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Summary

One of the main objectives of numerical weather prediction
models is reliable forecasting of heavy rain events. This
paper discusses problems and strategies of evaluation of
daily rain forecasting with operationally available rain station
data. The focus is on spatial upscaling of rain station data to
the grid of the direct model output. We show limitations of
regression — or smoothing — based upscaling like as done,
for example, by Kriging analysis and promote probabilistic
upscaling by ensembles of stochastic simulations conditioned
to the available observations. These ensembles easily provide
uncertainties of daily evaluation and unbiased estimates for
second moment comparison statistics.

As an evaluation exercise we assess the quality of daily
forecasts for Austria (total area: 84,000km?) with the limit-
ed-area model ALADIN (horizontal grid-spacing 10km). A
quasi—operational set-up is compared to a physically en-
hanced but less well tested and tuned set-up. It is shown that
the evaluation uncertainty is large, but with a full year of
forecasts available it is possible to conclude that the physi-
cally enhanced set-up simulates too much rain and signi-
ficantly more than the operational version with only small
differences in simulated patterns and variability.

1. Introduction

Nowadays, limited area numerical weather pre-
diction models provide meteorological forecasts
with horizontal grid spacing of only a few kilo-
meters and grid spacing will decrease further in

the coming years caused by progress in high-
performance computing (Schar, 2001; Benoit
et al, 2002). High-resolution precipitation fore-
casts are of primary interest. For example, in
flood forecasting systems precipitation detail is
a crucial input parameter, especially in mountain-
ous watersheds.

Precipitation forecasts have to be evaluated
and errors have to be quantified by comparison
with meteorological observations. In the evalua-
tion several decisions have to be made. First, it
has to be decided what is to be evaluated: (a)
direct output of the numerical weather prediction
model, (b) data post-processed by some statisti-
cal adaptation like perfect prog, model output
statistics, or Kalman filtering, or (c) the end pro-
duct delivered to the end user after rating and
eventual modification by a human forecaster?
Here, direct model output shall be evaluated.
Thus simulated precipitation fields will be con-
sidered in evaluation with values given for grid
elements with several kilometers in diameter
defined by the models numerical grid.

The second decision concerns the selection of
a set of appropriate statistics for quantification
of the comparison. This shall not be the issue of
this paper. The interested reader is referred to,
for example, Murphy and Winkler (1987), Wilks



156 B. Ahrens and A. Beck

(1995) and Wilson (2001). For the evaluation ex-
ercise presented here, we apply a small set of
simple continuous statistics.

Our focus is on the third important decision:
Which observational reference is appropriate?
Rain station data is commonly preferred to re-
mote sensing data, in particular radar data, be-
cause of the large observational uncertainties
associated with precipitation products derived
from remote sensing data (e.g., Young et al, 1999;
Ciach et al, 2000; Adler et al, 2001).

Often done in an operational framework are
comparisons of precipitation forecasts valid for
grid areas with several kilometers in diameter
(i.e., of millions of square meters) directly with
rain station data. Each station measures preci-
pitation amount at comparably small, point-like
areas of less than one square meter only. Such
a comparison can be implemented by simple
means, but this area-to-point evaluation is criti-
cized and it is proposed to perform some upscal-
ing of the station data up to the forecast grid
resolution (Tustison et al, 2001; Cherubini et al,
2002; Ahrens, 2007). Upscaling, that is data grid-
ding by interpolation and change of support by
averaging, allows area-to-area evaluation. Alter-
natively, downscaling of direct model output to
the station sites could be applied and point-to-
point evaluation could be performed. This paper
prefers upscaling since (a) downscaling, which is
basically the post-processing step in the forecast
chain, adds uncertainty that is not attributable
either to the model or to the downscaling step
in evaluation, and (b) upscaling also adds uncer-
tainty but less than downscaling as long as station
density is sufficient and additionally improves
spatial coverage of the evaluation. The upscaling
uncertainty and its impact on evaluation uncer-
tainty is the main issue of this paper.

Upscaling of station data is typically done by
some smoothing technique like inverse distance
weighted based interpolation (e.g., the monitor-
ing product of the Global Precipitation Clima-
tology Centre (cf. http://gpcc.dwd.de) or the
Alpine analysis by Frei and Schar, 1998) or
Kriging based methods (e.g., Creutin and Obled,
1982; Rubel and Hantel, 2001). These smoothing
based fields are named analyses in the following.
For example, a recent analysis of precipitation
for the European Alpes by Frei and Haller (2001)
has a time resolution of 24 h and a spatial grid-

resolution of about 25 km with regionally even
lower effective resolution depending on the avail-
able surface station network (i.e., accuracy at
grid-scale is regionally reduced and should be
improved by spatial averaging of the analysis).
This type of analysis has been successfully ap-
plied in evaluation at the 100 km-scale (see, e.g.,
Ahrens et al, 1998; Ferretti et al, 2000; Frei et al,
2003). At higher-resolutions the analysis uncer-
tainties increase and the impact of these uncer-
tainties on evaluation have to be dealt with.

The smoothing characteristics of typical up-
scaling approaches are an additional challenge.
Smoothing deteriorates applicability in com-
parisons with higher-moment statistics. Higher-
moment comparison statistics are nonlinear
functionals on the spatial fields and their estimates
are biased in case of spatial fields with under- or
overestimated spatial variability (Aldworth and
Cressie, 2003).

An alternative upscaling approach is based on
stochastic simulation of an ensemble of precipi-
tation fields with conditioning on the available
station data. The idea is to simulate stochas-
tically field realizations that ‘“honor” the ob-
served data, their point values, their areal mean,
and their covariance structure (Journel, 1974;
Chiles, 1999). Therefore, the spatial variability
is represented more realistically in stochastic
realizations of precipitation fields than in the
analysis. Then the forecast can be compared
with an ensemble of simulated fields and an en-
semble of values is generated for the statistical
parameters considered. The ensemble mean field
is an analysis (and thus smoother than any en-
semble member) and, if first-moment statistics is
used, the comparison with the ensemble mean
field yields the same comparison accuracy as
the mean of the ensemble of statistics values.
Additionally, the spread in the ensemble of statis-
tics values provides a precision measure without
troublesome estimation and interpretation of the
analysis variance. However, the mean of higher-
moment comparison statistics is not the same as
the biased estimate from forecast evaluation with
a smoothing analysis.

This paper compares spatial upscaling of rain-
gauge data by Kriging analysis with upscaling by
stochastic simulation in evaluation of daily pre-
cipitation forecasts by the limited-area model
ALADIN in two set-ups with 10 km grid spacing.
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The ALADIN model, the evaluation period and lution is daily, the spatial pixel support is about

type of forecasts, as well as the available station 10 x 10km?, and the extent of the evaluation
data are introduced in the next section. Section 3 area is 84,000 km>.

discusses the applied evaluation approaches and Observational rain data is available from two
subsequent sections discuss the respective results. sets of rain station data. The first set is a dense
Finally, some concluding remarks will be given. network of about 900 stations as provided by the

Hydrographisches Zentralbiiro, Vienna (delivery
date: Feb. 2005) with daily resolution. This set is
named HZB in the following. The second data
For illustrational purposes we investigate the set is provided by the Austrian national weather
year 1999 in Austria. The considered time reso- agency ZAMG consisting of about 120 stations

2. Precipitation data
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Fig. 1. Precipitation as observed by rain gauges (top row) and upscaled by Kriging analysis (middle row) or by condition
stochastic simulations (bottom row) for 19 August 1999 in Austria. The left column illustrates information as provided by the
TAWES station set and the right column as provided by the HZB set. The colored bullets in the top row show station positions
and station observations. The colored boxes in the middle and bottom row show precipitation values calculated as represen-
tative values for the pixels of the ALADIN grid. The orography is indicated by grey shading (light-grey: elevations above
800 m MSL, and dark-grey: elevations above 1500 m MSL). The main Austrian watersheds are indicated by black isolines
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Fig. 2. ALADIN forecasts with set-ups Al (left panel) and A2 (right panel) for 19 August 1999 in Austria

with 10-min resolution. This set, named TAWES,
is independent from the HZB set and generated
by automatic weather stations and available in
near real time. Within this paper the daily time
scale is applied. Thus, the TAWES data is accu-
mulated to daily values. The spatial distributions
of the two station sets are illustrated in Fig. 1
(top panels).

This paper discusses the challenge of rain-
gauge data upscaling in evaluation of forecast
precipitation fields. Here, as an example, these
forecast fields are simulated by the limited-area
numerical weather prediction (NWP) model
ALADIN (Aire Limitée Adaptation Dynamique
dévelopement InterNational, see, e.g., Bubnova
et al (1995); Ahrens et al (2003) and in the World
Wide Web at http: / /www.cnrm.meteo.fr/aladin/).
Here, ALADIN (version 25) is applied in two
slightly different set-ups. One set-up is close to
the set-up that is applied, for example, by the
Austrian national weather service, but the initial
and lateral boundary conditions for the limited-
area model are derived from ECMWF ERA40
data (Uppala et al, 2005). The precipitation fields
are derived from 30 h forecasts initialized daily at
00 UTC and discarding the leading 6 hours to
account for model spin-up. The numerical hori-
zontal grid-spacing is about 10km and thus the
precipitation values are given for 10 x 10km?
blocks. This first ALADIN set-up, named Al in
the following, is described in more detail in Beck
et al (2004).

A second set-up, named A2, is applied here for
discussing the impact of the upscaling strategy
on comparative evaluation. Set-up A2 differs
from Al in two changes: (a) daily initialization
of the atmospheric fields only and surface param-

eters that evolve freely in the year-long simulation
besides a small relaxation against the ERA40 sur-
face, and (b) application of a more sophisticated
radiation parameterization based on Morcrette
(1991) that is more expensive in computational
resources than the default scheme following
Geleyn and Hollingsworth (1979). This second
set-up is principally advantageous and motivated
by our goal to apply ALADIN in climate re-
search, but it is never applied operationally and
thus lacks the fine-tuning that has been done for
the operational set-up. Figure 2 illustrates that
the precipitation forecasts are sensitive to the
changes between the set-ups.

In applications the direct model output should
not be applied and some smoothing of the di-
rect output is recommended (e.g., Grasso, 2000;
Ahrens, 2003b). Here, the goal is the evaluation
of changes in the model set-up and thus the eva-
luation of the direct model output. Therefore, the
scale of comparison between precipitation fore-
casts and observation is the 10 km-scale.

3. Evaluation method

As motivated in the introduction the applied eva-
luation method is comparison of direct model
output fields against upscaled rain-gauge obser-
vations. The upscaled fields are areally averaged
onto the model grid. Therefore, forecast and
reference fields are prepared for the same grid
and an area-to-area comparison of grid elements
respecting the grid scales can be performed. This
is a substantial advantage over evaluation against
station data (i.e., area-to-point comparison). The
second potential advantage of upscaling is that
station representativeness problems (clustering of
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stations around larger cities or along valleys) can
be compensated.

Here, we call upscaling involving data-fitting
techniques (such as regression, polynomial and
spline fitting, Kriging, etc.) an analysis and the
estimated field is an analysis field. A common
problem of most analysis schemes is error esti-
mation (e.g., Kriging variances underestimate the
analysis error in case of precipitation since the
Kriging assumptions are not properly fulfilled).
A second problem is that analysis fields are ex-
pected to underestimate the true field variance
(e.g., the smoothing relationship of Kriging states
that the analysis variance at any location is the
data variance minus the Kriging variance). These
problems have to be taken into account in an
evaluation based on analyses.

The details of the analysis scheme are of mi-
nor importance here and as an example method
the ordinary block Kriging with spherical vario-
gram model is applied. Kriging variants are often
proposed and applied in precipitation analysis
(Creutin and Obled, 1982; Atkinson and Lloyd,
1998; Goovaerts, 1999; Beck and Ahrens, 2004).
For the necessary variogram estimation we ap-
plied a sub-optimal but robust approach. From
the daily data of the year 1999 we estimated from
standardized observations a climatological vario-
gram range to about 40km with a sill of 1
(mm/d)2 (by construction). For daily analyses
the sill is rescaled with the observed data var-
iance. Chosen averaging blocks are 10km in di-
ameter and thus pixel support of the analysis is
10 x 10km? like of the NWP model forecasts. In
case of HZB data analysis a local neighborhood
of 64 stations and in case of TAWES data of 8
stations is considered in pixel interpolation. The
mean station inter-distance is about 7 and 25 km
for the HZB and TAWES data set, respectively.
Therefore, in both cases stations in a pixel neigh-
borhood of about 2500km?* are considered in
interpolation (of course, with decreasing influ-
ence with increasing distance). This illustrates
the smoothing characteristics of Kriging.

Figure 1 shows the block Kriging results with
pixel support of 10km using TAWES (second
row, left panel) or HZB (right panel) data for
one single day. The analysis based on the denser
HZB data set shows more variability than the
analysis based on the coarser TAWES set. This
is consistent with the smoothing relationship of

Kriging. Figure 2 displays the quite differing
forecasts with the two model set-ups. Both fore-
casts show larger variability than the analyses. In
the following we discuss the quantification of
this subjective and preliminary conclusions.

Another upscaling approach is stochastic sim-
ulation. There are several unconditional and
conditional simulation methods for precipitation
described in the literature (e.g., Waymire et al,
1984; Ahrens, 2003a), but there is a lack of
appropriate methods for stochastic simulation
conditioned on available station data. Here, con-
ditioned sequential Gaussian simulation (e.g.,
Johnson, 1987; Chiles, 1999, chap. 7) is applied
as implemented in the geostatistical software
package gstat (Pebesma, 2004, and www.gstat.
org in the World Wide Web). Sequential simula-
tion involves the generation of a Gaussian ran-
dom field, conditioned to the observed data, that
honors the variogram of the random field. This
conditioned simulation has been done already in
Ahrens (2007) for a single event, but in this paper
the simulation technique is improved by approx-
imate normalization of the data by a logarithmic
transformation respecting that precipitation is a
non-Gaussian, non-negative process and apply-
ing variogram estimates for the transformed data
based on rescaling of the climatological vario-
gram with an estimated climatological range of
about 100 km. Again the data is averaged within
10-km blocks.

Figure 1 (third row) shows one stochastic real-
ization for one single day conditioned to TAWES
and one realization conditioned to HZB observa-
tions. As expected the stochastic simulations are
rougher than the analyses. For each day and data
set an ensemble of realizations with one hundred
members is generated and applied in the follow-
ing comparisons. Each ensemble member is less
accurate than the Kriging analysis in a squared-
error sense by construction, but respects the cov-
ariance structure given by the observations. The
ensemble mean field converges to a Kriging anal-
ysis with increasing number of members and
is smoother than any ensemble member and
thus underestimates spatial variability as does
the Kriging analysis.

Optimal analysis of precipitation fields is an
active field of research. We picked ordinary
block Kriging as a typical and well established
analysis method that is easy to implement. The
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same motivation led us to apply conditioned
sequential Gaussian simulation. Here, the advan-
tages of upscaling by simulation shall be dis-
cussed. Therefore, the remaining deficiencies of
the Kriging analysis and stochastic simulation
upscaling are not crucial for the presented con-
clusions. Nevertheless, the applied methods are
state-of-the-art for daily precipitation interpola-
tion at high spatial resolution.

4. Statistics

In the following we will discuss the evaluation
procedures applying a minimal set of useful sta-
tistics. Most important is the daily difference in
the mean precipitation fields estimated with
bias = 1/N Ziv:l (m, — d,) with the daily model
forecast field m,, the regionalized reference field
d, based on observations, and with the space in-
dex x =1,...,N. The relative bias rb is defined
by bias/(1/N S, d,). Additional statistics con-
sidered are the linear correlation coefficient r =
r(m,d) of the spatial fields m and d and the
estimated ratio of spatial variances vr =
var(m) /var(d). Optimal values for the evaluation
statistics rb, r, and vr are 0, 100, and 100%,
respectively.

If a daily forecast is compared with an anal-
ysis, then the evaluation result is one value for
each statistics. In case of the comparison with a
daily ensemble of stochastically upscaled fields
the result is an ensemble of values. Therefore, the
ensemble allows easy quantification of the dai-
ly comparison uncertainty. In the following also
months and a full year of daily forecasts are
evaluated. Therefore, there are samples of daily
results. These samples represent the variability of
the quality of the daily forecasts. If the chosen
reference is the daily analysis then it is easy to
determine a median evaluation result, for exam-
ple. But daily precipitation statistics is far from
normality and consequently the daily statistics
are not expected to be normally distributed.
Therefore, it is difficult to generate confidence
intervals or perform hypothesis tests. If daily
ensembles of stochastic simulations are consid-
ered in evaluation then quantification of evalua-
tion uncertainty of a sample of daily results gets
even more difficult.

Here, the evaluation uncertainty of daily fore-
casts for monthly or yearly evaluation periods is

quantified with a bootstrap procedure (Efron and
Tibshirani, 1993). The idea of bootstrapping is to
construct a large number n (here n = 10000) of
new samples out of the original sample (e.g., the
daily rbs by comparison with analysis) by ran-
dom selection with replacement, to calculate the
mean of the statistics (e.g., rb) for each recycled
sample, and yielding a distribution of evaluation
means that can be summarized by boxplots, for
example. In the comparison with daily reference
ensembles two-step recycling is applied: first,
one realization for each day is drawn and, sec-
ond, this sample is resampled. These two steps
are repeated n times.

Bootstrapping as described underestimates the
distribution width slightly in case of persistence
in the daily evaluation time series (Ahrens et al,
1998). Here, it is assumed that the persistence is
small but a small underestimation of evaluation
uncertainty has to be considered in the interpre-
tation of the results.

5. Evaluation experiments

In case of localized rain events the upscaling of
precipitation observations is difficult. Addition-
ally, since the precipitation parameterization in
NWP models generally involves several thresh-
old parameters especially light precipitation fore-
casts are uncertain, but this is not critically
interfering with the operational forecasts. There-
fore, only days with more than 1 mm/day preci-
pitation on average as observed by the HZB
observations are considered wet days in evalua-
tion. The dry days are not evaluated and thus the
number of evaluated days is 206.

Table 1. Year 1999 mean results of the evaluation experi-
ments discussed in the text. The values are for the ALADIN
set-ups Al and A2 (given in the format A1/A2). The opti-
mum values for the given statistics mean relative bias, b,
mean correlation, 7, and mean ratio of spatial variances, 7,
are 0, 100, and 100%, respectively

b [%] 7 [%] ur [%]
TAWES
ana 50/79 35/35 496/536
stoch 59/91 26/26 295/314
HZB
ana 35/62 34/34 317/350
stoch 48/81 31/31 285/312
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Table 1 gives the mean relative biases, correla-
tions, and variance ratios. Obviously, the HZB
data set observes larger Austrian mean values
and thus the overestimation of ALADIN is smal-
ler if compared to HZB products than to TAWES
data. Additionally, the analysis product offers lar-
ger mean precipitation than the stochastic upscal-
ing method. This is because of a positive bias in
the analysis due to the skewness of precipitation
(Ahrens, 2006). This bias is reduced by the ap-
plied normal score transformation in stochastic
upscaling. Application of a normal score trans-
formation in the analysis is difficult since the
transformation itself introduces a bias in Kriging
analysis (Cressie, 1993, chap. 3.2.2.). In agree-
ment with other studies (Creutin and Obled, 1982;
Rubel and Hantel, 2001) we analyzed daily pre-
cipitation without transformation.

In either case, the forecasts by ALADIN set-up
A2 (79% mean daily overestimation compared
to TAWES analysis) are wetter than in set-up
Al (50% mean daily overestimation). Note that
rb is an arithmetic mean of daily ratios. The 1999
relative bias against the mean TAWES analysis is
only 16% and 37% in case of set-up Al and A2,
respectively. These biases have to be put into
perspective by noting a potential systematic un-
derestimation of gauge measurements (~10% in
case of rainfall and more than 50% in case of
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snowfall) because of wind-induced or evapora-
tion loss (Rubel and Hantel, 1999; Yang et al,
2005).

There is a strong day-to-day variation in rela-
tive bias rb with many days of either over- or
underestimation by a factor of two as shown in
Fig. 3. The figure compares the daily ALADIN
forecasts with the ensembles of stochastically up-
scaled TAWES observations. The standard devia-
tion of daily mean rbs is 120%. As the spread in
the ensemble of comparison shows there is a
large daily uncertainty in rb estimation (the mean
of the daily standard deviations of rb are about
25%) that is comparable to the signal even for
the chosen relatively large evaluation domain of
84000 km?. Considering both the large day-to-
day rb variability and the daily comparison
spread then the difference between Al and A2
seems to be small at daily time scales with a
tendency of larger forecast amounts by A2 in
summer months. If we assume that day-to-day
variation and daily evaluation uncertainty are in-
dependent (which they are not because of a ten-
dency of large daily evaluation uncertainties in
case of large biases) and additionally assume that
the rbs are normally distributed (which they are
not by definition of the statistics), than about 30
evaluation days are necessary to conclude that a
relative bias of 50% is significant. Since these

Logz(rb+1) [1]

T T T T T T
Jan Mar May

T T T T T T
Jul Sep Nov

Fig. 3. Time series of daily relative bias range. The vertical lines show the relative bias range rb of ALADIN forecasts with
set-up Al (black lines) and set-up A2 (grey lines) compared to daily ensembles of stochastically upscaled TAWES observa-
tions. The “x”” show the relative biases of the ALADIN forecasts in comparison to the TAWES analysis of the day 19 August
1999. The small bars in the lower part of the figure indicate the observed Austrian mean precipitation by HZB data in log,-
scale. Days with less than 1 mm/day precipitation are not considered and thus without bars and relative bias lines. The
horizontal lines indicate forecast over- or underestimation by a factor of two. The perfect value is 0



162

B. Ahrens and A. Beck

250

N HH 1

100 T L

———a

——

Mean (rb) [%]

w
(=}
1

-50 7

[ = S

TR U I U

o H Lo Bob gt ge #g i
T T T T T T T T T T T
Jan Mar May Jul Sep Nov

Fig. 4. Monthly boxplots summarizing the distribution of daily rbs of ALADIN forecasts with set-up Al (boxplots filled
white) and set-up A2 (boxplots filled grey) compared to daily ensembles of stochastically upscaled TAWES observations. The

perfect value is 0%

assumptions are not justified generally more than
single months of precipitation forecasts have to
be evaluated.

The spread in the HZB ensembles is substan-
tially smaller (not shown, daily standard devia-
tions of rb are about 5%), i.e., the observation
network density is large enough to constrain the
results effectively.

Figure 4 summarizes the daily performance
measured with rb for monthly periods. The
monthly mean biases vary significantly but are
significantly positive in almost all months and
never significantly negative. If the systematic un-
dercatch of precipitation gauges is taken into ac-
count, than the forecasts with set-up Al are quite
promising besides in early summer. Set-up A2
leads to larger overestimation in the summer
half-year. In the winter months the difference be-

tween the set-ups is small with a small tendency
of better performance with A2. Since the set-ups
differ in the radiation scheme and initialization
of the surface parameterization, the largest differ-
ences have been expected for the summer months
(Vidale et al, 2003). But, it is disappointing albeit
not unexpected that the physically enhanced set-
up A2 performs worse than Al. Set-up Al is well
tested and tuned in operational day-to-day use
and, therefore, the principal advantage of A2 is
more than counter balanced in terms of bias. This
illustrates the importance of critical application
and tuning of parameters in NWP modeling.
Figure 5 shows boxplots that compare the fore-
casts of the year 1999 with the TAWES or HZB
observations with and without upscaling. All
comparisons consistently prove that ALADIN
overestimates daily precipitation amounts on av-

150
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Fig. 5. As Fig. 4 but showing the 1999-mean of daily relative bias and its uncertainty in the comparison experiments with
varying references. The references are based on the observational data-sets TAWES or HZB without upscaling (obs), with

analysis (ana), and stochastic upscaling (stoch)
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Fig. 6. Monthly boxplots summarizing the distribution of daily correlations » of ALADIN forecasts with set-up A1l (boxplots
filled white) and set-up A2 (boxplots filled grey) compared to daily ensembles of stochastically upscaled TAWES observa-

tions. The perfect value is 100%

erage and that this overestimation is more pro-
nounced in set-up A2. The larger rb values by
comparison with stochastically upscaled data
have been discussed already. The figure addi-
tionally shows that the evaluation uncertainty is
slightly larger with stochastic upscaling and with
comparing to TAWES instead of HZB products.
These uncertainties get larger with decreasing
comparison area and period length. For example,
discrimination between Al and A2 is impossible
by choosing one or two winter months only. If
the comparison extent (spatial and temporal) gets
too small then the comparison gets insignificant
due to day-to-day variation and daily uncertainty.

As with bias the day-to-day scatter in field
correlation is large and evaluation uncertainty
even larger (not shown) as expected for a second
moment statistics. There are many wet days with
insignificant correlation (the significance level of
0.31 is estimated from ensembles of unconditional
stochastic simulations with prescribed mean and
covariance). Inspecting monthly means of daily
correlation shows that Al and A2 do not differ
significantly (Fig. 6). The correlation between sto-
chastically upscaled observations and ALADIN
direct model output (DMO) is generally small.
This does not mean that the forecast precipitation
patterns at larger scales do not compare well with
observations since small shifts at the DMO scale
drastically decrease correlation measured by r.
This effect is called the “double-penalty effect”
(small location discrepancies of sharp peaks are
penalized twice, cf. Anthes, 1983). Not unex-
pectedly, the smaller correlations occur during
the summer months where precipitation fields

are generally more heterogeneous than in winter
months. Forecasting of summer convection events
is a well known problem of NWP modeling.
Figure 6 compares forecasts to stochastically
upscaled TAWES observations. The TAWES net-
work is relatively sparse and thus the TAWES
simulations are less constrained by observational
information than the HZB simulations. This in-
creases the probability for double-penalty and
thus of small correlation values in TAWES com-
parison even in case of good forecasts. Conse-
quently the HZB simulations compare better to
the ALADIN forecasts as shown in Fig. 7. As
discussed above, the Kriging analysis field is
smoother. Therefore, in comparison against anal-
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Fig. 7. As Fig. 6, but showing the 1999-mean of daily cor-
relations » and its uncertainty in the comparison experi-
ments with varying references. The references are based
on the observational data-sets TAWES or HZB with subse-
quent analyses (ana) or stochastic upscaling (stoch)
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Fig. 8. Monthly boxplots summarizing the distribution of daily variance ratios vr of ALADIN forecasts with set-up Al
(boxplots filled white) and set-up A2 (boxplots filled grey) compared to daily ensembles of stochastically upscaled TAWES

observations. The perfect value is 100%

yses the probability for double-penalty is smaller
than in comparison against stochastic upscaling.
This is also shown by Fig. 7. Since the constrain-
ing observational network is denser in HZB anal-
yses than in TAWES analyses, the HZB analyses
are rougher (cf. Fig. 1, second row) and the mean
daily correlation is slightly smaller (Fig. 7). But,
in either case the difference in pattern correlation
is insignificant between Al and A2.

The day-to-day variability of the spatial pre-
cipitation fields and in consequence of the variance
ratio vr is large with variance over- and underesti-
mation by ALADIN. Also, the daily evaluation
uncertainty is large if compared to stochastically
upscaled TAWES fields (not shown). The compar-
ison in monthly periods by Fig. 8 shows that mean
daily variability overestimation is smallest in the
late summer months, in the months with highest
natural heterogeneity due to intense convective
rain events. But even monthly means vary substan-
tially with large uncertainties. In view of that the
set-ups Al and A2 do not differ. Somewhat higher
variabilities in summer months and smaller vari-
abilities in winter months by A2 can easily be
explained by respectively higher and smaller
biases in the skewed quantity precipitation.

Figure 9 compares year-long averages of daily
variance ratios with analyzed and stochastically
upscaled observational reference. The smoothing
effect of the analyses can clearly be seen. The
mean ratios against either HZB or TAWES based
stochastically upscaled fields compare well with
a variance overestimation of about 300% by
ALADIN. In comparison with the analyses of the
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Fig. 9. As Fig. 8, but showing the 1999-mean of daily
variance ratios vr and its uncertainty in the comparison
experiments with varying references. The references are
based on the observational data-sets TAWES or HZB with
either analysis (ana) or stochastic upscaling (stoch)

dense HZB data the mean vr values are slightly
larger. This indicates that spatial variance is well
represented in the HZB analysis at the compar-
ison scale of 10km. The TAWES analyses are
too smooth yielding misleading variance esti-
mates (roughly by a factor of two in comparison
to stochastic upscaling). Additionally, the evalua-
tion uncertainty estimated by the analysis com-
parison is much smaller than estimated by the
stochastic comparison. As a consequence the set-
ups seem to differ significantly if compared to
HZB analysis (no overlap of the boxes in Fig. 9),
but the difference vanishes when compared
against the stochastically upscaled observations.
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6. Conclusions

Precipitation forecasts by numerical weather pre-
diction or climate model precipitation scenarios
have to be evaluated. This paper evaluated direct
model output of the NWP model ALADIN in
two set-ups with 10km grid-spacing in Austria
(total area: 84,000 km?) against upscaled rain sta-
tion data. The upscaling enables an area-to-area
evaluation of precipitation fields, which is done
by estimation of daily means, spatial variance
and correlation patterns of precipitation forecasts
and the upscaled observations. Evaluation of sec-
ond moment statistics like variance or pattern
correlation is important if the model output is be
applied in, for example, subsequent hydrological
forecasting. Hydrological modeling is a nonlinear
functional on the precipitation field and therefore
the hydrological forecasts are biased if precipi-
tation variance is under- or overestimated (e.g.,
Ahrens, 2003b, and references therein).

Equivalently, as discussed above, the nonlinear
second moment statistics are biased if the spatial
variance of the upscaled precipitation variance is
unrealistic. Standard precipitation analysis meth-
ods are regression based and underestimate spa-
tial variability. The underestimation depends on
the density of the available station network. It is
shown that the underestimation is substantial for
evaluation if the Austrian weather service’s op-
erational TAWES network (with mean next sta-
tion distance of about 25km one of the densest
networks in the world) is applied.

Alternatively, stochastic simulation conditioned
to the station observations is applied in upscal-
ing. Instead of one analysis, an ensemble of rea-
lizations is considered as the observation based
reference in daily evaluation. It is shown that this
helps in avoidance of the bias problem and pro-
vides an easy method for quantification of dai-
ly evaluation uncertainty. The evaluation results
using the coarser TAWES observation network in
combination with stochastic upscaling are closer
to the results using the denser HZB network than
using analyzed TAWES fields. Additionally, it
is conceptually advantageous to compare with a
distribution of reference values as generated by
stochastic simulation. This is especially beneficial
if forecast ensembles are evaluated. In that case a
distribution-to-distribution comparison would be
possible and could replace distribution-to-single

value comparisons as has to be done by, for ex-
ample, usual ranked probability skill score (cf.
Wilks, 1995).

Besides stochastic simulation other methods
are in use for adding spatial variance to upscaled
precipitation fields. For example, the orograph-
ical pattern can be considered in the analysis
(Maurer, 1929; Daly et al, 1994; Smith, 2003),
but this is itself based on some regression ap-
proach that hinders full variance consideration,
or radar data could introduce additional spatial
variability, but with the disadvantage that data
sets with different measurement quality have to
be mixed. In either case this paper shows how
important useful variance inflation is in precipi-
tation evaluation. Application of orographical pat-
terns in stochastic simulation are a promising
path of further research.

Additional sources of evaluation uncertainty
have to be considered, especially in complex ter-
rain like in Austria. Here, only the horizontal
representativeness issue is considered. In the
mountainous areas the inhomogeneous distribu-
tion of stations in the vertical (most stations at
valley floors) can lead to systematic errors that
are difficult to consider (e.g., Sevruk, 1997). A
further systematic error is due to wind and eva-
poration loss of the rain gauges up to several ten
percent of precipitation amount (e.g., Rubel and
Hantel, 1999; Yang et al, 2005). These systema-
tic error sources are important if absolute model
performance is to be quantified.

This paper quantified the relative performance
of an ALADIN set-up that is physically en-
hanced by a more expensive and conceptually
improved radiation parameterization and contin-
uous surface simulation against a set-up applied
in operational NWP. In terms of spatial patterns
and variability forecasting there are only minor
differences between these set-ups if these dif-
ferences are put into perspective with the evalu-
ation uncertainties. Both set-ups overestimate
daily precipitation by more than 35% on average
in the conducted evaluation experiments. But the
physically enhanced set-up forecasts significantly
more daily precipitation in summer months than
the operationally applied set-up (twice as much
and more). Therefore, we conclude that the oper-
ationally well tested and tuned set-up performs
better. In our opinion this shows again that a
tuned model set-up with harmonically interplay-
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ing physical parameterizations is not easily out-
played by improving single model components
that risks the harmony of the components (i.e.,
that risks the careful error balance) of a numer-
ical weather prediction model.

On the specific sources of intensified summer
precipitation we presently can only speculate:
We assume a large-scale increase of soil moisture
and enhanced soil moisture-precipitation feed-
back (cf. Schar et al, 1999). But this is a problem
of further research beyond the focus of the pres-
ent paper on the challenge of upscaling of pre-
cipitation data in model evaluation.
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