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Abstract The recent shift of Rhagoletis pomonella from
its native host hawthorn to introduced, domestic apple
has been implicated as an example of sympatric specia-
tion. Recent studies suggest that host volatile preference
might play a fundamental role in host shifts and sub-
sequent speciation in this group. Single sensillum elec-
trophysiology was used to test a proposed hypothesis
that differences in R. pomonella olfactory preference are
due to changes in the number or odor specificity of
olfactory receptor neurons. Individuals were analyzed
from apple, hawthorn, and flowering dogwood-origin
populations, as well as from the blueberry maggot,
Rhagoletis mendax Curran (an outgroup). Eleven com-
pounds were selected as biologically relevant stimuli
from previous electroantennographic/behavioral studies
of the three R. pomonella populations to host fruit vol-
atiles. Cluster analysis of 99 neuron responses showed
that cells from all tested populations could be grouped
into the same five classes, ranging from those responding
to one or two volatiles to those responding to several
host volatiles. Topographical mapping also indicated
that antennal neuron locations did not differ by class or
fly taxa. Our results do not support the hypothesis that
differences in host preference among Rhagoletis popu-
lations are a result of alterations in the number or class
of receptor neurons responding to host volatiles.

Keywords Rhagoletis Æ Specificity Æ Discrimination Æ
Antagonism Æ Single sensillum electrophysiology

Abbreviations GC–EAD: Gas chromatography
coupled with electroantennographic detection Æ ORN:
Olfactory receptor neuron

Introduction

In the 17th century, domestic apple trees were virtually
nonexistent in the United States. By 1875, settlers had
planted roughly eighteen million trees in New York
State alone (Chapman 1971). It was there that Benjamin
Walsh (1867) first cited the shift of Rhagoletis pomonella
(Walsh) (a true fruit fly) from its native host hawthorn
(Crataegus spp.) to the new viable host, apple (Malus
pumila P. Mill) as the formation of a new host race. Bush
(1969) further proposed that members of the R. pomo-
nella group were established by sympatric speciation via
host plant shifts. The R. pomonella species complex
contains several host-specific populations lacking fixed
allozyme differences, including hawthorn, apple, and
flowering dogwood-origin flies (hereafter referred to
simply as dogwood) (Berlocher 2000). In fact, phyloge-
netic data suggest that multiple host shifts have occurred
within the pomonella species group (Berlocher 2000).

Monophagous Rhagoletis flies mate exclusively on or
near the fruit of their host (Prokopy et al. 1971), and
identify each host through visual, tactile and olfactory
cues (Bush 1969; Fletcher and Prokopy 1991, and ref-
erences therein). Mark-recapture studies indicate that
flies can travel hundreds of meters from their point of
origin (Feder et al. 1998), so host-specific cues are of
primary importance for host location. Variation in host
preference therefore creates positive assortative mating
that serves as a premating barrier to gene flow among
flies infesting different plant species (Feder et al. 1994).
Speciation can thus ensue without the necessity of a
geographic barrier. Behavioral analyses show distinct
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preferences of Rhagoletis populations for unique volatile
blends identified from each host fruit (see Table 1;
Zhang et al. 1999; Nojima et al. 2003a, b). Such dis-
crimination persists even when hawthorn-origin flies
have been reared on apples for two generations (Linn
et al. 2003). In fact, recent studies show that Rhagoletis
flies not only preferentially orient to their own host
volatile blends in the field (Linn et al. 2003), but they
also avoid the blends of non-hosts (Linn et al. 2005a).

One of the foremost issues in understanding the
proposed shifts in host volatile preference is how such
levels of olfactory discrimination could be established
within a mere 150 generations (as is the case for apple
and hawthorn-origin flies), or indeed, exist in sympatry
at all. Behavioral studies indicate that maximal levels of
upwind flight occur to unique blends of chemicals, but it
is not known whether this is because flies possess unique
sets of olfactory receptor neurons (ORNs), or whether
flies have altered the behavioral functionality of com-
pounds associated with a specific host type. In Rhag-
oletis, it has been proposed that ‘‘minor genetic changes
affecting the number or odor specificity of a specific
receptor cell type may thus be an important mechanism
promoting host shifts and speciation’’ (Frey and Bush
1990). Although plant-odor ORNs have often been
considered to be broadly tuned in relation to pheromone
receptor neurons, recent studies show they can possess
highly sensitive and specific receptor neurons (e.g.,
Dickens 1990; Anderson et al. 1995; Wibe and Musta-
parta 1996; Hansson et al. 1999; Stensmyr et al. 2001).
Therefore, it is possible that host-shifting populations
have generated unique ORN specificities for certain host
volatiles, or have dramatically altered the number of
ORNs responding to those volatiles. A recent study by
Stensmyr et al. (2003) found a shift in specificity among
three different Drosophila species in a single ORN type
as well as a complete loss of a sensillum type in Dro-
sophila sechellia. Additionally, other studies in Dro-
sophila have found that ORNs with similar specificities
reside in morphologically localized areas on the antennal

surface (de Bruyne et al. 2001). If such localization also
occurs in Rhagoletis, could host-shifting populations
also differ as to the position of specific ORNs?

To test these hypotheses, we have carried out a
comparative study using four closely related R. pomo-
nella taxa: two host races (apple and hawthorn origin), a
sibling species (dogwood origin), and the most closely
related confirmed species as an outgroup comparison
(Rhagoletis mendax Curran, the blueberry maggot)
(Berlocher 2000), using biologically relevant olfactory
stimuli. The relevant host volatiles for the R. pomonella
populations were identified by gas chromatography/
electroantennographic detection (GC–EAD) and flight-
tunnel behavioral studies with host fruit (Zhang et al.
1999; Nojima et al. 2003a, b). These two methods al-
lowed hundreds of host fruit compounds to be screened
for activity in order to identify unique blends of key host
compounds specific for each host taxon (see Table 1).
Therefore, instead of examining hundreds of potential
ligands for contacted ORNs, we chose only those com-
pounds that had been identified as relevant to Rhagoletis
host preference and a potential role in host shifts. In this
study, we show that all populations tested possess sim-
ilar numbers of single and multiple compound-
responding ORNs and that there are no qualitative
differences in ORN classes among the Rhagoletis taxa
when tested at a high (10 lg) stimulus load. In the
companion paper (Olsson et al. 2005), we present a de-
tailed quantitative analysis of population differences in
ORN response characteristics (e.g., sensitivity and tem-
poral firing pattern) to host stimuli throughout a range
of odor concentrations.

Materials and methods

Rhagoletis origins and rearing conditions

Female Rhagoletis flies were selected from lab-reared or
field-collected populations as follows (see Linn et al.
2005b for detailed description of R. pomonella origins):
R. pomonella [apple (lab colony) origin]—Lab colony,
Geneva, NY; R. pomonella [apple (wild) origin]—Grant,
MI; R. pomonella (hawthorn origin)—Grant, MI; R.
pomonella (dogwood origin)—Granger, IN; and R.
mendax (blueberry origin)—Burlington County, NJ.

Field-collected flies were gathered as larvae from fruit
at the site of origin, and post-diapause pupae (Feder
et al. 1994) shipped to Geneva, New York. They were
kept in an environmental chamber at 23–24�C temper-
ature, 16L:8D photoperiod, and 55–60% relative
humidity. Adults were maintained on an artificial diet
(Fein et al. 1982). Lab-reared flies were maintained on
Red Delicious apples (Neilson and McAllen 1965).
Adults were kept in an environmental chamber at 23�C
temperature, 50% relative humidity, 16L:8D photope-
riod, and maintained on the same artificial diet.

All flies used for neurophysiological analyses were
between 0 and 20 days of age. Flies generally survive

Table 1 Key host plant volatiles determined through GC–EAD
and behavioral assays of host fruit (from Zhang et al. 1999; Nojima
et al. 2003a, b)

Host fruit Compounds

Apple (Malus pumila) Butyl hexanoate
Hexyl butanoate
Butyl butanoate
Pentyl hexanoate
Propyl hexanoate

Hawthorn (Crataegus spp.) Butyl hexanoate
3-methylbutan-1-ol
Isoamyl acetate
4,8-dimethyl-1,3(E), 7-nonatriene
Dihydro-b-ionone
Ethyl acetate

Dogwood (Cornus florida) 1-octen-3-ol
Isoamyl acetate
3-methylbutan-1-ol
Ethyl acetate
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up to 4 weeks and can be used for behavioral analyses
at any point after 8–10 days of age, the age of
reproductive maturity (Zhang et al. 1999; Nojima et al.
2003a, b). Thus, senescence was not suspected during
the first 20 days of life, and in most cases recordings
were made from flies between 0 and 7 days old because
of the increased vigor of younger flies. Flies 0–7 days
old were also used in previous GC–EAD identification
of the host volatiles (Zhang et al. 1999; Nojima et al.
2003a, b).

Olfactory stimuli

Propyl hexanoate, hexyl butanoate, 3-methylbutan-1-ol,
isoamyl acetate, 1-octen-3-ol, and butyl hexanoate were
purchased from Aldrich, Milwaukee, WI, USA (purity
>98%); butyl butanoate and pentyl hexanoate from
Pfaltz and Bauer, Stamford, CT, USA; ethyl acetate
from Fisher Scientific, Fair Lawn, NJ, USA (purity
>99%); and dihydro-b-ionone from Scientific Ex-
change, Inc., Center Ossipee, NH, USA (purity was
>89% based on GC-MS analysis). 4,8-Dimethyl-
1,3(E),7-nonatriene was synthesized according to
Greenwald et al. (1963) (87:13 ratio of E and Z isomers
with >96% purity based on GC-MS analysis). The
individual chemicals were dissolved in hexane at a con-
centration of 1 lg/ll.

Stock solutions (1 lg/ll) of individual key fruit vol-
atiles and specific fruit blends in hexane were prepared
as follows: apple blend (propyl hexanoate, hexyl but-
anoate, butyl butanoate, pentyl hexanoate, and butyl
hexanoate), hawthorn blend (butyl hexanoate, 3-meth-
ylbutan-1-ol, isoamyl acetate, 4,8-dimethyl-1,3(E),7-
nonatriene, dihydro-b-ionone, and ethyl acetate), and
dogwood blend (1-octen-3-ol, 3-methylbutan-1-ol, iso-
amyl acetate, and ethyl acetate).

Ten microliters of each diluted compound or blend
were pipetted onto small pieces of filter paper (ca.
5 mm·15 mm) placed in disposable Pasteur pipettes to
establish a 10 lg stimulus load. Blank cartridges, con-
taining only filter paper plus solvent, were also prepared.
In order to prevent evaporation and contamination,
cartridges were not used after 2.5 h.

Electrophysiological recording

Female Rhagoletis were confined in the tapered, cut end
of a 100 ll pipette tip with only their heads protruding.
Heads were immobilized at the base with dental wax to
restrict movement. A sharpened tungsten wire was in-
serted into the right eye, serving as a ground electrode.
Tungsten microelectrodes, electrolytically sharpened in
KNO2 solution, were used to establish contact with the
ORNs. The recording electrode was positioned at, or
near, the base of sensilla using a preparation microscope
with up to 200· magnification and an electrophysio-
logical recording unit with combined joystick mi-
cromanipulators and amplifier (Syntech INR-5,

Hilversum). In most cases, the ventral portion of the left
antenna was used for recording.

A constant flow of charcoal-filtered and humidified
air passed over the antenna from a stimulus air con-
troller at approximately 2.6 l/min (Syntech, CS-5, Hil-
versum). The constant flow included both a continuous
(�1.5 l/min) and a complimentary (�1.3 l/min) air
stream. Air passed through a metal tube attached to the
recording unit whose outlet protruded approximately
10 mm from the antenna. Stimulation was performed by
inserting the tip of the test pipette into a hole in the
metal tube, approximately 10 cm before the outlet. The
test pipette was connected to the stimulus air controller,
which generated air puffs (�1.3 l/min during 0.5 s)
through the pipette and replaced the complimentary air
stream during that time period.

The analog signal originating from the ORNs was
amplified (10·) (Syntech INR-5, Hilversum), sampled
(31746.0 samples/s), and filtered (200–3000 Hz with 50/
60 Hz suppression) via USB-IDAC connection to a
computer (Syntech, Hilversum). Action potentials were
extracted as digital spikes from the analog signal
according to top–top amplitudes using Syntech Auto
Spike 32 v. 1.1b and 2.2 software. When different spike
heights occurred in the same recording, individual neu-
rons were sorted manually for each recorded trace based
on differences in the amplitude of their action potentials
(spikes). Consideration was taken for changes in
amplitude due to excessive firing (i.e., ‘‘pinching’’).
Differences in amplitude between co-located spikes were
measured in lV for each recording based upon signal
output (see Table 2).

In the event of a contact, ORNs were first screened
with the three fruit blends at a 10 lg stimulus load (ap-
ple, hawthorn, and dogwood), and the blank (hexane).
These stimuli were tested at least once at the beginning
and, in nearly all cases, end of each recording period to
observe if cell responsiveness was preserved throughout
the recording session. All stimuli were presented in 0.5 s
air puffs at approximately 1-min intervals to allow the
ORNs to return to baseline firing rate. If the neuron(s)
responded to one or more of the blends (see below for
definition of a response), then all 11 components of the
three blends were tested individually at a stimulus load of
10 lg, as in Stensmyr et al. (2003) and analogous to the
10�2 dilutions used in de Bruyne et al. (1999, 2001). To
establish possible topographic relationships, the location
of the electrode tip was noted on a template drawing of
the antenna after the recording had been performed.

Data analysis

For each ORN testing period, spike frequencies of the
blank (hexane) were calculated every 600 ms (equal to
the 500-ms stimulus period plus an additional 100 ms)
for the entire 10.8 s recording period (including 1 s pre-
and 9.8 s post-stimulus onset). In the majority of cases,
more than one blank trial was presented. Spike counts
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Table 2 Description of all contacted ORNs for each Rhagoletis population with ORN classes and response profiles as in Fig. 1

Class Fly population ORN response profile Recording description

A Apple (lab) O3OL 1 ORN
A Apple (lab) O3OL 1 ORN
A Apple (lab) O3OL 1 ORN
A Apple (wild) O3OL 1 ORN
A Blueberry O3OL 1 ORN
A Dogwood O3OL 1 ORN
A Hawthorn O3OL 1 ORN
A Hawthorn O3OL 1 ORN
A Hawthorn O3OL 1 ORN
A Hawthorn O3OL 1 ORN
A Hawthorn O3OL 1 ORN
A Hawthorn O3OL 1 ORN
A Apple (wild) O3OL 1 ORN of 2 Close
A Dogwood O3OL 1 ORN of 2 Close
A Apple (lab) O3OL 1 ORN of 2, +100
A Apple (lab) O3OL 1 ORN of 2, �200
B Apple (lab) HB 1 ORN
B Apple (lab) HB 1 ORN
B Apple (wild) HB 1 ORN
B Apple (wild) DBI 1 ORN
B Blueberry DBI 1 ORN
B Dogwood HB 1 ORN
B Dogwood HB 1 ORN
B Dogwood HB 1 ORN
B Hawthorn DBI 1 ORN
B Apple (wild) DBI 1 ORN of 2 Close
B Apple (lab) DBI 1 ORN of 2, +100
B Apple (wild) HB, PrH 1 ORN of 2, +100
B Blueberry HB 1 ORN of 2, +100
B Apple (lab) DBI 1 ORN of 2, +200
B Apple (lab) HB 1 ORN of 2, �200
C Apple (lab) 3 MB, PrH 1 ORN
C Apple (lab) DNT, PrH, PeH 1 ORN
C Apple (lab) 3 MB, HB, PeH, BH 1 ORN
C Apple (wild) DNT 1 ORN
C Apple (wild) DNT, 3 MB, DBI, EA, IAA, O3OL 1 ORN
C Blueberry DNT, PrH 1 ORN
C Blueberry IAA 1 ORN
C Blueberry DNT, 3 MB, PeH 1 ORN
C Hawthorn DNT 1 ORN
C Hawthorn DNT 1 ORN
C Dogwood DNT, 3 MB, IAA 1 ORN of 2 Close
C Apple (lab) DNT 1 ORN of 2, +100
C Blueberry DNT 1 ORN of 2, +100
C Blueberry DNT, BB, O3OL 1 ORN of 2, +100
C Apple (wild) DNT 1 ORN of 2, +200
C Blueberry DNT 1 ORN of 2, +200
C Blueberry DNT, PrH 1 ORN of 2, +200
C Blueberry DNT, PrH 1 ORN of 2, +200
C Blueberry DNT, PrH 1 ORN of 2, +200
C Blueberry DNT, 3 MB, IAA, O3OL 1 ORN of 2, +200
C Hawthorn DNT 1 ORN of 2, +200
C Hawthorn DNT, PrH 1 ORN of 2, +200
C Blueberry DNT, PrH 1 ORN of 2, +300
C Blueberry DNT, O3OL 1 ORN of 2, +300
C Apple (wild) DNT, 3MB 1 ORN of 2, +400
C Apple (wild) DNT 1 ORN of 2, �200
C Apple (lab) 3 MB, IAA 2 ORNs of 2, �100
C Dogwood PrH, PeH 2 ORNs of 2, �100
C Hawthorn DNT, 3 MB, HB 2 ORNs of 2, �100
D Apple (lab) PrH, BH 1 ORN
D Apple (lab) PrH, HB, BB, PeH, BH, O3OL 1 ORN
D Apple (lab) PH, HB, PeH, BH 1 ORN
D Apple (lab) PrH, HB, BB, PeH, BH 1 ORN
D Blueberry PrH, BB, PeH, BH 1 ORN
D Hawthorn PrH, HB, PeH, BH, DNT, EA 1 ORN
D Dogwood PrH, HB, BB, DNT 1 ORN of 2 Close
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per 600 ms were then averaged across all blank trials.
An increase (or decrease) in spike frequency for the
600 ms following stimulus presentation was considered a
response if it was >3 SD above or below the blank
mean. Changes in ORN spike frequencies below this
level were not considered further. In this manner, a re-
sponse was considered excitatory if it produced a sig-
nificant increase in spike frequency and inhibitory if it
caused a decrease. Although there were clear differences
in spike frequency between ORN responses and nonre-
sponses (the latter generally producing no change in
frequency at all), the above method was chosen as a way
to allow statistical comparisons of responses from sev-
eral ORNs and fly populations. Comparison to the
blank trial was used to confirm a response because time
restrictions due to ORN and insect longevity prohibited
multiple stimulation comparisons of each compound.

To determine the range of ORN classes (i.e., the
number and variety of biologically relevant volatiles to
which each ORN responded), cells were classified across
fly population [apple (lab colony), apple (wild),

hawthorn, dogwood, and blueberry] according to re-
sponse pattern to the 11 host compounds used in the
study. Cluster analysis was performed by SPSS version
11.0 software using Ward’s Method with intervals
measured by squared Euclidian distance. A v2 test was
used to compare ORN frequencies for each population
among the clusters.

To compare ORN topographical locations, X and Y
coordinates of contacted cells were determined from the
template drawing location using Adobe Photoshop v.
8.0. Coordinates were then compared for both the effect
of fly taxa and response profile by multivariate regres-
sion analysis and analysis of variance (MANOVA)
including Pillai’s Trace, Wilks’ Lambda, and post hoc
Tukey HSD using SPSS version 12.0 software.

Results

Olfactory receptor neurons (ORNs, n=99) from 38
individuals among the four populations were used for

Table 2 (Contd.)

Class Fly population ORN response profile Recording description

D Hawthorn PrH, PeH, BH 1 ORN of 2 Close
D Apple (wild) PrH, PeH, BH 1 ORN of 2, +100
D Dogwood PrH, BB, PeH, BH 1 ORN of 2, +100
D Blueberry PrH, BH 1 ORN of 2, +150
D Apple (wild) PrH, HB, BH, DNT, O3OL 1 ORN of 2, +200
D Apple (wild) PrH, PeH, BH 1 ORN of 2, +200
D Blueberry PrH, PeH, BH 1 ORN of 2, +200
D Blueberry PrH, HB, BB, BH 1 ORN of 2, +300
D Blueberry PrH, HB, BB, PeH, BH, O3OL 1 ORN of 2, +400
D Dogwood PrH, BH 1 ORN of 2, +50
D Dogwood PrH, BB, PeH, BH 1 ORN of 2, +50
D Apple (wild) PrH, HB, BB, BH, DNT 1 ORN of 2, +70
D Apple (lab) PrH, BH, EA, IAA 1 ORN of 2, �100
D Dogwood PrH, BB, PeH, BH, DNT 2 ORNs of 2, +100
D Hawthorn PrH, BH 2 ORNs of 2, +100
E Apple (lab) PrH, BB, PeH, BH, 3 MB, IAA 1 ORN
E Apple (lab) PrH, HB, BB, PeH, BH, DNT, EA, 3 MB, IAA, O3OL 1 ORN
E Apple (wild) PrH, HB, PeH, BH, DNT, IAA, O3OL 1 ORN
E Apple (wild) PrH, HB, BB, PeH, DNT, DBI, 3 MB, IAA 1 ORN
E Apple (wild) PrH, HB, BB, PeH, BH, DNT, DBI, EA, 3 MB, IAA, O3OL 1 ORN
E Blueberry PrH, HB, PeH, BH, DNT, DBI, IAA, O3OL 1 ORN
E Blueberry PrH, HB, BB, PeH, BH, DNT, 3 MB, IAA, O3OL 1 ORN
E Dogwood PrH, PeH, DNT, 3 MB, IAA, O3OL 1 ORN
E Dogwood PrH, BB, BH, DNT, 3 MB, IAA 1 ORN of 2 Close
E Apple (lab) PrH, PeH, BH, DNT, IAA 1 ORN of 2, +100
E Hawthorn PrH, HB, PeH, BH. DNT, 3 MB, IAA, O3OL 1 ORN of 2, +100
E Hawthorn PrH, HB, BB, PeH, BH, DNT, EA, IAA, O3OL 1 ORN of 2, +150
E Hawthorn PrH, HB, PeH, BH, DNT, 3 MB, IAA 1 ORN of 2, �100
E Apple (wild) PrH, HB, PeH, BH, DBI, EA, 3 MB, IAA, O3OL 1 ORN of 2, �120
E Dogwood PrH, HB, PeH, BH, DBI, 3 MB, IAA 1 ORN of 2, �200
E Dogwood PrH, HB, PeH, BH, DNT, 3 MB, IAA, O3OL 1 ORN of 3 Close
E Apple (lab) PrH, BB, PeH, BH, 3 MB, IAA 2 ORNs of 2, +100

Recording description presents the number of ORNs responding in the 10.8 s recorded trace as well as the total number of spikes found in
that recording. Numbers following the description indicate the relative difference in lV amplitude between co-located cells measured
separately for each contact. For each description, (+) values indicate that the responding cell was the larger amplitude cell in the
recording, (�) indicate that it was the smaller, and (close) indicates that the cells could be separated by amplitude at values too small to
measure accurately. Descriptions are organized by class and recording. ORN response profile abbreviations represent the following
compounds:
3 MB 3-methylbutan-1-ol, BB butyl butanoate, BH butyl hexanoate, DBI dihydro-b-ionone, DNT 4,8-dimethyl-1,3(E),7-nonatriene, EA
ethyl acetate, HB hexyl butanoate, IAA isoamyl acetate, PrH propyl hexanoate, PeH pentyl hexanoate, O3OL 1-octen-3-ol
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neurophysiological analyses. For R. pomonella these
included: seven individuals of apple (lab colony) origin
(ORN n=24), seven individuals of apple (Grant, MI)
origin (ORN n=19), ten individuals of hawthorn origin
(ORN n=18), and six individuals of dogwood origin
(ORN n=16). For R. mendax, eight individuals of
blueberry origin (ORN n=22) were used.

ORN excitation/inhibition

ORN responses to host stimuli could be characterized by
either an increase in firing frequency during/after stim-
ulus exposure (excitation), or a decrease or temporary
termination of firing (inhibition). As all ORNs possessed
some degree of spontaneous firing, both inhibition and
excitation were potential response characteristics.
However, all 99 ORN responses recorded for Rhagoletis
were characterized by a significant increase in firing
frequency following stimulus exposure (excitation). This
was also the case when host volatile blends were pre-
sented to each ORN.

ORN response classes

To compare ORN responses to the biologically relevant
host volatiles, cluster analysis of ORN response pattern
was performed for all contacted cells responding to one
or more of the tested stimuli at the high 10 lg stimulus
load. Results of the cluster analysis are shown as a
stylized dendrogram in Fig. 1 and reveal four important
findings. First, the figure illustrates that all responding
ORNs could be grouped into two major clusters and five
subgroups, or classes, representing increasing levels of
complexity with respect to the number of compounds
eliciting a response, and associations involving, with few
exceptions, specific volatiles. Cluster 1 contains ORNs
that responded to relatively few key host volatiles. Class
A contains ORNs that responded only to 1-octen-3-ol (a
dogwood volatile). Class B contains cells that responded
to either dihydro-b-ionone (a hawthorn volatile) or
hexyl butanoate (an apple volatile), with one ORN also
responding to propyl hexanoate (another apple volatile).
Class C contains cells that responded to 4,8-dimethyl-
1,3(E),7-nonatriene (a hawthorn volatile) and/or 3-
methylbutan-1-ol (in both hawthorn and dogwood
blends), either exclusively or with one or more other
compounds. The exceptions to this categorization are
two cells that responded to isoamyl acetate and propyl
hexanoate/pentyl hexanoate, respectively.

Cluster 2 contains multiple compound-responding
ORNs, all including at least two longer chain esters (i.e.,
not acetates; henceforth referred to simply as ‘‘esters’’).
Esters are found almost exclusively in the apple host
blend, with butyl hexanoate as a minor component in
the hawthorn blend (Zhang et al. 1999; Nojima et al.
2003a). Class D contains ORNs that responded to esters
and occasionally one or two other compounds.

Although class D contains ORNs that responded to 4,8-
dimethyl-1,3(E),7-nonatriene as in class C, 4,8-di-
methyl-1,3(E),7-nonatriene responders in class D were
only found in conjunction with response to at least three
esters, and only five such cells were found. Furthermore,
no class D cells responded to 3-methylbutan-1-ol as in
class C. Finally, class E contains cells that responded to
at least two esters along with several other compounds,
including 3-methylbutan-1-ol and/or 4,8-dimethyl-
1,3(E),7-nonatriene.

A second finding is that many of the contacted cells, if
responding to any fruit blends, only responded to select
compounds in those blends at the 10 lg stimulus load
used. Some ORNs, such as those responding to 1-octen-
3-ol (Class A cells), were highly selective to a single
compound of the 11 tested. Other cells responded only
to a specific chemical group, such as esters (most Class D
cells).

Figure 1 also illustrates that Rhagoletis ORNs,
though selective to the tested volatiles, were not specific
to any population. The four Rhagoletis taxa were spread
across the different ORN classes and no clustered group
was exclusive to any specific population. Thus, the
populations did not differ as a function of presence or
absence of response to a particular volatile.

A fourth finding is that there did not appear to be a
large bias in number of contacted ORNs among the
clusters for any fly taxa. A v2 test did not reveal any
significant differences among or between clusters v2(16,
n=99) = 18.103, NS.

Sensillum organization

All electrophysiological recordings performed on Rhag-
oletis contained between 1 and 3 spontaneously active
ORNs according to manual separation of their spikes by
amplitude. However, in only three cases (Fig. 1 lettered
symbols) did multiple cells respond to host volatiles
concurrently within the same recording [two cells each
from an apple (lab colony) (a), hawthorn (b), and dog-
wood (c) fly recording]. In all other recordings, only one
cell responded to the tested volatiles, and in many cases
only one cell was found within the trace. Table 2 pro-
vides a description of the recording from which each
ORN in Fig. 1 was found. The table illustrates that each
cluster, or class, in Fig. 1 contains ORNs that were
found both co-localized as well as unaccompanied
within each recorded trace. Although the exact location
of each sensillum could not be confirmed at the magni-
fication used in these methods, the variety in recorded
traces indicates the presence of multiple sensillum types,
and possibly multiple ORN types within each class.
However, further analysis of Table 2 reveals that several
ORNs from each Rhagoletis population not only re-
sponded similarly to the host volatiles, but likely resided
in similar sensillum types. For example, all populations
contained an ORN recorded singly that responded to
1-octen-3-ol (class A). Each population also contained
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Fig. 1 Dendrogram depicting clusters (classes) based on ORN
responses to 10 lg stimulus loads of the compounds listed on the
right side of the figure. Symbols represent specific Rhagoletis ORNs
for each population. The response of each ORN is listed to the left
of its corresponding symbol. Letters to the left of ORN symbols

indicate multiple ORNs responding to stimuli within the same
recorded trace [2 cells each from an apple (a), hawthorn (b), and
dogwood (c) recording]
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ORNs responding to class C and D compounds re-
corded with another, non-responding ORN, although it
cannot be confirmed that this ORN was located in the
same sensillum.

Nevertheless, there are several notable differences in
the recorded traces that may indicate variation in
sensillum organization among the populations. First,
only apple and dogwood populations contained ORNs
responding to 1-octen-3-ol that were recorded with a
non-responding ORN (class A). Second, only apple
and blueberry populations contained cells responding
to class B compounds that were co-localized with a
non-responder. Third, the dogwood population lacked
any class C- or D-responding ORNs recorded singly.
This is also true for the hawthorn population with
class E and the wild apple population for class D.
Finally, although in the majority of cases, the larger
amplitude ORN responded to host volatiles, a few
cases (6 ORNs among classes B–E) possessed ORNs
responding with a smaller amplitude co-localized with
non-responders.

ORN topographical mapping

In addition to classifying ORN responses according to
the range of volatiles eliciting a response, cells were also
mapped to determine if ORN classes were morphologi-
cally localized among fly varieties. During contact, the
antennae were observed under 200· magnification.

Although specific sensilla could not be identified, their
location on the antenna could be determined with some
accuracy. ORN responses were mapped on a photo-
graph of the ventral portion of the left apple fly antenna
(Fig. 2). In the majority of cases, the left antenna was
used for recording. Colors indicate the cluster or cell
class from the dendrogram (Fig. 1) to which that ORN
belongs. Cells represented with a hollow center indicate
multiple ORNs that responded concomitantly (though
to different compounds) within the same recording.
These three ‘‘rare’’ cells were removed for statistical
analyses. The figure illustrates that there is little locali-
zation of ORN response to specific chemicals. A multi-
variate analysis of variance showed that the effect of
response profile was insignificant for the X coordinate of
ORN location, F(4,80)=1.53, P=0.20, NS, and slightly
significant for the Y, F(4,80)=2.79, P=0.032. Post hoc
analyses using the Tukey post hoc criterion indicated
that this significance was due entirely to a difference in
location of pink class A and blue class B ORNs:
P=0.043 for the X coordinate and P=0.026 for the Y.
However, neither Pillai’s Trace nor Wilks Lambda
multivariate tests found any effect of response profile on
location: F(8,160)=1.68, P=0.11, NS, and
F(8,158)=1.69, P=0.10, NS, respectively. Thus, ORN
locations do not differ significantly with respect to re-
sponse classification.

The total map overlay (Fig. 2, bottom) reveals that
multiple fly varieties responded at topographically sim-
ilar locations to the same stimuli. Furthermore, a mul-

Fig. 2 Topographical maps
indicating locations of recorded
ORNs for each population and
an overlay of all Rhagoletis
ORNs. Dots indicate specific
ORNs and color indicates cell
class as determined in Fig. 1
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tivariate analysis of variance showed that neither the
effect of fly taxa, nor the interaction of fly taxa and
response class were significant for location; X coordi-
nate: fly taxa F(4,80)=1.10, P=0.36, NS, interaction
F(15,65)=0.76, P=0.71, NS, Y coordinate: fly taxa
F(4,80)=1.646, P=0.17, NS, interaction
F(15,65)=0.55, P=0.90, NS. Pillai’s Trace and Wilks
Lambda multivariate tests concurred with this result: fly
taxa, Pillai’s: F(8,160)=1.39, P=0.21 NS, Wilks:
F(8,158)=1.37, P=0.21, NS, interaction, Pillai’s:
F(30,130)=0.79, P=0.76 NS, Wilks: F(30,128)=0.79,
P=0.76, NS. Thus, ORN locations do not vary by fly
taxa, or for response class between taxa.

Discussion

Previous behavioral studies indicate that olfactory
preference for fruit volatiles could play a key role in
Rhagoletis host location (Linn et al. 2003). Although
foraging includes both close- and long-range behaviors
involving olfactory, visual, and tactile cues (Bush 1969;
Fletcher and Prokopy 1991, and references therein),
preference for a unique mix of volatiles, evidenced by
upwind flight occurring only to that mixture, could
constitute a basis for host fidelity. Variation among
individuals in a population therefore provides a poten-
tial source for the host-shifting process.

It has been proposed that variation in Rhagoletis
olfactory preference could be due to differences in
antennal receptor neuron specificities and/or numbers of
receptors expressed in the antenna among the various
host taxa (Frey and Bush 1990). Cluster analysis similar
to that used in the present study has been used to
identify ORN classes in Drosophila (de Bruyne et al.
2001) as well as to compare various species to each other
(Stensmyr et al. 2003). The latter study found a shift in
ORN specificity among different species of Drosophila as
well as a complete loss of a sensillum type in one species.
One might expect changes in ORN specificity among
Rhagoletis host populations to be even more likely than
in the polyphagous Drosophila because monophagous
Rhagoletis flies rely on a specific set of host compounds
that differ among populations. Host-shifting popula-
tions of Rhagoletis (e.g., apple and dogwood) could ex-
press receptor proteins that differ from the ancestral
hawthorn race, or mutations could have occurred that
generated completely new types of receptors. In turn,
these changes could alter the ability of flies within that
population to detect certain volatiles.

Nevertheless, our analysis reveals that each fly pop-
ulation was capable of detecting all of the tested vola-
tiles, regardless of host species. Furthermore, all
populations possessed comparable numbers of single
and multiple compound- responding ORNs, some spe-
cific to only one compound of the 11 tested (i.e., 1-octen-
3-ol, hexyl butanoate, dihydro-b-ionone, and 4,8-di-
methyl-1,3(E), 7-nonatriene). Topographical mapping
emphasizes that members of the Rhagoletis populations

not only possessed the same basic ORN classes, but that
ORN XY coordinate locations did not vary significantly
among fly taxa or ORN response profiles, unlike the
ORN localization found in Drosophila (de Bruyne et al.
2001). Finally, excitatory responses were observed for all
99 ORNs recorded for Rhagoletis. Therefore, it appears
that differential host preference among Rhagoletis pop-
ulations is not a function of alterations in the general
classes of receptor neurons responding to host and non-
host volatiles.

This is not to say, however, that all populations
possessed identical ORNs. Indeed, the variety of
recordings found for each class (Table 2) indicates that
multiple ORN types could be present. Studies in Dro-
sophila have described 18 functional classes of ORNs in
eight different classes of basiconic sensilla, with each
sensillum class containing different combinations of
ORN types (reviewed in Hallem and Carlson 2004). The
likely presence of different sensillum types among the
Rhagoletis populations (such as only apple and dog-
wood populations containing ORNs responding to 1-
octen-3-ol housed with a non-responding ORN) might
indicate the presence of unique ORN types. Because we
have only tested a small number of compounds and
could not ensure that co-localized cells were housed in
the same sensillum, we did not attempt to label these
ORNs as certain ‘‘types’’ as in other studies of this
nature (such as Drosophila; Hallem and Carlson 2004).
Furthermore, although cluster analysis allows more
objective categorization than hand sorting, it admittedly
has limitations with smaller sample sizes or rare occur-
rences. Specifically, it may have misclassifed some of the
rare ORNs as evidenced by the ‘‘exceptions’’ to classes
reported in the Results. This might be alleviated with
higher sample sizes. However, even if there are multiple
ORN types represented in the data set, the cells in each
class are similar in the context of behavioral relevance
and compounds important for olfactory host preference.

Given the short time span since the hawthorn/apple
divergence (�150 generations), the lack of significant
differences in ORN specificity among Rhagoletis popu-
lations is not surprising. The presence of similar ORN
responses in the dogwood fly and R. mendax, the most
closely related species to the R. pomonella group, further
indicates that altering receptor neuron specificity is nei-
ther inevitable nor essential to maintaining host fidelity,
even in separate species. Furthermore, it does not appear
that host fidelity is simply a result of possessing more
ORNs tuned to particular volatiles, as all populations
possessed similar numbers of receptor neurons tuned to
host and non-host volatiles.

Instead, our results indicate that host-shifting popu-
lations already possessed the ability to detect novel host
volatiles. These compounds could have been part of an
ancestral host cue or, more likely, part of the broad
repertoire of the olfactory palette. New hosts could
subsequently have been colonized by more ‘‘broadly
tuned’’ individuals capable of exploiting the new host
(Linn et al. 2005b). Alternatively, changes in central
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neural processing patterns could have generated prefer-
ence for a new host in a few individuals from the ances-
tral race. Further studies analyzing host volatile
sensitivity and adaptation at the periphery (see the fol-
lowing study, Olsson et al. 2005), as well as host volatile
processing in the antennal lobe, are imperative for a full
understanding of the mechanisms by which these flies
have initiated and preserved their host shifts. In addition,
a more concentrated study using only two of the host
populations (such as apple and hawthorn) and recording
from much larger numbers of ORNs could clarify some
of the ambiguity in ORN classes observed here and
confirm that there is indeed no difference in ORN host
volatile specificity between the host populations. Finally,
peripheral studies of F1, F2 and backcross progeny be-
tween these populations could reveal how hybridization
affects host volatile chemoreception. Nevertheless, our
study suggests that the key to host-shifts and speciation
in Rhagoletis lies not in adding new pieces to the board,
but simply changing the strategy of the game.
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