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Abstract. This paper describes the use of evolutionary algorithms to solve multiobjective optimization problems
arising at different stages in the automotive design process. The problems considered are black box optimization
scenarios: definitions of the decision space and the design objectives are given, together with a procedure to eval-
uate any decision alternative with regard to the design objectives, e.g., a simulation model. However, no further
information about the objective function is available. In order to provide a practical introduction to the use of mul-
tiobjective evolutionary algorithms, this article explores the three following case studies: design space exploration
of road trains, parameter optimization of adaptive cruise controllers, and multiobjective system identification. In
addition, selected research topics in evolutionary multiobjective optimization will be illustrated along with each
case study, highlighting the practical relevance of the theoretical results through real-world application examples.
The algorithms used in these studies were implemented based on the PISA (Platform and Programming Language
Independent Interface for Search Algorithm) framework. Besides helping to structure the presentation of different
algorithms in a coherent way, PISA also reduces the implementation effort considerably.
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1. Introduction

Like many areas of engineering design, vehicle devel-
opment has become an increasingly complex process
in recent years. Engineers must meet conflicting de-
mands concerning efficiency, performance, costs, etc.
Vehicle design problems are typically characterized by
the presence of multiple decision criteria or design ob-
jectives. Additional difficulties arise due to the increas-
ingly complex system models used in the design pro-
cess. Computer simulation is often used to model parts
of the system to be designed as well as its environment
since experiments with the real system are time con-
suming and expensive. The complexity of the model of-
ten makes it impossible for the designer to understand
its input-output mapping, thus it must be regarded as a
black box.

Approaches to cope with difficult design problems
have traditionally been categorized into experimental
and analytical methods. Experimental methods gener-
ally rely on the intuition and experience of the engineer
and often follow a trial-and-error strategy. Analytical
methods represent a more formal and systematic ap-
proach, but are normally limited to very simple mod-
els. With the availability of sufficient computing re-
sources, numerical optimization methods have gained
much popularity as a new option to deal with engi-
neering design problems. The focus of this study are
evolutionary algorithms (EAs), a special type of prob-
abilistic numerical optimization techniques [1].

The use of evolutionary algorithms in engineering
design is not new (see, e.g., [2–4] for overviews). EAs
possess several properties that make black box de-
sign problems one of their primary application areas:
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(i) they are easy to describe and implement, (ii) they do
not make any assumptions about the properties of the
optimization problem (such as differentiability, conti-
nuity, unimodality) or type of design variables, and (iii)
they process sets of solutions in parallel and thus are
able to obtain several different design alternatives si-
multaneously. The third property is often regarded as
the key advantage of EAs over other numerical opti-
mization techniques for problems with multiple design
objectives. The recent monographs of [5] and [6] give
a detailed survey of multiobjective evolutionary algo-
rithms (MOEAs) including application examples.

The multitude of different MOEA versions intro-
duced in the literature makes it difficult for a user, who
is often not an EA expert, to choose a suitable algo-
rithm. Many algorithms are published in conjunction
with a certain application problem and hence contain
many problem-specific operators, which might be ir-
relevant and confusing for a different user. In addition,
state-of-the-art MOEAs are much more complex than
standard EAs, resulting in a tedious and error-prone
implementation effort.

The aim of this paper is to give a practical introduc-
tion to multiobjective black box optimization, used in
engineering design processes, through real-world ex-
amples from the field of automotive engineering. To
overcome the aforementioned difficulties, we employ
the PISA framework [7]. The concept of PISA is to
split the optimization into a problem-dependent and a
problem-independent part. The use of PISA serves two
purposes here. On the didactical side, the principle of
separation of concerns facilitates the users’ comprehen-
sion of the algorithms and hence their ability to choose
and implement. On the practical side, the standardized
interface specification of PISA allows to use existing
algorithms with minimum programming effort. It also
enables to easily combine the optimization algorithms
with the application problem at hand.1

This article is therefore intended to be both practical
and readily comprehensible such that an engineer with
little knowledge of evolutionary computation and the
mathematics of multiobjective optimization can bene-
fit from it. The focus is to clarify which algorithms can
be applied and how they might be implemented from a
practitioner’s perspective. On the other hand, interested
readers will find selected research issues in evolution-
ary multiobjective optimization, demonstrated through
practical examples, together with references for further
study. First, we introduce the necessary mathematical
and methodological background of multiobjective de-

sign with evolutionary algorithms and the PISA frame-
work. The remaining sections describe multiobjective
decision problems that arise at different stages in the
design process of automotive systems and demonstrate
the use of the proposed methodology. The first applica-
tion explores the design space of road trains. Since road
trains are a new concept in the European freight sector,
it is necessary to explore their potential concerning var-
ious economic and environmental criteria at a prelimi-
nary design stage. The algorithm applied is extremely
simple and suitable for self-implementation. We ad-
dress the question of how to obtain a well-distributed
and diverse set of design alternatives in problems with a
fairly large number of objectives. In addition to that we
introduce a simple technique of density-based selec-
tion. The second application area is a parameter opti-
mization of adaptive cruise control systems. Here, the
task is to develop a filter structure for optimal con-
troller behavior regarding driving performance, safety
and fuel consumption. On the algorithmic side, the fo-
cus is on the question of how to represent the design
alternatives in the MOEA, and how to define appro-
priate variation operators. In order to compare differ-
ent algorithms it is necessary to complete a perfor-
mance assessment of MOEAs, which will exemplar-
ily be discussed on this problem. Finally, a system
identification problem is addressed. The aim is to fit
a vehicle dynamics simulation model to data acquired
in real driving tests. A simple, but realistic, model is
needed for later integration into a vehicle dynamics
controller. For this application, convergence problems
are observed with standard MOEAs—a topic that has so
far only been discussed in theoretical studies. To solve
this problem, a recently developed selection operator is
applied.

2. Multiobjective Design by Evolutionary
Algorithms

Many design problems involve several criteria or objec-
tives according to which the alternatives are evaluated.
Objectives can be incommensurable, meaning they are
not comparable with respect to magnitude and value.
They can also be non-cooperative, meaning there is no
single alternative that is better than all other alternatives
in each objective. If set of alternatives is explicitely
given, small, and finite, methods from the area of mul-
tiattribute decision analysis [8–10] can be used to aid
the choice process under multiple criteria.
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In engineering design problems, though, the set of
different alternatives is usually not given explicitly, but
rather implicitly via design variables and system con-
straints. The multiobjective decision problem then be-
comes a search or optimization problem and can be
represented in its general form as

minimize f(x) = ( f1(x), . . . , fm(x)) (1)

subject to x ∈ X, (2)

where X denotes the set of feasible design alternatives
(design space) and f the vector of the m ∈ N objective
functions. As there is rarely a single solution that min-
imizes all components of f simultaneously, the goal is
to find elements of the so-called Pareto-optimal set.

Definition 1 (Pareto optimality). Let f : X → F ,
where X is called decision space and F ⊆ R

m ob-
jective space. A decision alternative x∗ ∈ X is Pareto
optimal if there is no other x ∈ X that dominates x∗.
x dominates x∗, denoted as x ≺ x∗ if fi (x) ≤ fi (x∗)
for all i = 1, . . . , m and fi (x) < fi (x∗) for at least one
index i . The set of all Pareto-optimal decision alterna-
tives X∗ is called Pareto set. F∗ = f(X∗) is the set
of all Pareto-optimal objective vectors and denoted as
Pareto front.

The Pareto set represents the collection of all rea-
sonable alternatives, independent of the relative im-
portance of the different objectives for the decision-
maker. The knowledge of the Pareto set is useful for
the decision-maker because it reveals much about the
design problem at hand and about the trade-offs be-
tween the different objectives. It is obvious that any
final solution should be Pareto optimal, but the deci-
sion as to which alternative to choose is subjective and
depends on the decision-makers’ preferences.

Most numerical methods to deal with multiobjective
optimization problems are restricted to a certain type
of problem (see, e.g., [11] for linear objectives, [12]
for nonlinear objectives with continuous variables, or
[13] for combinatorial problems). Engineering design
problems, however, do not necessarily fit into those
categories. For the purpose of this article, we do not
want to restrict the type of problem and we assume
the designer can provide (i) a definition of the decision
space, (ii) a definition of the design objectives, and
(iii) a system model that constitutes the mapping from
decision alternatives to objective values. This is the

scenario of black box optimization and the reason we
apply evolutionary algorithms.

Evolutionary algorithms are probabilistic search
techniques inspired by models of natural evolution.
EAs work by representing different decision alterna-
tives as individuals, which undergo cycles of variation
and selection. The variation operator usually consists of
recombination (the exchange of information between
individuals) and mutation (the random alteration of
individuals). The selection operator is used to grade
the decision alternatives represented by the individuals
based on their objective function values. The best indi-
viduals are kept for the production of offspring, while
the worse alternatives are discarded.

A prevalent obstacle for the application of evolu-
tionary algorithms is the practical integration of the
optimization algorithm with the system model. Both
the system model and the optimization algorithm are
typically available as independent computer programs;
however, neither are necessarily implemented in the
same programming language or on the same operating
system. Partial re-implementation of the optimizer or
the system model is time consuming and error prone,
thus it is desirable to keep both parts as separate and
freely combinable components, as indicated in Fig. 1.
For the interaction of these two components we make
use of PISA, a platform-independent and programming
language-independent interface for search algorithms,
which has been developed to facilitate and standardize
the integration of application problems and iterative
optimization algorithms [7]. The purpose of PISA is
to split the optimization component into two logically
independent elements, ‘variator’ and ‘selector’, which
operate with sets of decision alternatives denoted as
‘populations’.2

The variator is responsible for the production of
solutions. It can either create new solutions from
scratch (‘initial population’) or modify existing solu-
tions (‘offspring population’). The variation of solu-
tions takes place in the decision space X and is therefore
application-specific. The variator is also responsible for
calculating the objective values. This can be achieved
either by integrating the system model into the variator
or by invoking a separate simulation program.

The selector is responsible for deciding which solu-
tions to discard and which to keep for further explo-
ration during the search process. The selection is based
on the objective values (which are provided by the vari-
ator as described above) and is thereby application-
independent. The selector maintains an archive of all
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Figure 1. Illustration of the concept underlying PISA. The application problems on the left hand side and the multiobjective selection schemes
can be combined arbitrarily.

solutions to be kept (‘archive population’), from which
it samples promising individuals for further modifica-
tion by the variator (‘parent population’).

PISA requires that variator and selector are imple-
mented as independent processes that exchange infor-
mation via text files. The only common parameters to
be specified are the size of the initial population α, the
size of the parent population λ, the size of the offspring
population µ and the number of objectives dim. For
further details on the PISA protocol refer to [7].

3. Design Space Exploration of Road Trains

The first example of a development task solved by the
described approach is the adaptation of a normal truck’s
power train to suit a road train [14]. Increasing the max-
imum payload is one possible approach to overcome
traffic problems on crowded European highways. We
focus on a concept for European freight traffic featuring
two semi-trailers connected by a one-axle dolly [15].

The optimization of a new vehicle concept with re-
spect to fuel consumption and driving dynamics is a
very complex subject. The lack of existing data and
knowledge leaves a void in experiments concerning
the power train and the overall weight of the road train.
Furthermore, it is impossible to acquire knowledge in

driving tests as prototypes are too expensive to build.
Therefore, the vehicle concept is modeled by a vehicle
simulation.

3.1. Optimization Problem

Several considerations must be taken into account when
developing a new vehicle concept. On one hand, an op-
timal combination of vehicle weight and engine power
has to be found to ensure efficient driving. On the other
hand, the correct choice of gear box type and gear ratio
influence driving comfort and performance. The de-
sign variables and their ranges are displayed in Fig. 2.
The first four variables are scale factors of different
engine and gear box parameters. The last variable, x5,
represents the choice of the gear box type, specifically,
whether the 15th or the 16th gear is chosen to be the
direct gear. The direct gear is most efficient because the
power is not transmitted through toothed wheels, but
directly through the transmission shaft (gear ratio = 1).
If the 15th gear is chosen as the direct gear, the 16th
has a ratio below 1, which is less efficient. However,
the low ratio causes higher engine rates and thus lower
torque, which increases the gear box durability.

An increase in weight leads to an increase of road and
climbing resistance. This changes the engine operating
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Figure 2. Schematic view of the road train and its design variables.

Figure 3. Engine characteristic graph.

point as well as its efficiency and fuel consumption.
Every driving condition defines a point in the engine
characteristic graph (see Fig. 3). The number of rev-
olutions is determined by the velocity of the vehicle
and the total gear ratio (consisting of rear-axle ratio
and transmission ratio). The required torque is a result
of power output (influenced by velocity, efficiency of
the gear box, acceleration, and road gradient) and rev-
olutions. A lower total gear ratio reduces the engine
speed. Assuming constant running resistance (due to
constant velocity and road gradient) the required power
remains unchanged. The line of constant power indi-
cates this relationship in Fig. 3. Long-distance trans-
port vehicles usually drive statically, operating at their
maximum authorized speed. This leads to the assump-
tion that the gear ratio should be low enough to create
an engine operating point in the area of lowest spe-

cific fuel consumption. This area is close to the line
of maximum torque. Small increases in the running
resistance, resulting from headwind or road gradient,
cannot be compensated for by requesting more torque
from the engine. Instead, they force the driver to shift
gears or to go at a lower speed. Since the drivability of
the vehicle requires a large distance between the most
frequent engine operating point and the line of max-
imum torque (resulting in powerful engines and high
gear ratios), it counteracts the attempt to reduce fuel
consumption.

The goal of the optimization is to find a combination
of overall weight, gear box, engine and driving strat-
egy that minimizes fuel consumption and optimizes
driving performance and driving convenience. Ten ob-
jective functions are defined to give a complete char-
acterization of the vehicle performance with respect to
fuel consumption and drivability. The resulting prob-
lem can be stated as follows:

Minimize f(x) = ( f1(x), . . . , f10(x)),

f1(x) = ta1(x) [time for acceleration
0–40 km/h]

f2(x) = ta2(x) [time for acceleration
40–90 km/h]

f3(x) = (−1) · vmax(x) [maximum velocity]
f4(x) = (−1) · v14(x) [maximum velocity,

1.5 gradient, 14th gear]
f5(x) = (−1) · v16(x) [maximum velocity,

1.0 gradient, 16th gear]
f6(x) = c100(x) [average fuel consumption

per ton load, 100 km/h]



60 Laumanns and Laumanns

f7(x) = c80(x) [average fuel consumption
per ton load, 80 km/h]

f8(x) = (−1) · vave(x) [average speed on a highway
(including road gradient)]

f9(x) = ch(x) [average fuel consumption
per ton load on a highway]

f10(x) = gtot(x) [number of gear shifts on
a highway]

subject to x = (x1, . . . , x5) ∈ X = [0, 1]5.

The characteristic values ta1, ta2, vmax, v14, v16, c100,
c80, vave, ch , gtot are derived by simulation and there-
fore cannot be given in closed form. Six simulation sce-
narios are used, a full-load acceleration scenario, two
constant-velocity scenarios (80 km/h and 100 km/h),
two scenarios with constant gradient and the engine
operating at full load and a highway scenario. The high-
way scenario consists of an 18 km drive over an empty
highway, with road gradient varying from −4.5% to
+3.9%.

3.2. Algorithms

This application is an example of design space ex-
ploration at an early stage. Here, simplicity is a main
criterion to select a suitable optimization algorithm if
the designer needs quick results and has to implement
the algorithm himself. A further, technical requirement
for this specific problem is that the archive population
must be able to store a large number of individuals be-
cause the number of non-dominated solutions usually
increases with the number of objectives. In this case,
the archive size does not have to be bounded at all be-
cause the long duration of the simulation (about 30 sec-
onds) already limits the total number of alternatives that
can be evaluated in a reasonable amount of computing
time. Our simple replacement strategy merely keeps all
non-dominated solutions. To avoid genetic drift and an
oversampling of already sufficiently explored regions,
density-based selection [16, 17] is used to determine the
parent population. In each iteration, the local density
of each element of the archive population is estimated
using a simple histogram-based method: a hyper-grid
is defined in the objective space, and each individual
is assigned the total number of individuals occupying
its grid cell. The individual for the parent population is
then drawn (with replacement) from the archive popu-
lation with a probability reciprocal to this value.

The variation operator for this study only uses muta-
tion. Each individual represents a decision alternative

Table 1. PISA specification of the EA for the road train problem.

PISA Parameters: α = 20 µ = 1 λ = 1 dim = 10

Variator Selector

Initial population: Archive population:
Draw each decision vector Keep all non-dominated individuals,

uniformly from X . discard dominated ones.

Offspring population: Parent population:
Mutate each parent decision Draw parent individual inversely

variable by adding proportional to its local
a normal random density in objective space.
variable with zero
mean and standard
deviation 0.02.

by a vector of design variables x = (x1, . . . , x5) ∈ X .
For each component of the decision vector, a random
number is drawn from a standard normal distribution
and multiplied with a scaling factor σ . This product is
then added to the old component xi to form the new
component x ′

i :

x ′
i := xi + σ · ri , ri ∼ N (0, 1) (3)

A constant mutation step size of σ = 0.02 is used
for simplicity, i.e., two percent of the range of each
design variable. Recombination is not used here since
the interdependence of the design variables in every
part of the objective space seems to be very high. The
variation and selection operators are summarized in
Table 1.

To judge the quality of the design alternatives ob-
tained by the evolutionary algorithm, a road train ver-
sion is designed in a traditional way, based on simple
rules for optimizing a truck’s power train [18]. In addi-
tion, two grid searches over the whole design space are
performed, each with a total number of 2160 elements.
One of them is restricted to a maximum authorized
speed of 80 km/h, the other to 100 km/h.

3.3. Results

A hierarchical approach is used for the design space
exploration with the evolutionary algorithm. The first
run of the evolutionary algorithm is performed to nar-
row the design variable intervals. An analysis of the
trade-offs between the different objectives leads to the
conclusion that a focus on reducing fuel consumption
does not necessarily worsen the other objective values
in an unacceptable way. Furthermore, this goal is the
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Figure 4. Design variable and specific fuel consumption for the 100 km/h road train (top) and the 80 km/h road train (bottom).

main factor for the profitability of a vehicle concept and
deserves special attention. Therefore, we choose aver-
age fuel consumption on the highway, f9, as the objec-
tive value that defines a ranking of the solutions; f4 and
f5 can be used to represent the second important part
of driving performance, the required climbing ability.
Here, reduction of maximum velocity must not exceed
5 km/h. Solutions that do not meet this criterion are
removed from the ranking. With the help of these pre-
liminary solutions, shown in Fig. 4, the design variable
intervals are narrowed down to x1 ∈ [0.4, 0.6], x2 =
1, x3 ∈ [0.3, 0.4], x4 ∈ [0, 0.5], x5 = 0 for the
100 km/h version and x1 ∈ [0.0, 0, 4], x2 = 1, x3 ∈
[0.55, 0.85], x4 ∈ [0, 0.5], x5 = 0 for the 80 km/h
version. Limited to those intervals, a second run of the
same evolutionary algorithm performs a more exact ap-
proximation of the Pareto set in the region of interest.
Of course, there are other ways to cope with the large
number of incomparable alternatives in the presence
of many objectives. These typically rely on preference

information, for instance aggregating (or dropping) ob-
jectives, lexicographic ordering or the transformation
of objectives into constraints. In many cases, however,
it is very difficult to derive an exact numerical repre-
sentation of the preferences. Moreover, since we have
different decision-makers with different preferences in
mind, the aim is first to explore the Pareto set as broadly
as possible with a minimum number of simulations be-
fore exploiting interesting regions through restricting
the decision variable space as described above.

Final results show the impressive advantage of road
trains over normal trucks with respect to fuel consump-
tion: decreases of 23% (80 km/h-version) and 26% (100
km/h-version) are achieved on highways in spite of
the rather tough gradients. In steady-state operation,
fuel consumption advantages of up to 35% are accom-
plished. When acceleration is at a sensible level, the
road trains have no disadvantages in climbing ability
and required gear shifts. The comparison of the differ-
ent road train versions (see Fig. 5) indicates that the
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Figure 5. Specific fuel consumption on a highway for the 100 km/h road train (left) and the 80 km/h road train (right).

evolutionary algorithm is able to generate better so-
lutions than the other approaches. Showing the same
climbing ability and acceleration as both the tradition-
ally developed versions and the ones obtained by a grid-
scan over the whole parameter area, the EA-solution
needs about 1% less fuel on the highway. The 100 km/h
version is even better than the best version found by a
grid-scan of 1000 elements distributed over the nar-
rowed intervals.

Figure 6 shows the relation between the objective
function f4 (maximum velocity in 14th gear with 1.5%
road gradient) and f9 (specific fuel consumption on
highway) for elements of the archive population at the
end of the run. This relationship provides information
about the trade-off between driveability and fuel econ-

Figure 6. Trade-off between velocity (1.5% road gradient) and specific fuel consumption on a highway for the 100 km/h road train (left) and
the 80 km/h road train (right).

omy. The creation of 1300 individuals already pro-
duces a rather large number of solutions, which must
be considered better than any solution that was found
without the evolutionary algorithm. This advantage in
efficiency becomes even more important when more
sophisticated driving scenarios—and thus more time
consuming simulations—are used, which is subject to
further research.

4. Parameter Optimization of Adaptive Cruise
Control Systems

Crowded motorways and a higher average vehicle
speed create increasing difficulties for drivers. The
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automobile industry tries to compensate for these addi-
tional demands by inventing driver assistance systems
such as antilock braking systems (ABS), cruise control
(CC) and electronic stability control (ESC). In contrast
to the systems mentioned above, adaptive cruise con-
trol (ACC) has not been thoroughly established yet.

The ACC-system is an enhanced cruise control sys-
tem, not only designed to keep the vehicle’s speed con-
stant, but also to analyze the traffic situation in front of
the vehicle and regulate its longitudinal dynamics ac-
cordingly. Thus, it especially suits the demands of truck
drivers, who frequently have to follow a leading vehi-
cle. Used effectively, ACC-systems can increase driv-
ing safety, make driving more comfortable and reduce
fuel consumption. However, it is difficult to develop
a controller that meets the drivers’ requirements con-
cerning its speed-regulating behavior as well as safety
criteria and fuel efficiency.

Since experimental testing of each modified con-
troller variant would enormously raise development
costs and time, the ACC-system’s behavior is evaluated
and analyzed by simulation. This offers the possibility
to improve the development process further by apply-
ing numerical optimization techniques such as evolu-
tionary algorithms to optimize the ACC-controller [19].

4.1. Optimization Problem

The structure of the ACC-system is depicted in Fig. 7.
The longitudinal controller translates incoming data
about the traffic situation in front of the vehicle and
its own driving condition into the desired accelera-
tion. The data produced by the sensor contain some
deviation. As such, it requires four different filters in

Figure 7. Structure of the ACC-system.

order to create a smooth acceleration signal. The in-
fluence of these filters can be regulated by four in-
teger parameters, represented by the design variables
x1, . . . , x4. Strong filters result in very smooth sig-
nals. However, they delay the vehicle’s reaction to in-
coming data, which weakens its driving performance.
Two further design variables, x5, x6, are used to de-
fine the longitudinal controller’s reaction to the vehi-
cle’s distance from the leading vehicle and their relative
velocity.

Four objectives are defined to give a sufficient char-
acterization of the ACC-system’s longitudinal control-
ling behavior with respect to driving comfort, fuel
efficiency and safety. These objective functions are
computed within the simulation. Thus, the resulting
multiobjective optimization problem can be stated as
follows (where for a given design alternative, its char-
acteristic values cave, tacc, dvel, and dacc are calculated
by the simulator):

Minimize f(x) = ( f1(x), . . . , f4(x)),

f1(x) = cave(x) [average fuel consumption]
f2(x) = tacc(x) [time for acceleration]
f3(x) = dvel(x) [velocity deviation]
f4(x) = dacc(x) [acceleration deviation]

subject to x = (x1, . . . , x6) ∈ X = {1, 2, . . . , 99}×
{1, 2, . . . , 16} × {1, 2, . . . , 8}3,

g(x) ≥ dmin [minimum follow-up distance]

4.2. Algorithms

In order to approximate the Pareto set for the con-
strained multiobjective integer programming problem



64 Laumanns and Laumanns

Table 2. PISA specification of the EA for the ACC controller
optimization.

PISA Parameters: α = 20 µ = 10 λ = 10 dim = 4

Variator Selector

Initial population: Archive population:
Draw each decision vector Environmental selection of

uniformly from X . SPEA2 [20]

Offspring population: Parent population:
Read-coded version: SBX Mating selection of

operator [5] SPEA2 [20]
Integer version: Geometric

Distribution with
self-adaptation [21]

above, a grid search and two evolutionary algorithms
are applied and compared. The computation time of
the simulator makes an exhaustive search or complete
enumeration of all alternatives impractical. Thus, a grid
search with 215 representative solutions (regularly dis-
tributed in the decision variable space) is performed.
In comparing all these alternatives to each other, the
dominated ones are eliminated and the remaining rep-
resent a first approximation of the non-dominated set
as a baseline for comparison.

Here, two algorithms based on SPEA2 ([20], an im-
proved version of the Strength Pareto Evolutionary Al-
gorithm, [22]) are applied. The PISA specification is
given in Table 2. Also in SPEA2, selection is performed
in two steps: environmental selection (to determine the
new archive population) and mating selection (to de-
termine the new parent population). The best α indi-
viduals out of the old archive population and the λ new
offspring survive. First, all non-dominated individuals
are selected. If there are more than α such solutions,
a truncation procedure is invoked which iteratively re-
moves the individual closest to the others. If less than α

individuals are non-dominated, the space is filled with
the dominated individuals in ascending order of their
fitness values. In the mating selection step, the µ-sized
parent population is created by binary tournament se-
lection (with replacement) based on the fitness values.

One purpose of this study is to compare different
representations for the individuals, a real-valued relax-
ation of integer design variables and a direct integer
coding. Accordingly, two different variation schemes
are used:

Real-valued individuals. Many standard search opera-
tors are based on a floating-point representation of

(real-valued) decision variables. Therefore, a con-
tinuous relaxation of the search space to [0, 99]2 ×
[0, 16]×[0, 8]3 is used, and the variables are rounded
to their integer part (plus 1) before each run of the
simulation tool. For the recombination, we use the
SBX-operator [5] with distribution index η = 5.
The offspring individuals are then mutated by adding
normally distributed random numbers according to
Eq. 3, where the standard deviation σ is set to 5 per
cent of the interval length.

Integer-valued individuals. As the relaxation produces
an artificially magnified search space, a direct repre-
sentation of the decision variables as integer numbers
seems more appropriate. It also eliminates the poten-
tial problem of mapping several different individuals
to the same decision alternative by the rounding pro-
cedure. Search operators working directly on integer
variables are not as common in evolutionary compu-
tation. We adopt the techniques from Rudolph [21],
who developed an EA for integer programming with
maximum entropy mutation distributions, enabling
self-adaptive mutation control similar to real-valued
evolution strategies. A successful application to a
mixed integer design problem for chemical plants is
reported in [23]. Here, the initial mutation step size
was set to s = 2 for all variables.

Both versions of SPEA2 were terminated after 3000
objective function evaluations. During the run, an
archive of all non-dominated solutions was maintained.
At the end of the run the archive represented an approx-
imation of the Pareto set.

4.3. Results

To evaluate the performance of the evolutionary algo-
rithm, a grid search over the whole parameter range is
performed, along with a manual optimization of the
ACC-controller. The grid search contains 16384 el-
ements, requiring a computation time of almost 137
hours.3 Both instances of the evolutionary algorithm
only used 3000 function evaluations each. Since their
internal operations and data processing can be ne-
glected compared to the simulation, they have a clear
advantage in terms of computation time.

As a first interesting observation from the output of
the different algorithms, no trade-off is visible for the
second objective f2 (acceleration/deceleration time).
All algorithms have found the optimal value of 66.6
for almost all non-dominated alternatives. This is the
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Figure 8. Scatter plot of the non-dominated solutions produced by
the grid search and the evolutionary algorithm with continuous relax-
ation (r-SPEA2) and direct integer coding (i-SPEA) for the objective
function values f1, f3, f4.

optimal value attainable by immediate full accelera-
tion, without any delays caused by the ACC system.
Hence, it cannot be improved further. The remaining
objective values of the different non-dominated sets
are displayed in Fig. 8. The trade-off characteristic is
visible from the three-dimensional scatter plot.

A further goal of this case study is to conduct a sys-
tematic performance assessment and comparison of the
different techniques to exemplify the aforementioned
theoretical results reported in [24]. We start with the
hypervolume indicator [22] as an example of an ab-
solute quality indicator with strong inferential power.
The hypervolume indicator calculates the normalized
volume of the dominated space to evaluate a single non-
dominated set alone. As it requires a bounded objective
space, a reference cuboid is defined between the ideal
point f∗ and the nadir point, given by the maximum ob-
jective function values of the maximum elements of the
output of all three algorithms. The value IH(A) gives
the fraction of this reference volume that is dominated
by A. It is intuitively clear that, the more space an algo-
rithm can dominate, the better the algorithm. However,
as it was proven in [24], a comparison based on such
scalar indicator values does not allow us to conclude
that one solution set is entirely better than the other in
the sense that each element of the latter is dominated
by at least one element of the former set. The results
given in the last column of Table 3 show:

IH(Ai−SPEA2) > IH(Ar−SPEA2) > IH(Agridsearch)

which allows to conclude

Agridsearch 
≺ Ar−SPEA2 
≺ Ai−SPEA2.

Table 3. Results of the binary hypervolume indicator IH2

applied to all pairs of algorithms and the absolute hypervolume
indicator IH (last column).

IH2(A, B) i-SPEA2 r-SPEA2 grid search IH(A)

i-SPEA2 0.0038 0.223 0.949

r-SPEA2 0.002 0.188 0.913

grid search 0.0003 0.0018 0.726

where the symbol ≺ denotes the extension of the dom-
inance relation to sets of decision alternatives. These
statements are quite weak, and we have to apply rela-
tive quality indicators to arrive at stronger statements.
We consider two relative quality indicators proposed by
[22], the coverage indicator IC and the binary hyper-
volume indicator IH2. Both indicators are among those
with the strongest inferential power [24].

The coverage indicator provides information about
how much of one algorithm’s output has also been
reached by the other algorithm. Specifically, IC(A, B)
calculates the relative number of points of set B that
are dominated by at least one point in set A. Table 4
shows the results. It can be seen that none of the points
found by the grid search is better than any point in
the non-dominated sets of the evolutionary algorithms.
The SPEA2, working with the floating point represen-
tation, does not cover many (less than 10%) of the so-
lutions produced by the integer version, which in turn
is able to dominate nearly half of the solutions of its
competitor. However, as far as the dominance relations
of solution sets are concerned, the results only lead
to the conclusion that the output of all algorithms is
mutually incomparable because all values of the cov-
erage indicator are strictly smaller than one. The same
conclusion can of course be drawn from the binary hy-
pervolume indicators, whose results are also listed in
Table 3. The binary hypervolume IH2(A, B) evaluates
to the volume dominated by set A, but not dominated by
set B.

This situation of mutually incomparable approxima-
tion sets is very typical for a comparative study because

Table 4. Results of the coverage quality indicator IC

applied to the output of all pairs of algorithms.

IC(A, B) i-SPEA2 r-SPEA2 Grid search

i-SPEA2 0.423567 0.991597

r-SPEA2 0.070588 0.991597

grid search 0 0
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the performance differences are seldom so strong that
one set entirely dominates another. Nevertheless, the in-
dicator values provide insight into differences between
the outputs of the algoritms. In our case, the order of the
indicator values is always the same, showing that both
evolutionary algorithms largely dominate the output of
the grid search, with the integer-valued version hav-
ing a slight advantage over the real-valued one. Such
conclusions can of course be drawn, although one has
to be careful with the interpretation of results to avoid
general statements such as “algorithm A is better than
algorithm B” when this is formally incorrect.

We conclude this performance assessment by inves-
tigating further performance aspects in more detail.
These aspects correspond to the different preferences of
the designer, i.e., which regions of the objective space
one is most interested in. Such an assessment is of
course a subjective one. All of the following indicators
can be seen as special cases of the distance-indicator
ID [24].

One possibility is to define a utility function based on
a weighted distance to an ideal point f∗, which is given
by the minimum objective values in each dimension.
The difference between each objective value and the
optimum value in the corresponding category is multi-
plied with a factor that represents the importance of the
category. Thus, the interpretation of the results reflects
an adaptation to the decision maker’s preferences. In
this case, the objectives f1 and f3 are considered most
important, while f2 is least important. Representing
the distance to the optimal solution, the sum of those

Figure 9. Ranking of solutions according to the scalar utility function (4).

values gives the overall quality of the individual

D(x) = 150( f1(x) − f ∗
1 ) + ( f2(x) − f ∗

2 )

+ 6( f3(x) − f ∗
3 ) + 4( f4(x) − f ∗

4 ) (4)

with f∗ = (37.8339, 66.6, 2.06935, 3.03196). Accord-
ingly, a ranking of the individuals developed by the
different optimization strategies can be produced. The
best 100 solutions are displayed in Fig. 9. The two evo-
lutionary algorithms create the best solutions, while
the integer-version holds a slight advantage in terms of
density close to the optimum solution. Out of the top
100 solutions, 46 were created by this integer-version,
40 by the real-coded version, and only 14 by the
grid-search.

5. Model-Fitting for a Vehicle Dynamics
Simulation

A crucial element of the application process of simu-
lation and optimization techniques in vehicle develop-
ment is model-fitting. Here, a MATLAB simulation is
to be fitted to data acquired in real driving tests.

The two most important elements of modeling are
simplification and exactness. In this case, an extended
bicycle model is used for vehicle driving dynamics re-
search. The original bicycle model is a rather simple
representation of real cars, because the four tire con-
tact points are centralized in the longitudinal axle of
the car. Time-delays for the lateral tire force generation
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enable a sufficiently exact reproduction of real vehicle
measurements. However, it is necessary to fit a number
of vehicle parameters in order to achieve a satisfying
performance of the vehicle model.

5.1. Optimization Problem

The two transfer functions for yaw rate and lateral ac-
celeration with the input steering angle are the most
important criteria when analyzing the quality of lat-
eral vehicle dynamics simulation. Both phase lag and
gain must represent the original vehicle behavior with
maximum precision.

The main task is to develop a model structure that
enables sufficient exactness while remaining as sim-
ple as possible. To achieve that, the original bicycle
model is extended. Tire phase lags create a delayed
reaction to steering angle changes. In addition, the ve-
hicle’s rolling behavior is modeled in a simple way in
order to represent the body movement in relation to
the tires. The following eight real-valued design vari-
ables enable a sufficient adjustment to different ve-
hicles: x1 (yaw inertia), x2 (tire stiffness, front), x3

(tire stiffness, rear), x4 (phase lag front tire), x5 (phase
lag rear tire), x6 (roll stiffness), x7 (roll damping),
x8 (roll inertia). These parameters mainly represent
tire characteristics and vehicle mass distribution. The
data for other parameters like vehicle mass and length
can simply be measured. Therefore it is not neces-
sary to include those values in the design parameter
set.

Typical manoeuvres for vehicle parameter identifi-
cation are steering angle sweeps with a constant lateral
acceleration of about 4 m/s2. Both transfer functions
mentioned above can be derived from those manoeu-
vres. A comparison of the simulation to driving tests re-
sults in the following four-objective optimization prob-
lem:

Minimize f(x) = ( f1(x), . . . , f4(x)),

f1(x) = aa(x) [gain deviation, lateral

acceleration]

f2(x) = ta(x) [phase lag, lateral acceleration]

f3(x) = ay(x) [gain deviation, yaw rate]

f4(x) = ty(x) [phase lag, yaw rate]

subject to x = (x1, . . . , x8) ∈ X = [0, 1]8.

5.2. Algorithms

The problem to be solved is a multiobjective optimiza-
tion problem with eight real-valued, normalized de-
cision variables and an objective function with four
components. As we are not primarily concerned with
a comparison of different algorithms, we start directly
with the SPEA2 described in the previous section.

The variation operators used for this problem again
apply recombination and mutation. A simple discrete
recombination is chosen, which creates one offspring
solution x′ from two parents x(a) and x(b). For each de-
cision variable xi , one parent is determined randomly
and its decision variable copied to the child. The re-
sulting child is then mutated using normal-distributed
random variables, again according to Equation 3. The
mutation step sizes σ are chosen in each iteration adap-
tively and determined by half the absolute difference
of the parent variables:

σi := 1

2

∣
∣x (a)

i − x (b)
i

∣
∣.

The first run of this SPEA2 version, however, soon
reaches a situation where the population stagnates and
no further progress is visible. Instead, the population
oscillates around a certain area in objective space. The
problem arises as a result of deterioration, which is dis-
cussed in [25]. To overcome this convergence problem,
the selection operator of SPEA2 must be replaced by
the selection operator maintaining the ε-Pareto set pro-
posed in [25]. Such convergence problems, which have
been verified for many multiobjective EAs, indicate
that the algorithm is operating close to the Pareto set.
To achieve further progress, special care must be taken
regarding the selection and deletion of solutions from
the archive population. Using this particular selection
algorithm guarantees that the set of archived solutions
never deteriorates and thus monotonously converges to
the Pareto set. The PISA specification for this algorithm
is given in Table 5.

5.3. Results

The evolutionary algorithm is able to find solutions
of a sufficient quality rather quickly. Regarding the fi-
nal approach to the Pareto set, the ε-archive selection
algorithm performs considerably better than SPEA2.
In the first part of the optimization process, the user
can derive interesting information about the model
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Figure 10. Selected trade-offs between the four objective functions.

behavior by analyzing the trade-offs between the ob-
jective functions, since the archive is still rather widely
spread as visualized in Fig. 10.

In the course of the optimization, the focus of the
designer shifts from diversity to examining the area
of favoured solutions in detail. To achieve this goal,
further constraints on the objective values are defined
while the ε value is scaled down. This adaptation, how-
ever, is not automated, but user driven. The develop-
ment of the solutions, especially the focus on favoured
regions, is also visible in Fig. 10 for different stages
defined by different ε values. The left diagram shows
that in the third stage, more emphasis was put on im-
proving the phase lag deviation of the yaw rate, so

Table 5. PISA specification of the EA for the model-fitting
problem.

PISA Parameters: α = 300 µ = 10 λ = 10 dim = 4

Variator Selector

Initial population: Archive population:
Draw each decision vector Select archive population

uniformly from X . using the ε-archive selection
algorithm [25].

Offspring population: Parent population:
For each pair of parents: Select parent population by

swap each decision variable sampling µ times uniformly
with probability 0.5, from the archive population
then mutate by adding (with replacement).
a normal randomvariable
with zero mean and standard
deviation given by the
absolute difference of the
parent variables, divided by 2.

Figure 11. Comparison of simulated and real vehicle behavior. The
solid line is an interpolation of the measured data from the real vehi-
cle, the dashed line represents the simulation data obtained from the
vehicle model.

all solutions above a certain threshold were prohibited
by an additional constraint. This measure subsequently
led to a considerably better approximation of the lower
part of the trade-off surface, keeping the gain devia-
tion of the lateral acceleration in the interval between
[0.002, 0.01].

The discovered solutions create a simulation envi-
ronment, in which lateral vehicle dynamics can be
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simulated with a rather simple model and sufficient
exactness. The exactness is depicted in Fig. 11, where
the simulated time series is plotted against data of a
real vehicle obtained in driving tests. The simplicity
of the model results in low computation time, thereby
enabling the model to be used when controlling vehi-
cle dynamics online. This is true not only for a general
purpose processor, but also in a vehicle-specific archi-
tecture, where it is impossible to run a full scale vehicle
simulation.

6. Conclusion

We discussed three application case studies from the
field of automotive engineering, where multiobjective
evolutionary algorithms proved to be powerful opti-
mization tools. The advantage of EAs, when applied to
black box optimization problems of complex systems
(along with the approximation of the Pareto-optimal set
of design alternatives) are that they provide the devel-
opment engineer with detailed information about the
trade-offs between different objective functions. They
also help clarify the problem at hand.

The road train example showed that even a sim-
ple approach is suitable for a design space exploration
task at an early design stage. In addition to a detailed
overview of the trade-offs between the ten objectives,
the evolutionary algorithm was able to present a so-
lution that dominates the one found by the engineer
on a trial-and-error basis. The problem related to the
design of an adaptive cruise control system was a pa-
rameter optimization of filters used in a controller. The
goal was a comparison of the effectiveness of different
variation operators. The comparative study was carried
out based on previous results concerning quality indi-
cators and performance assessments. The third case
study was a model-fitting problem. Preliminary trials
with a standard multiobjective EA revealed conver-
gence problems. Therefore, a recently developed selec-
tion operator had to be applied to maintain an ε-Pareto
set. Through a manual adjustment of the ε values, the
approximation quality steadily increased in the area of
interest to the designer.

The specification of the algorithms via the PISA
framework helped us to present the basic components
and essential features of a multiobjective evolutionary
algorithm in a coherent and structured way. In addition,
the PISA protocol made it possible to easily re-use and
exchange the different components of the algorithm and
therefore save a considerable amount of programming

effort. This potential of PISA is still to be explored in
further application areas.
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Notes

1. Different MOEAs as well as different test and application prob-
lems are available both as source code and ready-to-use exe-
cutables for different operating systems from the PISA website:
www.tik.ee.ethz.ch/pisa.

2. Though the terminology of PISA is mainly borrowed from evo-
lutionary algorithms, it can also be used with other iterative opti-
mization methods.

3. This estimate is based on the average running time of the simula-
tion on a PC with an AMD ATHLON 1800 processor.
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integer evolution strategy for chemical plant optimization with
simulators,” in Evolutionary Design and Manufacutre—Selected
papers from ACDM’00, edited by I.C. Parmee, Springer, 2000,
pp. 55–67.

24. E. Zitzler, L. Thiele, M. Laumanns, C.M. Foneseca, and
V.G. da Fonseca, “Performance assessment of multiobjec-
tive optimizers: An analysis and review,” IEEE Transactions
on Evolutionary Computation, vol. 7, no. 2, pp. 117–132,
2003.

25. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining
convergence and diversity in evolutionary multiobjective opti-
mization,” Evolutionary Computation, vol. 10, no. 3, pp. 263–
282, 2002.


