentioned in

Cronquist (1981); in Takhtajan (1997) it is in Pandaceae of

his Euphorbiales. There is a tendency to antitropous ovules

with an obturator, and ovules are often weakly crassinucellar

or incompletely tenuinucellar, often with an endothelium

(Merino Suter et al. 2006; Matthews and Endress 2008,

2011).

Geraniales (Geraniaceae, Vivianiaceae, and Meliantha-

ceae; Soltis et al. 2000). The three current families were in

two earlier orders (Geraniales and Sapindales), both in

Rosidae. Flowers are (ob)diplostemonous and completely

isomerous; the carpels are conspicuously bulged outwards

in the ovary (Sauer 1933; Ronse Decraene and Smets

1999a; Ronse Decraene et al. 2001).

Crossosomatales (Crossosomataceae, Stachyuraceae,

Staphyleaceae, Guamatelaceae, Aphloiaceae, Geissolo-

mataceae, Ixerbaceae, and Strasburgeriaceae; Cameron

2003; Sosa and Chase 2003). This is a completely new

order (Reveal 1993), including the recently acquired new

family, Guamatelaceae (Guamatela, earlier in Rosaceae)

(Oh and Potter 2006). The current eight families were in

five or six earlier orders (Violales, Theales, Rosales,

Sapindales, and Celastrales), of two subclasses (Dilleniidae

and Rosidae); Ixerba is not mentioned in Cronquist (1981);

it is close to Brexia (Celastranae) in Takhtajan (1997).

Flowers show a tendency towards apocarpy but concomi-

tantly postgenital union of carpels; pollen buds are prom-

inent (Matthews and Endress 2005b).

Huerteales (Dipentodontaceae, Tapisciaceae, Gerrar-

dinaceae, and Petenaeaceae; Worberg et al. 2009). This is a

completely new order (Doweld 2001) with two new fam-

ilies: Gerrardinaceae (Alford 2006) and Petenaeaceae

(Christenhusz et al. 2010). The current four families with

six genera were in five different earlier orders (Violales,

Malvales, Sapindales, Celastrales, and Santalales), of two

subclasses (Dilleniidae and Rosidae). One of the families,

Dipentodontaceae, even has two genera of two different

earlier orders (Dipentodon in Santalales in Cronquist 1981,

Perrottetia not mentioned in Cronquist 1981, but in

Celastrales in other classifications; floral morphologically

out of place in Celastrales; Matthews and Endress 2005a).

Tapisciaceae contain Tapiscia and Huertea (in Sapindales

in Cronquist 1981), Gerrardinaceae contain Gerrardina (in

Violales in Cronquist 1981), Petenaeaceae contain Pete-

naea (not mentioned by Cronquist 1981, positioned in

Malvales by other authors, see Christenhusz et al. 2010).

Flowers are poorly studied; they are small, simple, with the

carpels completely congenitally united (as far as known).

Brassicales (core families: Brassicaceae, Capparaceae,

Cleomaceae, Gyrostemonaceae, Resedaceae, and Tovaria-

ceae; ‘‘basal’’ families: Akaniaceae, Bretschneideraceae,

Bataceae, Caricaceae, Emblingiaceae, Koeberliniaceae,

Limnanthaceae, Moringaceae, Pentadiplandraceae, Salva-

doraceae, Setchellanthaceae, and Tropaeolaceae; Rodman

et al. 1996). Most of the ‘‘basal’’ families were newly

added to the order. The predominant presence of gluco-

sinolates is further supported. The current 18 families were

in seven earlier orders (Sapindales, Batales, Capparales,

Violales, Polygalales, Geraniales, and Celastrales), of two

subclasses (Dilleniidae and Rosidae); Setchellanthaceae

(Iltis 1999; Karol et al. 1999) are a new family segregated

from Capparaceae. Commissural stigmas occur in core

Brassicales. There is a tendency to campylotropous and

incompletely tenuinucellar ovules (Ronse Decraene and

Haston 2006).

Malvales [Bixaceae, Cistaceae, Cytinaceae, Diptero-

carpaceae, Malvaceae, Muntingiaceae, Neuradaceae, Sar-

colaenaceae, Sphaerosepalaceae, and Thymelaeaceae;

Bayer et al. 1999; perhaps also Apodanthaceae (Schaefer

and Renner 2011; supported by floral structure: Blarer

et al. 2004; Endress 2010a)]. The present 10 families were

in six earlier orders (Violales, Theales, Malvales, Raffle-

siales, Rosales, and Myrtales), of two subclasses (Dille-

niidae and Rosidae). There are tendencies towards contort

petals, toward polystemony with centrifugal stamen
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initiation, either on a primary ring meristem or with pri-

mary sectorial meristems, and a slight tendency towards

orthotropous ovules (Ronse Decraene 1989; Nandi 1998a,

b; von Balthazar et al. 2006).

Caryophyllales (Achatocarpaceae, Aizoaceae, Ama-

ranthaceae, Anacampserotaceae, Ancistrocladaceae,

Asteropeiaceae, Barbeuiaceae, Basellaceae, Cactaceae,

Caryophyllaceae, Didiereaceae, Dioncophyllaceae, Dro-

seraceae, Drosophyllaceae, Frankeniaceae, Gisekiaceae,

Halophytaceae, Limeaceae, Lophiocarpaceae, Mollugina-

ceae, Montiaceae, Nepenthaceae, Nyctaginaceae, Physen-

aceae, Phytolaccaceae, Plumbaginaceae, Polygonaceae,

Portulacaceae, Rhabdodendraceae, Sarcobataceae, Sim-

mondsiaceae, Stegnospermataceae, Talinaceae, and Tam-

aricaceae; Cuénoud et al. 2002). The core Caryophyllales

did not change much in their circumscription since the

premolecular time, but Rhabdodendraceae, Simmondsia-

ceae, Physenaceae, and Asteropeiaceae were added, and six

new families were erected: Sarcobataceae (Behnke 1997),

Talinaceae (Doweld 2001), Limeaceae (Hoogland and

Reveal 2005), Microteaceae (Schäferhoff et al. 2010),

Lophiocarpaceae (Doweld and Reveal 2008), and Ana-

campserotaceae (Nyffeler and Eggli 2010). An additional

subclade with 10 families newly assembled together was

incorporated into the order (Nepenthaceae, Ancistroclada-

ceae, Dioncophyllaceae, Droseraceae, Drosophyllaceae,

Nepenthaceae, Frankeniaceae, Tamaricaceae, Plumbagin-

aceae, and Polygonaceae; Albert et al. 1992). The current

34 families are from eight earlier orders (Caryophyllales,

Plumbaginales, Polygonales, Violales, Theales, Nepent-

hales, Rosales, and Euphorbiales; Physena not mentioned),

of three subclasses (Caryophyllidae, Dilleniidae, and Ros-

idae). Petals are ancestrally lacking, but evolved in parallel

in many families (Brockington et al. 2010); campylotro-

pous ovules are predominant (mainly in the core clade),

and ovules with long funicles are conspicuous (Eckardt

1976; Endress 2010a).

Ericales (Balsaminaceae, Tetrameristacae, Fouquieria-

ceae, Polemoniaceae, Lecythidaceae, Sladeniaceae, Penta-

phylacaceae, Sapotaceae, Ebenaceae, Primulaceae,

Theaceae, Symplocaceae, Diapensiaceae, Styracaceae,

Sarraceniaceae, Roridulaceae, Actinidiaceae, Clethraceae,

Cyrillaceae, Mitrastemonaceae, and Ericaceae; Anderberg

et al. 2002; Schönenberger et al. 2005). Ericales have been

expanded with many new components. The present 21

families were in 12 earlier orders (Ericales, Diapensiales,

Ebenales, Primulales, Lecythidales, Theales, Violales,

Nepenthales, Geraniales, Rosales, Rafflesiales, and Sola-

nales; Sladenia not mentioned), of 3 earlier subclasses

(Dilleniideae, Rosidae, and Asteridae). Flowers are mostly

sympetalous, haplostemonous or (ob)diplostemonous;

ovules have one or two integuments, and are only incom-

pletely tenuinucellar (Schönenberger et al. 2005, 2010).

New family positions with drastic changes

Many families have changed their positions into other

orders or supraordinal clades. Two drastic changes are

addressed here, involving: (1) transfers from basal angio-

sperms (ANITA grade) to highly derived core eudicots

(asterids), and (2) from highly derived monocots (com-

melinids) to basal angiosperms (ANITA grade).

1. Paracryphiales (consisting of three unigeneric fami-

lies, Paracryphiaceae, Sphenostemonaceae, and Quintinia-

ceae) are now sister to Dipsacales (campanulids, asterids)

based on molecular analyses (Tank & Donoghue 2010).

Paracryphia and Sphenostemon were earlier believed to be

in families of today’s basal angiosperms: The monotypic

Paracryphia was first described as a species of Ascarina in

Chloranthaceae (Schlechter 1906), and the genus Idenbur-

gia (now in Sphenostemon) was described in Trimeniaceae

(currently ANITA grade) by Gibbs (1917) (Figs. 1, 3). Both

Paracryphia and Sphenostemon have some superficial

resemblance to these basal angiosperms (see also Jérémie

1997, 2008). However, on closer inspection, especially

when the internal floral morphology is studied, this

resemblance quickly disappears. Cronquist (1981) placed

Paracryphia as a separate family in Theales of Dilleniidae,

and Sphenostemon in Aquifoliaceae of Rosidae. It appears

that the high degree of synorganization of the floral organs,

as characteristic for asterids, was lost to a considerable

degree in Paracryphiaceae and Sphenostemonaceae; only

syncarpy was retained (see also Endress 2002, 2008). The

third family of Paracryphiales, Quintiniaceae, once in

Saxifragaceae (see above, Engler 1930; not mentioned in

Cronquist 1981), has retained somewhat more floral organ

synorganization, and its floral structure appears very dif-

ferent from that of the other two families (Endress 2010a).

2. Hydatellaceae were originally placed in Centrole-

pidaceae, a family of Poales, in advanced monocots. That

they did not fit in this family was first found in morpho-

logical and embryological studies by Hamann, who placed

them in a separate family of unknown position in monocots

(Hamann 1975, 1976). Hydatellaceae are wetland plants

with extremely reduced flowers. Phylogenetic studies

based on molecular and morphological features relegated

the family to Nymphaeales of basal angiosperms (Saarela

et al. 2007) (Fig. 1). Subsequently this was further sup-

ported by more detailed structural studies by, e.g., Rudall

et al. (2007).

Floral features that are more labile than previously

thought

Some features of floral architecture and organization appar-

ently are evolutionarily flexible and are present in quite
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disparate clades as shown above in section ‘‘Former cir-

cumscriptions with considerable changes,’’ such as flower

size, floral phyllotaxis, floral symmetry, decrease and

increase in floral organ number, loss of perianth, loss and

reappearance of corolla, choripetaly/sympetaly, diploste-

mony/obdiplostemony, presence or absence of polystemony,

centripetal/centrifugal stamen initiation in polystemonous

androecia, features of a buzz pollination syndrome, and

features used in alpha-taxonomy to describe gynoecia, e.g.,

inferior or superior ovaries. The current classifications (Ste-

vens 2001 onwards; Soltis et al. 2005; APG 2009; Reveal

2011; Reveal and Chase 2011) indicate that these features are

less suitable to characterize larger clades than previously

thought. Some of these and other features and their lability

are briefly discussed in this section.

Floral phyllotaxis: In basal angiosperms and basal eu-

dicots there is much evolutionary plasticity between spiral

and whorled floral phyllotaxis (Endress 1987; Endress and

Doyle 2007, 2009). Optimization studies show at least

eight changes in the perianth phyllotaxis and seven in the

androecium phyllotaxis, and the most parsimonious

ancestral state of floral phyllotaxis in angiosperms is

equivocal (Endress and Doyle 2007; Doyle and Endress

2011). Especially labile are Atherospermataceae and

Monimiaceae among magnoliids (Staedler and Endress

2009), and Ranunculaceae in basal eudicots (Schöffel

1932; Ren et al. 2010).

Presence/absence of perianth: In basal eudicots the

perianth was lost several times, among Ranuncululales, in

Eupteleaceae (Endress 1986; Ren et al. 2007) and Achlys

(Berberidaceae, Endress 1989c), among Trochodendrales

(almost) in Trochodendron (Endress 1986; Wu et al. 2007),

among Buxales in Styloceras (von Balthazar and Endress

2002a, b) and Didymeles (von Balthazar et al. 2003), and

among Gunnerales in certain Gunneraceae (Rutishauser

et al. 2004; Ronse Decraene and Wanntorp 2006) and

(probably) in Myrothamnaceae (Jäger-Zürn 1966).

Presence/absence of corolla: In basal eudicots (Endress

2010a), Caryophyllales (Brockington et al. 2009), and

other core eudicots (Ronse Decraene 2008) petals disap-

peared and reappeared several times.

Choripetaly/sympetaly: There are instances of sympet-

aly in many mainly choripetalous clades (e.g., Schönen-

berger et al. 2005). Examples in basal eudicots are

Papaveraceae (Adlumia) and Ranunculaceae (Consolida);

in Saxifragales, sympetaly evolved multiple times in Eur-

asian Sedoideae (Umbilicus, Sedum, Pistorinia, Sedum,

Rosularia, and Prometheum) (‘t Hart et al. 1999) and

probably also in other Crassulaceae; in Malpighiales, in

Euphorbiaceae, in male flowers of Crotonogyne, Mannio-

phyton, Pausandra (Pax and Hoffmann 1931), in Dichap-

etalaceae, in Tapura, petals and stamens are fused (Engler

and Krause 1931; Matthews and Endress 2008); in Sapin-

dales, in Meliaceae, in Munronia, Turraeanthus, species of

Turraea, Chisocheton, Dysoxylum, Aglaia, and commonly

fused with the staminal tube (Harms 1940; Mabberley

2011), and in Rutaceae, in the Angostura alliance (Gali-

peinae) (Engler 1931; Kubitzki et al. 2011); in Santalales,

in Olacaceae (Schoepfia; Tomlinson 1980). It should be

emphasized that in some of these cases it is not established

whether there is true sympetaly, i.e., with congenital petal

union, or only postgenital coherence of petals.

Fig. 3 Paracryphiales and their earlier putative relatives and current

sister group. a Trimenia neocaledonia Baker f. (Trimeniaceae,

Austrobaileyales, ANITA grade). b Ascarina solmsiana Schltr.

(Chloranthaceae, Chloranthales, ANITA grade or sister to magnoli-

ids). c-e. Paracryphiales (asterids). c Sphenostemon lobosporus (F.

Muell.) L.S. Sm. (Sphenostemonaceae). d Paracryphia alticola

(Schltr.) Steenis (Paracryphiaceae). e Quintinia quatrefagesii F.

Muell. (Quintiniaceae). f Sambucus ebulus L. (Adoxaceae, Dipsa-

cales, asterids). The red line separates the components of two pairs

that were earlier regarded as closely related. The yellow line separates

the three members of Paracryphiales from a member of its sister

clade, Dipsacales
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Vice versa, there are many instances of choripetaly in

predominantly sympetalous clades. This is especially the

case in Ericales; Cyrillaceae are choripetalous, perhaps

primitively (?) (Anderberg and Zhang 2002), but second-

arily according to Schönenberger et al. (2005); the clade of

Sarraceniaceae, Actinidiaceae, and Roridulaceae is chori-

petalous (Schönenberger et al. 2005); in Clethraceae both

choripetaly and sympetaly are present (Anderberg and

Zhang 2002); the same in Marcgraviaceae (Schönenberger

et al. 2005) and Actinidiaceae (Dickison 1972); within

Ericaceae, Empetreae, most Monotropoideae, and scattered

genera elsewhere (in Monotropoideae potentially primi-

tively choripetalous) (Stevens et al. 2004). Similarly,

Cornales are labile (Hufford 1992). In Lamiales, in Plan-

taginaceae the reduced flowers of Besseya are choripeta-

lous (Hufford 1995). In Paracryphiales, flowers appear

choripetalous, but development has not been studied

(Endress 2010a). For the evolution of sympetaly and fluc-

tuations between sympetaly and choripetaly in basal asterids,

see also Endress (1997a) and Ronse Decraene et al. (2000).

Diplostemony/obdiplostemony: Diplostemony and

obdiplostemony often occur in the same order or even

family, which indicates that they are not fundamentally

different (in contrast to some earlier beliefs of a different

evolutionary derivation of the two, e.g., Corner 1946) (see

also below under ‘‘Stamen initiation centripetal/centrifu-

gal’’). For instance, we found both patterns in Cucurbitales,

Crossosomatales, and the Rhizophoraceae alliance, among

those even in the same family and subfamily (Linaceae,

Hugonioideae) (Matthews and Endress 2002, 2004, 2011).

Which of the two patterns is realized during development

depends on minute differences in the development of the

two stamen whorls (see Rohweder 1963; Eckert 1966;

Ronse Decraene and Smets 1995; Endress 2010b).

Oligostemony/polystemony: Coexistence of oligostemo-

ny (not more than two stamen whorls isomerous with

perianth whorls) with polystemony was found in almost all

orders studied in the rosid project by Matthews and

Endress: Oxalidales (Cunoniaceae and Elaeocarpaceae;

Matthews and Endress 2002), Cucurbitales (Datiscaceae

and Begoniaceae; Matthews and Endress 2004), Crosso-

somatales (Crossosomataceae and Aphloiaceae; Matthews

and Endress 2005b), especially prominent among Mal-

pighiales (Wurdack and Davis 2009), in Chrysobalanaceae

s.l. (Chrysobalanaceae, partly/slightly in Dichapetalaceae

and Trigoniaceae; Matthews and Endress 2008), the Rhi-

zophoraceae alliance (Rhizophoraceae and Caryocaraceae;

Matthews and Endress 2011), also in the Euphorbiaceae

alliance (Prenner et al. 2008) and the Clusiaceae alliance

(Stevens 2007). This coexistence of oligo- and polyste-

mony also occurs in Saxifragales (Hamamelidaceae,

Endress 1989a; Paeoniaceae, Hiepko 1965), Fabales,

Geraniales, Myrtales, and Sapindales in the rosid alliance

and in the Fouquieriaceae–Polemoniaceae clade, the Hyd-

rangeaceae–Loasaceae clade, and Araliaceae in asterids

(Hufford 1990; Hufford et al. 2001; Endress 2002; Schö-

nenberger and Grenhagen 2005; Schönenberger 2009;

Nuraliev et al. 2010). The evolutionary pathway to

polystemony among diplo- or haplostemonous groups

appears to be commonly via double or multiple positions

within distinct floral sectors, such as in all mentioned larger

clades of rosids with some polystemony studied by us.

With regard to the relation between polystemony and oli-

gostemony, earlier works did not consider the hierarchy of

the different systematic levels where they occur, but rather

just made uniform statements lumping all levels together

(e.g., Reuter 1926).

Stamen initiation centripetal/centrifugal: Corner (1946)

studied the development in several centrifugal–polystem-

onous genera and regarded this pattern as ‘‘a feature of

considerable systematic importance,’’ which led to the

creation of the subclass Dilleniidae (see above; Cronquist

1957; Leins 1975). However, the recognition of the mul-

tiple evolution of this trait by molecular phylogenetic

studies later led to the dismantling of the subclass Dille-

niidae (see above, ‘‘Former subclasses’’). Corner (1946)

also thought that obdiplostemonous groups ‘‘seem referable

to the centripetal series.’’ However, later it was clearly

shown that obdiplostemonous flowers do not exhibit cen-

trifugal stamen initiation (Rohweder 1963; Eckert 1966;

Endress 2010b; Leins and Erbar 2010) and that there is

lability between diplostemony and obdiplostemony.

Ovary superior/inferior: Evolutionary relationships

between these two features and the occurrence of multiple

evolutionary transitions from inferior to superior ovaries

within families, e.g., in Rubiaceae and Araliaceae, were

discussed in Endress (2011b).

Placentation axile/parietal: These features are likewise

unstable and have evolved many times (Endress 1994a;

Ronse Decraene 2010). The earlier order name Parietales

for a group of 34 families (Engler 1925, based on Lindley)

reflects the former systematic weight put on this kind of

placentation. These families are now dispersed in 11 orders

(Canellales, Dilleniales, Cucurbitales, Malpighiales,

Oxalidales, Crossosomatales, Capparales, Malvales, Caryo-

phyllales, Ericales, and Cornales), placed in magnoliids,

rosids, and asterids.

Apocarpy/syncarpy: Earlier, apocarpy has been seen as

primitive everywhere and syncarpy as derived. In a syn-

carpous gynoecium it is easy to develop a compitum, an

area where pollen tubes are able to cross between carpels,

which greatly increases pollen tube selection (Endress

1982). However, a compitum can also be reached by var-

ious means in an apocarpous gynoecium, especially by

postgenital fusion of free carpels, and apocarpy evolved

several times from syncarpy in eudicots and monocots
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(Endress et al. 1983; Doyle and Endress 2000; Endress and

Doyle 2009; Remizowa et al. 2010; Endress 2011c; Wang

et al. 2012).

Features or combinations of features that are more

stable than previously thought or have not been

considered

Ovule structure in particular is more diverse than tradi-

tionally recognized, and patterns of this diversity are also

of a certain stability and of macrosystematic interest. This

was shown by a broad review of the floral morphological

and embryological literature of angiosperms (Endress

2003, 2005, 2010a, 2011a, c) and also by our own com-

parative studies in basal angiosperms (summarized in

Endress and Igersheim 2000) and a number of larger clades

in core eudicots, especially rosids (Matthews et al. 2001;

Matthews and Endress 2002; 2004, 2005a, b, 2006, 2008,

2011; Endress and Matthews 2006a, b). Through these

studies, features were recognized in ovule structure that

were not considered in previous embryological publica-

tions (Endress 2011a).

Nucellus thickness: it is useful not only to distinguish

between crassinucellar and tenuinucellar, but also to dis-

tinguish between: (1) weakly crassinucellar (with only one

cell layer between meiocyte and epidermis of the nucellus

apex; e.g., in Zygophyllales of rosids), (2) pseudocrassin-

ucellar (with no cell layer between meiocyte and epidermis

of the nucellus apex, but periclinal division of epidermal

cells; e.g., in some basal eudicots and some basal mono-

cots), (3) incompletely tenuinucellar (with the meiocyte

hypodermal in the nucellus apex but with hypodermal tis-

sue at the flanks of the meiocyte and/or below the meiocyte

in the nucellus; e.g., in many groups of the COM clade of

rosids and in basal asterids), and (4) reduced tenuinucellar

(with the meiocyte hypodermal throughout the nucellus

and partly extending below the nucellus; e.g., in many

Gentianales) when describing ovules (Endress 2003, 2005,

2010a, 2011a, b).

Endothelium: An endothelium is mostly associated with

tenuinucellate ovules. However, there are also cases of

tenuinucellar ovules without an endothelium (Gentianales)

and, vice versa, cases of incompletely tenuinucellar,

weakly crassinucellar, or even crassinucellar ovules with an

endothelium (Malpighiales and Cornales).

Integument number: Ovules with two integuments

characterize basal angiosperms, monocots, basal eudicots,

rosids, Caryophyllales of the asterid alliance, and a few

basal asterids. Ovules with one integument are present in

almost all asterids. A number of groups transferred from

rosids or other core eudicots to asterids based on molecular

analyses have only one integument (e.g., Loasaceae,

Hydrangeaceae, Cornaceae, and Eucommiaceae). Thus, in

the current classification, integument number is an even

stronger marker than it was in the precladistic era (see also

Endress et al. 2000).

Integument thickness: The outer integument is com-

monly thicker than the inner or equally thick (in the latter

case often both with only two cell layers). However, ovules

with the inner integument thicker than the outer charac-

terize many malvids and many groups of the COM clade

(Endress and Matthews 2006b).

In addition to stable features it is also of interest to

consider unique combinations of features. This is espe-

cially useful in the study of floral fossils. An example are

Hamamelidaceae by their unique combination of laterally

hinged anther valves, basifixed anthers, connective

appendage, and bicarpellate gynoecium, features easily

recognizable in fossils (Endress 1989a, b; Hufford and

Endress 1989; Endress and Friis 1991; Magallón-Puebla

et al. 1996; Magallón et al. 2001; Magallón 2007). The

combination of laterally hinged anther valves, basifixed

anthers, and connective appendage is also common in

Magnoliales, but they have a different gynoecium structure

(Endress and Hufford 1989; Endress 1994b).

New features of macrosystematic interest or features

to be further explored

The following features were more recently shown to be of

considerable macrosystematic interest in our studies and in

those of other laboratories. Most of them cannot be rec-

ognized without microtome sections, and therefore they

were often missed or neglected in previous literature. They

should however be followed up more closely in future

studies.

Special mucilage cells in sepals with a thickened inner

cell wall are common in many rosids, particularly fabids,

but absent or rare in other eudicots and basal angiosperms

(Matthews and Endress 2006).

Petals (and not sepals) covering inner floral organs in

advanced bud, often combined with valvate aestivation and

incurved tip, is a combination more common in core

eudicots than earlier considered, for instance, in Vitales,

among Malpighiales, in Dichapetalaceae (Matthews and

Endress 2008) and some Rhizophoraceae and Erythroxyl-

aceae (Matthews and Endress 2011), among Sapindales,

especially in Burseraceae and Spondiadoideae of Anacar-

diaceae (Bachelier and Endress 2009), among the asterid

alliance, in Santalales, (Endress 2008; Wanntorp and

Ronse De Craene 2009), Cornales, and in campanulids

(Endress 2010a). Thus, the distinction between sepals and

petals based on three versus one vascular trace and the

protective versus nonprotective function combined with
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early growth versus delay in growth (e.g., Endress 1994a)

is often not present.

In flowers with united petals, union may be congenital

or postgenital or both combined. These patterns should be

more closely studied and distinguished. The term ‘‘sym-

petaly’’ should only be used for corollas with congenitally

united petals. This is the most common pattern of petal

union. Postgenitally united petals occur, e.g., in a few

Oxalidales (Matthews and Endress 2002), Celastrales

(Matthews and Endress 2005a), and Malpighiales (Mat-

thews and Endress 2011). The combination of congenital

and postgenital union is known from some Gentianales

(Endress 2010a).

In sympetalous flowers, late and early sympetaly may be

distinguished (Erbar and Leins 1996, 2011). Late sympet-

aly, in which the individual petal primordia are distinct

from the beginning of corolla development, largely char-

acterizes lamiids, whereas early sympetaly, in which the

individual petal primordia become distinct only after the

beginning of corolla development, primarily occurs in

campanulids (Erbar and Leins 1996, 2011).

Stapet, the congenital fusion of stamens with petals

(Ritterbusch 1991), evolved in many monocots and eudi-

cots. In core eudicots it is often combined with sympetaly;

thus, it is especially common in asterids. In rosids, sym-

petaly with stapet is unusual but is more common than it

may appear from general descriptions. Examples are in

Rutaceae (part of the Angostura alliance = Galipeinae,

Sapindales; Kubitzki et al. 2011), Caricaceae (Brassicales;

Ronse Decraene and Smets (1999b), and in Crassulaceae

(Saxifragales; Wassmer 1955). In basal eudicots it is

present without sympetaly, e.g., in Berberidaceae and

Sabiaceae. While in euasterids sympetaly is ubiquitous and

a stapet is most common, in basal asterids choripetaly

occurs in addition to sympetaly, and a stapet is present or

absent in sympetalous taxa.

Differential length of stamens in flowers with two sta-

men whorls. In many (ob)diplostemonous core eudicots the

antepetalous stamens are smaller (shorter) than the ante-

sepalous ones, or they have the same size. Only rarely are

the antepetalous stamens larger than the antesepalous ones,

e.g., in a number of taxa of the Rhizophoraceae alliance,

such as in many Rhizophoraceae, in Erythroxylaceae, and

in Hugonia (Linaceae) (Matthews and Endress 2011). Both

the general basis for the mostly smaller antepetalous sta-

mens and the systematic distribution of the different mor-

phs should be studied in more detail.

Different developmental patterns of polystemony: Since

polystemony and both centripetal and centrifugal initiation

of polystemony have evolved in many clades of (core)

eudicots as mentioned above, it may be useful to look for

subpatterns within these broad developmental patterns.

This has been done for some clades, but much more

comparative research is necessary to determine whether

there are subpatterns of special systematic distribution. The

most extreme configuration is ring primordia with centrif-

ugal stamen initiation known from Dilleniaceae (Dillenia,

Tetracera; Corner 1946; Ronse Decraene and Smets 1992;

Endress 1997b), Salicaceae (Bernhard and Endress 1999),

Capparaceae (Capparis, Leins and Metzenauer 1979),

Malvaceae (Adansonia; van Heel 1966; Janka et al. 2008),

Aizoaceae (Aptenia, Aizoaceae; Ronse Decraene and

Smets 1992; Cactaceae several genera, Ross 1982; Peres-

kia, Leins and Schwitalla 1985; Opuntia, Ronse Decraene

and Smets 1992), Theaceae-Camellioideae (Polyspora,

Camellia, Pyrenaria; Tsou 1998), and Lecythidaceae (Tsou

and Mori 2007). Thus the pattern is present especially in

malvids, including the COM clade and in basal groups of

the asterid alliance (Endress 2010a). Ring primordia with

centripetal stamen initiation occur in basal eudicots (Pap-

averaceae, Nelumbonaceae; Merxmüller and Leins 1967;

Karrer 1991; Ronse Decraene and Smets 1993; Hayes et al.

2000) and a few rosids (Ronse Decraene and Smets 1991).

Ring primordia with bidirectional or almost simultaneous

stamen initiation characterize Achariaceae (Bernhard and

Endress 1999; Endress 2006). Other patterns of polyste-

mony, which do not operate with ring meristems, for

instance, sectorial primary meristems (e.g., in malvids, von

Balthazar et al. 2006), are less well characterized and need

more comparative studies. Some patterns appear disparate

within a group at first sight, but a common pattern may be

found when the entire diversity is studied in more detail

(e.g., Loasaceae, Hufford 1990). To speak of centrifugal

patterns only makes sense if all organs or modules com-

pared in a system are equally developed and not partly

reduced (not considered in Rudall 2010). In many cases

reduced organs appear later in development than their well-

developed counterparts (Endress 2008). However, whether

they are really later initiated or just early inhibited after

initiation has in most cases not been critically studied.

A basal androecial tube (by congenital union) with

nectary on outside or inside is present in some Malpighi-

ales: Rhizophoraceae alliance (all families except Irvingi-

aceae) (Matthews and Endress 2011), and Ixonanthaceae

(Link 1992); Oxalidales: Oxalidaceae, Connaraceae (Mat-

thews and Endress 2002); Celastrales: Lepidobotryaceae

(Matthews and Endress 2005a); Geraniales: Geraniaceae,

partly Melianthaceae (Ronse Decraene et al. 2001; Endress

2010b).

An androgynophore or gynophore (mostly only short)

occurs in Oxalidales (Matthews and Endress 2002)

and some Celastraceae (Matthews and Endress 2005a) and

Malpighiales (Endress and Matthews 2006b; Matthews and

Endress 2011). It is also present in a number of malvids

(often more prominent), such as Brassicales, Malvales,

Sapindales, and Crossosomatales (Matthews and Endress
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2005b; Endress and Matthews 2006b; Bachelier and

Endress 2009).

Angiospermy type 4 (angiospermy by complete post-

genital fusion, as defined in Endress and Igersheim 2000) is

the most common type in the six larger rosid clades studied

(Oxalidales, Cucurbitales, Celastrales, Crossosomatales,

Chrysobalanaceae s.l. of Malpighiales, and Rhizophora-

ceae alliance of Malpighiales), but in all clades (except

Celastrales), also type 3 (angiospermy by a partial secre-

tory canal and complete postgenital fusion at the periphery)

and rarely type 2 (angiospermy by a continuous secretory

canal and partial postgenital fusion at the periphery) occur

(Matthews and Endress 2002, 2004, 2005a, b, 2008, 2011).

The gynoecium is at least partly (syn)ascidiate in most

taxa of the mentioned six larger rosid clades. There are

only very few exceptions with the gynoecium completely

(sym)plicate (e.g., Cephalotaceae of Oxalidales, Matthews

and Endress 2002; Datiscaceae and some Cucurbitaceae in

Cucurbitales, Matthews and Endress 2004); the proportion

of the symplicate and synascidate zones often varies at

relatively low systematic levels.

A normal intracarpellary compitum appears to be

present in all six mentioned larger rosid clades (the few

apocarpous or nearly apocarpous taxa among them need

further study); however, an apical compitum by postgen-

ital fusion of the initially free carpel tips occurs in at least

two of the six larger clades (several Crossosomatales;

Matthews and Endress 2005b; Trigoniastrum of Chry-

sobalanaceae s.l.; Matthews and Endress 2008; probably at

least in part together with a normal compitum in the

symplicate zone).

Commissural (and not carinal) stigmas associated with

strong commissural vascular bundles are characteristic for

Celastrales (not in Lepidobotryaceae) (Matthews and

Endress 2005a). They are otherwise not common but also

occur in families of core Brassicales (e.g., Brückner 2000,

not mentioned in Ronse Decraene and Haston 2006), in

some Myrtales (Onagraceae, Mayr 1969; Penaeaceae,

Schönenberger and Conti 2003), and in derived taxa within

Papaveraceae (Karrer 1991; Brückner 2000). In all these

cases the carpels are congenitally united up to the stigmas.

A ventral furrow tapering downward as an external

furrow in the ascidiate zone of the carpels is characteristic

in Oxalidales and Celastrales (Matthews and Endress 2002,

2005a).

The ovaries are dorsally bulged upwards in in some

representatives of four of the six mentioned larger rosid

clades (Celastrales, Cucurbitales, Chrysobalanaceae s.l.,

and Rhizophoraceae alliance) (Matthews and Endress

2004, 2005a, 2008, 2011). In addition, an apical septum (a

structure originally described in Hartl 1962) was found in

Celastrales and some families of the Rhizophoraceae alli-

ance (Matthews and Endress 2005a, 2011). The presence of

an apical septum is best known from a number of asterid

families and Myrtaceae (Hartl 1962), and it is more com-

mon than originally thought (see also Endress 2011c).

Unifacial styles or tips of separate carpels (lacking a

ventral slit) are characteristic for a number of Cucurbitales

and Fagales (Baum-Leinfellner 1953; Endress 1967, 2008;

Matthews and Endress 2004), and among Malpighiales for

several families of the Rhizophoraceae alliance (Baum-

Leinfellner 1953; Matthews and Endress 2011) and Passi-

floraceae (Baum-Leinfellner 1953; Bernhard 1999).

Antitropous ovules, often in combination with an obtu-

rator, occur in many Oxalidales, Celastrales, and Mal-

pighiales (Matthews and Endress 2002, 2005a, 2008, 2011;

Merino Suter et al. 2006) and thus are characteristic for the

COM clade (Endress and Matthews 2006b). In addition,

they are also known from some Sapindales (Bachelier and

Endress 2008, 2009) and a few Crossosomatales (Matthews

and Endress 2005b).

Unlike in many other rosids the ovules are not cras-

sinucellar, but weakly crassinucellar or incompletely

tenuinucellar and have an endothelium in many represen-

tatives of the COM clade, i.e., Celastrales, Oxalidales, and

Malpighiales (Matthews and Endress 2002, 2005a, 2008,

2011; Endress and Matthews 2006b; Endress 2011a).

Likewise the inner integument is mostly thicker than the

outer in a number of groups of the COM clade and of

malvids (Endress and Matthews 2006b).

Conclusions

There are many more instances of ‘‘Brownian motion’’-

type evolution than earlier assumed, i.e., evolutionary

fluctuations forwards and backwards in floral morphology

and other features without a recognizable pattern or

favored direction (Endress 1994a, p. 401; Losos 2011), yet

this kind of evolution has been neglected in earlier mac-

rosystematic discussions. In some instances it may in fact

be so overwhelming that it will not be possible to track

evolutionary changes in detail (Losos 2011). Thus, we need

to become accustomed to the fact that it may become more

and more difficult to use the term ‘‘synapomorphy’’ for

features of larger clades. Instead, we need to substitute it

nolens volens by ‘‘tendencies’’ or ‘‘trends.’’ The way fea-

tures evolve is much more complex (and flexible) than

previously thought. For recent discussions on parallelism

and homoplasy, see also Ronse Decraene (2010), Scotland

(2011), and Wake et al. (2011).

In some cases, more refined study of these features may

reveal more stable features; for instance, in the crude dis-

tinction between centrifugal and centripetal stamen initia-

tion in polystemonous androecia, subpatterns may occur, as

shown above.
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The same feature may be stable in one group but labile

in another (independent of the systematic hierarchy). This

is nothing new but needs to be constantly emphasized.

Features (and floral architectures, i.e., suites of features)

tend to evolve repeatedly in very different clades, but more

often in closely related groups than in distant groups.

The way features evolve is more complex and dynamic

than previously thought. The more it becomes possible to

track fine-grained evolutionary changes of features based

on ever more refined phylogenetic analyses, the more it

becomes clear that within a family or genus a feature may

have evolved many times. A good example for such a

complex evolutionary situation is floral symmetry in Old

World Malpighiaceae (Davis and Anderson 2010). This

does not mean that we step back to an earlier stage of

knowledge. On the contrary, we know much more about

evolution, and we should now actively concentrate on the

detailed mechanisms of the evolution of prominent floral

features.

Thus, more detailed focus on the mechanisms by which

prominent features evolve becomes necessary. For this, we

also need to learn in more detail not only whether features

are present or absent within a group, but also how they are

distributed within the group: either more randomly (as in

the mentioned Brownian motion pattern) or concentrated in

certain subclades (by differential canalization of evolu-

tionary trends), e.g., more in derived subclades than in

basal subclades of a larger clade. Better knowledge of their

significance in a biological context is also important (see

also Endress 2003, 2011b). This is a continuing challenge.
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