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Abstract The severe resource restrictions of computer-
augmented everyday artifacts imply substantial
problems for the design of applications in smart envi-
ronments. Some of these problems can be overcome by
exploiting the resources, I/O interfaces, and computing
capabilities of nearby mobile devices in an ad-hoc
fashion. We identify the means by which smart objects
can make use of handheld devices such as PDAs and
mobile phones, and derive the following major roles of
handhelds in smart environments: (1) mobile infra-
structure access point; (2) user interface; (3) remote
sensor; (4) mobile storage medium; (5) remote resource
provider; and (6) weak user identifier. We present con-
crete applications that illustrate these roles, and describe
how handhelds can serve as mobile mediators between
computer-augmented everyday artifacts, their users, and
background infrastructure services. The presented
applications include a remote interaction scenario, a
smart medicine cabinet, and an inventory monitoring
application.

Keywords Handheld devices Æ Smart environments Æ
Smart everyday objects Æ Cooperation Æ Device
integration Æ Mobile phones

1 Introduction

As pointed out by Weiser and Brown [15], ‘‘ubiquitous
computing is fundamentally characterized by the
connection of everyday things in the real world with

computation.’’ Computer-augmented everyday arti-
facts—also called smart everyday objects—epitomize
this vision of ubiquitous computing in that they are
everyday objects augmented with small sensor-based
computing platforms (see Fig. 1). Smart objects are
aware of their environment, can perceive their sur-
roundings through sensors, collaborate with peers using
short-range wireless communication technologies, and
provide context-aware services to users in smart
environments.

But the computational capabilities of smart objects
are very limited because their computing platform needs
to be small and unobtrusive. Furthermore, they do not
possess conventional I/O interfaces such as keyboards or
displays, which restricts the interaction with users. And
finally, because of their limited energy resources, smart
objects support only short-range communication tech-
nologies, which makes it difficult to access background
infrastructure services when no access point is nearby.
Combined, all these limitations cause severe problems
for the design of applications in environments of smart
objects.

We argue that most of these problems can be over-
come if smart objects can spontaneously access the
capabilities of nearby handheld devices. In smart envi-
ronments, people move around and carry their personal
devices with them. By exploiting the features of nearby
handhelds in an ad-hoc fashion, new possibilities for the
design of applications on smart objects evolve. We
identify and illustrate six different means by which
computer-augmented everyday artifacts can make use of
handhelds: (1) as a mobile infrastructure access point;
(2) as a user interface; (3) as a remote sensor; (4) as a
mobile storage medium; (5) as a remote resource pro-
vider; and (6) as a weak user identifier.

Given these roles, handhelds can enrich the interac-
tions among smart objects, users, and background
infrastructure services (see Fig. 2). As mobile access
points, handhelds facilitate the ad-hoc interaction be-
tween smart objects and a background infrastructure. A
handheld’s input and display capabilities enable new
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forms of user interactions with smart objects. And fi-
nally, the cooperation among smart objects themselves
can be improved by utilizing handheld devices as remote
resource providers.

As mediators between smart objects, users, and
background infrastructure services, handhelds enable
new forms of applications in smart environments. To
support this thesis, we present three applications that
make extensive use of handheld devices. We start with a
remote interaction application. Here, interaction pat-
terns that people associate with a specific type of
handheld device (e.g., making phone calls) are translated
to smart environments. In particular, we assign phone
numbers to smart objects and describe how users can
‘‘call’’ and interact with objects from remote locations.
The remote interaction application uses handhelds as a
mobile storage medium, a user interface, and a weak user
identifier. We then present the smart medicine cabinet. It
improves medical compliance and facilitates a more
effective treatment of mobile patients by using handheld
devices together with ‘‘smart medicine.’’ In this appli-
cation, handhelds serve as mobile infrastructure access
points, and again as a user interface and a mobile storage
medium. Finally, we present an inventory monitoring
application. Its goal is to illustrate how smart objects

can spontaneously outsource computations to nearby
handheld devices. It illustrates a handheld’s ability to
serve as a mobile resource provider and also as a user
interface for smart objects.

In the following section, we review related work. In
Sect. 3, we identify the roles of handhelds in smart
environments. Section 4 discusses how these roles can
actually be implemented. Sections 5–7 present three
applications that illustrate these roles. Section 8 con-
cludes the paper by summarizing the lessons learned
from our applications.

2 Related work

Gellersen et al. [7] propose to integrate low-cost sensors
into everyday objects and mobile user devices to facili-
tate the development of context-aware applications. In
their MediaCup project [2], active sensor tags are
embedded into everyday objects to derive and provide
services based on the situational context of users. For
example, the context ‘‘meeting’’ can be inferred from the
presence of many hot cups in a meeting room. However,
their work assumes stationary access points that facili-
tate the cooperation between active artifacts and existing

Fig. 2 Handhelds as mediators
in smart environments:
handheld devices enrich the
interaction between different
smart objects, between smart
objects and their users, and
between smart objects and
background infrastructure
services

Fig. 1 A smart everyday object:
an everyday item augmented
with a sensor-based computing
platform
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infrastructure services, whereas we explicitly focus on
utilizing nearby handheld devices in an ad-hoc fashion.

Hartwig et al. [8] integrate Web servers into active
Bluetooth-enabled tags, attaches them to physical ob-
jects, and controls augmented items with nearby Blue-
tooth-enabled mobile phones by means of a wireless
application protocol (WAP) interface. WAP is used for
local interactions with augmented items, whereas we use
WAP (among other technologies) for remote interac-
tions with smart objects.

Want et al. [14] augment physical objects with passive
RFID tags to associate objectswith a representation in the
virtual world. In the Cooltown project [9], everyday items
are also equipped with tags in order to link them with a
representation on the World Wide Web. In both ap-
proaches, the functionality of a tag consists primarily in
providing a link to information in the virtual world. As
tags are usually read out by a mobile user device, the ac-
tual application is implemented on the handheld or the
backend infrastructure, but not on the tag. In our ap-
proach, the active tags and sensors attached to physical
objects process data autonomously, derive context
information in collaboration with other smart objects,
and coordinate the actual applications. Nearby handheld
devices do not implement applications for smart objects,
but are only means by which computer-augmented arti-
facts can dynamically extend their own capabilities.

3 Characteristics and roles of handhelds in smart
environments

The roles of handheld devices in environments of com-
puter-augmented everyday artifacts are manifold.
Handhelds can serve as a primary user interface, they
can be a mobile infrastructure access point, provide
mobile data storage, act as a user identifier, supply
energy and computational resources, or offer sensing
capabilities. In this section, we identify the main reasons
for this versatility. Thereby, we name important char-
acteristics of handheld devices and, from that, derive the
major roles of handhelds in smart environments.

Habitual presence As mobile phones, PDAs, and other
handheld devices are habitually carried around by their
owners, they are always in the range of a smart object
when a physical interaction with it is about to take place.
This is especially important because the smart objects
themselves generally do not have access to resources
beyond their peers, and handheld devices are the only
local devices able to provide powerful resources and
sophisticated services. The habitual presence of handheld
devices during physical interactions with smart objects is
the most important characteristic of handhelds in smart
environments. It entails their general function as a
mediator between smart objects, users, and background
infrastructure services, and is, therefore, a precondition
for the roles of handhelds presented in this paper.

Wireless network diversity Mobile phones and PDAs
usually support both short-range as well as long-range
wireless communication technologies, such as Bluetooth,
IrDA, WLAN, GSM or UMTS. This enables handhelds
to not only interact with smart objects directly via short-
range communication standards, but also to relay data
from augmented items to powerful computers in an
infrastructure far away. The characteristic of wireless
network diversity makes it possible for handhelds to
serve as mobile infrastructure access points.

User interface and input capabilities Tags attached to
everyday objects have to be small, unobtrusive, and,
ideally, invisible to human users. Consequently, they do
not possess conventional buttons, keyboards, or screens.
Interaction with augmented objects, therefore, has to
take place either implicitly by considering sensory data
of smart objects, or explicitly by using the input and
display capabilities of other devices [11]. As people are
usually familiar with the features provided by their
handhelds, interactions with smart objects that are based
on these well-known interfaces should imply a more
comfortable and easy usage of smart objects. As a result,
handhelds often serve as the primary user interface for
smart objects.

Perception Handheld devices can serve as remote sen-
sors for a smart object, which are accessed wirelessly
using a communication technology supported by all
participating devices. The way handheld devices perceive
their environment strongly depends on their function-
ality. Cellular phones, for example, know to what cell
they currently belong and can serve as remote location
sensors for augmented items.

Mobility Active tags can transfer data such as how to
reach a smart device from remote locations to a hand-
held device, where it is permanently stored and accessi-
ble for users, independent from their current location.
Here, handhelds serve as a mobile storage medium for
smart objects.

Computational resources and regularly refilled mobile
energy reservoirs Although the energy consumption of
a handheld device such as a cellular phone should be as
small as possible, people are used to recharging its bat-
tery at regular intervals. PDAs are often shipped with a
cradle that offers both host access to the device and
automatic recharging. A similar procedure, however, is
not feasible for smart objects because there are just too
many of them. As a result, smart objects may exploit
handheld devices within range as a remote energy res-
ervoir, for example, for carrying out complex and energy
consuming computations. Because of regularly renewed
energy resources, handhelds can also offer more pow-
erful resources regarding memory and bandwidth, which
allow smart objects to use them as remote resource
providers.
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Personalization PDAs and mobile phones are most
often personalized, i.e., they belong to a certain person
who uses the device exclusively. Smart devices can,
therefore, adapt their behavior according to the current
handheld devices in range and, thereby, offer functions
tailored towards certain persons. In this context, hand-
helds can serve as weak user identifiers.

The relation between the described characteristics of
handheld devices and the roles we derived from these
characteristics are summarized in Table 1.

4 Interfacing handhelds from smart objects

After having identified the major roles of handhelds in
smart environments on a more conceptual level (see
Table 1), we now describe how these roles can actually
be implemented.

Thereby, we focus on smart objects that are equipped
with BTnodes [3]. BTnodes are small computing plat-
forms consisting of a microcontroller, Bluetooth com-
munication modules, an autonomous power supply, and
externally attached sensor boards (see Fig. 3). As Blue-
tooth is integrated into an increasing number of con-
sumer devices, BTnodes are suitable for illustrating the
roles of handhelds in smart environments. These roles,
however, do not depend on Bluetooth or any other
specific communication standard (see [10] for a discus-
sion about communication issues in smart environ-
ments).

4.1 Mobile infrastructure access point

Because of their wireless network diversity—i.e., their
support of short-range as well as long-range communi-
cation technologies—handheld devices can serve as
mobile gateways to background infrastructure services.
Technically, this is achieved by establishing a local
short-range connection from a smart object to a hand-
held device, and a long-range communication link from
the handheld to a background infrastructure server (see
Fig. 4). The wireless technology used to build up the
long-range connection to the backend infrastructure

depends on the capabilities of the handheld device. In
the case of PDAs, this might be an IEEE 802.11 link to a
base station, and a GSM communication or general
packet radio service (GPRS) connection in the case of
mobile phones.

In our applications, we have realized a handheld’s
role as a mobile infrastructure access point as follows.
When a handheld device (e.g., a mobile phone) comes
within range of a smart object that needs to access the
background infrastructure, the object establishes a local
Bluetooth connection to the handheld. The smart object
then sends AT commands over this local Bluetooth link
in order to establish a long-range GSM data connection
from the mobile phone to a background infrastructure
server. Given this connection, arbitrary data can be ex-
changed between the smart object and the background
server. There is a standardized set of AT commands
supported by all GSM-enabled mobile phones. Besides
using explicitly established GSM data connections, it is
also possible for smart objects to embed data into a
short message service (SMS) message. As the latter
approach does not require the overhead of GSM data
connection establishment, it is the preferred way to
exchange data with a background infrastructure server
in our applications.

4.2 User interface

The user interface and input capabilities of handheld
devices can be exploited by smart objects to notify users
acoustically or to allow interactions with smart items
based on a graphical user interface. Mobile phones and
PDAs offer several popular features by means of which
such an interaction can be realized. They range from (1)
custom alarms, (2) SMS messages, (3) WAP pages, (4)
calendar entries and business cards to (5) whole Java
user interfaces that can be downloaded over a local
connection from a smart object to a handheld device.
We have prototypically implemented all these different
means to facilitate the user interaction with smart
objects. Thereby, BTnodes are used as a prototyping

Table 1 The roles of handhelds in smart environments and the
underlying characteristics that entail these roles

Handheld’s role Underlying characteristic

Mobile infrastructure
access point

Wireless network diversity

User interface Input and display capabilities
Remote sensor Perception
Mobile storage medium Mobility
Remote resource provider Computational resources

Regularly refilled mobile
energy reservoirs

Weak user identifier Personalization

Bluetooth
module Connectors for

sensor boards

Connector for
power supply

Microcontroller
on rear side

4c
m

6cm

Fig. 3 BTnodes are used as a device platform to make everyday
objects ‘‘smart’’
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platform to augment everyday objects, and mobile
phones or PDAs as handheld devices:

1. Alarms are written to cellular phones by transmitting
standardized AT commands from smart objects over
a local Bluetooth connection to a mobile phone.

2. Similarly, smart objects initiate the exchange of SMS
messages with remote users by sending AT com-
mands to a local GSM gateway. This GSM gateway
transmits the SMS messages to remote users and re-
lays incoming messages to the corresponding smart
objects (see Sect. 5).

3. User interaction with smart objects can also take
place via WAP interfaces. In our implementation,
user interaction with WAP takes place by means of a
background infrastructure service, the background
infrastructure representative (BIRT) of a smart object.
Smart objects synchronize their state with the BIRT
whenever an access point is in range. Based on this
information, the BIRT provides WAP pages that
reflect the current state of an object. By means of
their handheld devices, users can then access these
WAP pages and exchange information with the BIRT
of a smart object. User input is relayed to the actual
smart object during the next synchronization phase
(see Sect. 6).

4. Calendar entries and business cards can be exchanged
via the Bluetooth object exchange protocol (Blue-
tooth OBEX) with Bluetooth-enabled mobile phones
and PDAs within range of a smart object. Calendar
entries can be used as an alternative to custom alarms
in mobile phones. Their advantage is that they not
only trigger an acoustic alarm at the time specified,
but they also display information on the handheld’s
screen.

5. Finally, we have also implemented means for more
sophisticated interactions with smart objects. There-
by, a Java user interface is stored on the smart object.
People can select smart objects in their environment
by means of a small program on their handheld
device and download the user interface from the
selected object (see Sect. 7).

4.3 Remote sensor

The percepts of handheld devices are of potential
interest for smart objects, which often simply do not

have sufficient resources to deploy sophisticated sensors.
Some sensor data—such as, for example, the informa-
tion about the current cell ID of a mobile phone—can be
easily retrieved from nearby handheld devices. In our
implementation, mobile phones can serve as remote
location sensors for smart objects. Thereby, a short-
range connection is established from a smart object to a
mobile phone, whose location information is queried by
exchanging AT commands on top of the local commu-
nication link.

4.4 Mobile storage medium

Data transmitted from a smart object to a mobile device
is available to users independently from their current
location and their overall situational context. In our
applications, smart objects transmit contact information
in the form of telephone book entries and templates that
specify the commands supported by a specific smart
object to mobile phones (see Sect. 5). These information
enable users to start an interaction with smart objects
from anywhere. As in our software package, data are
transmitted to mobile phones by sending standardized
AT commands over a local Bluetooth communication
link when a user is within range of a smart object.

4.5 Remote resource provider

The previously described roles show how handhelds
mediate between smart objects and their users, or
between smart objects and background infrastructure
services. As a remote resource provider, however, a
handheld primarily enriches the interaction among
smart objects themselves in that it provides a platform
for outsourcing complex computations and offers
sophisticated data storage capabilities. Our goal was to
spontaneously integrate handheld devices into already
existing groups of collaborating smart objects.

This goal is achieved by introducing an infrastructure
layer facilitating the collaboration among computa-
tional entities. This layer is a distributed tuple space
[4, 6] for smart objects and handheld devices, which is
part of our implementation. Smart objects that want to
collaborate form a tuple space and write their sensory
data into the space. When a handheld device comes into

Fig. 4 Mobile access points:
smart objects use nearby
handheld devices to
communicate with background
infrastructure services in an
ad-hoc fashion
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the range of collaborating objects, it also joins this dis-
tributed tuple space. Thereby, smart objects can
instantaneously make use of the memory resources of
handheld devices on the basis of resource-aware tuple
space operations. Our resource-aware tuple space oper-
ations try to identify the most suitable place to store
sensor tuples. As the actual location of a tuple becomes
transparent through the tuple space, they are stored on
the device with the most spare resources—which is often
the handheld device.

The most important reason for introducing the tuple
space abstraction, however, is that the location where
code is executed becomes transparent. This is because all
devices operate on the same data basis of the distributed
tuple space. Smart objects can, therefore, simply transfer
code to a nearby handheld device participating in their
tuple space and, thereby, exploit its computational re-
sources. In our implementation of this concept, Java
classes are stored on a smart object that are spontane-
ously transmitted to nearby handheld devices when the
handheld joins the distributed tuple space (see Sect. 7).

4.6 Weak user identification

In many interaction scenarios, the identity of an in-
volved user is important for authorizing certain actions
or adapting services. Handheld devices offer user
identification capabilities in varying flavors. They
range from a personal identification number (PIN) that
is necessary to operate a mobile phone to fingerprint
sensors. Knowledge of the PIN gives a hint on the
user’s identity if one can assume that a device is per-
sonalized to a single user, while a biometric sensor
provides much stronger confidence in the user’s iden-
tity. From the point of view of the smart object, the
downside of using an external identification mechanism
is the necessity of putting trust in the handheld’s
correct operation (and in the user, e.g., to keep the

PIN secret). Since the assurance level on the identity of
the current user is usually rather low, we call this
feature weak identification. The software package we
developed to demonstrate the roles of handhelds in
smart environments supports authentication using PIN
codes as part of the implemented Bluetooth protocols.

5 Smart object–human interaction: as easy
as making phone calls

In this and the following two sections, we present
applications that illustrate the previously identified roles
of handhelds in smart environments. The application in
this section demonstrates how mobile devices serve as a
mobile storage medium, a weak user identifier, and as a
user interface for remote interactions with smart objects.

People usually associate a specific type of handheld
device with a specific way to interact with communica-
tion partners: teenagers write SMS messages to arrange
a fun meeting using their mobile phones, and business
people organize their appointments with PDAs.
Adopting device-specific behavior to smart environ-
ments while maintaining interaction patterns people
expect from their handheld devices is a key approach for
successfully integrating handhelds into smart environ-
ments.

In the following, we illustrate how device-specific
interaction patterns like making phone calls can be used
as a metaphor for implementing remote interactions
with smart objects. Enabling remote interactions is
a two-step process: (1) when a user is in proximity of a
smart object, it stores interaction stubs in the user’s
handheld device; (2) later, when not in vicinity of the
object, a user selects a suitable interaction stub stored on
the handheld to trigger a remote interaction with an
augmented item (see Fig. 5).

The interaction stubs are the key mechanism to
establish the remote communication link. They consist

Fig. 5 Remote interaction with
smart objects using handheld
devices: when people are within
range of smart objects,
handhelds serve as a mobile
storage medium for interaction
stubs (1); when far away,
interaction stubs are executed
to trigger interactions with
remote objects using the
handheld as a user interface (2)
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of a human-readable name for a smart object, a set of
commands that can be executed by it, and its address. In
our current implementation, mobile phones serve as
handhelds and the actual communication with a smart
object takes place by exchanging SMS messages. Here,
an interaction stub is composed of a phone book entry
for the smart object and an SMS template. The phone
book entry indicates the human-readable name and the
object’s address, which is a telephone number in this
case. The SMS template contains a range of predefined
commands that can be activated and sent to the smart
object (see Fig. 6).

We illustrate this approach with an office room as an
example of a (rather large) smart object. The ‘‘smart
office’’ knows who is currently working in it and what
the noise level is inside.

A BTnode equipped with several sensors, such as a
microphone, is placed in the office and provides infor-
mation about the noise level inside (see [1] for a
description of the sensor boards used). Furthermore,
according to the concept of weak identification, we can
infer from a handheld’s presence who is currently in the
room, and utilize the handheld as a weak user identifier.

Given these capabilities, the smart office can keep
track of entering and leaving persons, maintain a short
history of events, and derive its current situational
context (e.g., an ongoing meeting). Based on this infor-
mation, interaction stubs (phone book entries and SMS
templates) are transmitted to a user’s handheld device.
For example, the person most frequently in the office is
given a special stub that allows her to remotely interact
with the office after hours.

Interaction stubs (phone book entries and SMS
templates) are transferred over a short-range wireless
link between the smart object and the handheld (see
Sect. 4). These transmissions are completely transparent

to the user and are initiated by a smart object based on
its current context and history information. Later, when
people want to remotely interact with the smart office,
they select the corresponding phone book entry from
their phone book and compose a new SMS message
using the appropriate SMS template. The SMS message
is received by a stationary access point with a GSM
gateway and relayed to the corresponding smart object
in the range of the access point. The smart object then
executes the embedded commands and returns a mes-
sage to the user’s mobile phone (see Fig. 6). Consecutive
messages can be exchanged between the user and the
smart object. Besides the described SMS-based ap-
proach, we have also implemented a similar solution
based on WAP.

Direct remote interaction with a smart object requires
a nearby stationary access point. The next section shows
how we can get rid of this stationary gateway by using
nearby handheld devices as mobile infrastructure access
points.

6 The smart medicine cabinet

The smart medicine cabinet illustrates a handheld’s role
as a mobile infrastructure access point, a mobile storage
medium, and a user interface. It was designed to improve
the drug compliance of patients with chronic diseases by
reminding them to take their medicine. It also knows
about its contents and can be queried remotely with a
WAP-enabled mobile phone. Interaction with the
information technology inside the cabinet is
implicit—i.e., transparent for the patients—who might
not even know that the cabinet is ‘‘smart.’’ By using
small RFID tags attached to the folding boxes and an
off-the-shelf medicine cabinet equipped with a BTnode

Fig. 6 Interaction stubs
transmitted from smart objects
to a mobile phone [phone book
entries (1), SMS templates (2)],
an edited SMS template with
activated command (3), and the
corresponding reply from a
remote smart object (4)
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connected to an RFID reader, the information tech-
nology becomes completely invisible to the users (see
Fig. 7). When a patient removes a certain kind of
medicine she needs to take during the day, the active tag
in the cabinet (i.e., the BTnode) establishes a connection
through the user’s Bluetooth-enabled mobile phone to a
background infrastructure service querying it about
prescription information concerning this medicine. The
active tag then utilizes the user’s mobile phone as a
mobile storage medium and stores a corresponding alarm
and calendar entry in it, which are activated when the
patient has to take the medicine.

A WAP-based interface allows patients to remotely
interact with the smart medicine cabinet—or its repre-
sentation in the background infrastructure, the BIRT of
the cabinet. Since the patient’s mobile phone serves as a
mobile infrastructure access point for the cabinet, it
operates in a disconnected mode whenever there is no
mobile phone present. Hence, it requires a BIRT in the
background infrastructure that represents the medicine

cabinet continuously. Whenever a mobile phone is in the
vicinity of the medicine cabinet and provides connec-
tivity, the cabinet synchronizes its state with the BIRT.
Afterwards, remote WAP-based queries need to address
the BIRT of the cabinet. Information displayed on WAP
pages regarding the contents of the cabinet and recently
taken medicine, therefore, reflect the status of the cabi-
net during the last synchronization (see Fig. 8).

The following technologies have been incorporated
into an ordinary medicine cabinet: (1) passive RFID tags
on the folding boxes; (2) an RFID reader attached to the
medicine cabinet; and (3) a BTnode that processes the
information from the RFID reader and communicates
via Bluetooth with (4) a mobile phone (see Fig. 7).

An actual use case would be the following: a patient
approaches the smart medicine cabinet and takes a
package out of the cabinet. The active tag in the cabinet
notices that a box of medicine has disappeared and
connects to a background service (the BIRT of the
cabinet). Thereby, the patient’s mobile phone acts as a
mobile infrastructure access point to the cellular phone
network for the smart object, and no stationary access
point is required near the cabinet. The Bluetooth-en-
abled active tag in the cabinet queries the BIRT about
when the patient has to take the medicine. It then stores
a corresponding calendar entry into her mobile phone
that reminds the patient to take the medicine during the
day. While there is a connection to the background
infrastructure through the patient’s mobile phone, the
cabinet also synchronizes its state with that of the BIRT,
which provides WAP pages based on this information.
When the patient visits a pharmacist, the WAP interface
can be used to query the contents of the cabinet (see
Fig. 9). This information is a good basis for the phar-
macist to decide whether another kind of medicine
is compatible to that already in the smart medicine
cabinet.

Fig. 8 When the patient is
within range of the cabinet, her
mobile phone serves as a mobile
access point to the background
infrastructure server (1); when
not within range of the cabinet,
she interacts with the BIRT of
the cabinet, using the handheld
as a user interface (2)

RFID antenna

BTnodeRFID tags on
folding boxes

RFID reader

Fig. 7 The smart medicine cabinet
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A technical challenge with respect to the use of pas-
sive RFID systems is that the smart cabinet must be able
to detect all RFID tags currently placed on its shelves.
Otherwise, it would not be possible to determine when
and what kind of medicine is removed from the cabinet.
To address this problem, our implementation is based
upon a commercially available RFID system that can
detect multiple RFID tags using a stochastic anti-colli-
sion scheme. The RFID reader interface protocol, which
has been implemented on the BTnodes, provides the
application not only with the individual tag IDs
detected, but also diagnostics information about colli-
sions on the air interface. The application can, therefore,
determine whether all tags have been successfully scan-
ned. There are, however, additional practical issues that
can make the successful detection of RFID tags inside
the cabinet difficult, especially when there are large
quantities of tags inside the cabinet in close proximity to
each other. Floerkemeier and Lampe [5] as well as Vogt
[12] deal with such problems and suggest solutions that
could be applied to further increase the reliability of our
prototype implementation.

The concept of a medicine cabinet augmented by
information technology has been demonstrated previ-
ously by Wan [13], who integrated a personal computer,
an LCD screen, and a broadband Internet connection
into a medicine cabinet. The medicine cabinet presented
as part of our work, however, was designed with the goal
to leave the medicine cabinet practically unmodified
from a user¢s perspective.

7 Spontaneous integration of handhelds into smart
environments

The inventory monitoring application presented in this
section illustrates a handheld’s role as a remote resource

provider and a user interface. As a remote resource pro-
vider, a handheld provides data storage capabilities and
serves as a platform for executing computations on
behalf of smart objects. The possibility for outsourcing
computations to nearby handheld devices also allows us
to transmit sophisticated user interfaces, which facilitate
the local user interaction with smart objects.

As already described in Sect. 4, a handheld’s role as a
remote resource provider is based on a distributed tuple
space implementation. In a typical pervasive computing
environment, smart objects need to collaborate in order
to implement an application. Such collaborating entities
form a distributed tuple space as a shared data structure
distributed over participating entities (and without the
use of a background infrastructure). Smart objects write
data (e.g., perceived sensory data) into the tuple space,
read data from it, process these data, and write the
corresponding result again into the space. Thereby, the
origin of data becomes transparent for participating
objects when it is not explicitly coded into tuples. Con-
sequently—and this is the major point—the location
where code is executed becomes irrelevant because it
operates on the same data basis, regardless of the node
in the distributed tuple space chosen for code execution.
In order for a handheld to serve as a resource provider
for smart objects, it joins their distributed tuple space
and receives code from these objects. As previously
mentioned, resource-aware tuple space operations can
automatically use the memory capacity of a handheld
after it has joined the tuple space.

We have implemented the idea of using handhelds as
a remote resource provider and a user interface for local
interactions with smart objects in a software framework
called Smoblets. The main goals of Smoblets are to
enable interactions with smart objects without the need
for a supporting backend infrastructure, to outsource
computations to handheld devices in order to save

Fig. 9 The WAP interface to
the smart medicine cabinet
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energy, and to foster the collaboration among smart
objects and handheld computers.

The main components of a Smoblet system are: (1) a
set of Java classes—the actual Smoblets—stored in the
program memory of an active tag (a BTnode in our
case); (2) a runtime environment for the execution of
Smoblets on a handheld device; (3) a mechanism to se-
lect smart objects and to transfer Smoblets from smart
objects to handheld devices; and (4) a distributed tuple
space implementation that serves as a shared content-
based data structure for participating entities (see
Fig. 10). It is important to note that smart objects
themselves cannot execute Java code; their program
memory merely serves as a storage medium for the code.
Java classes can only be executed on nearby handheld
devices, which communicate with the smart objects
using a distributed tuple space abstraction.

A Smoblet transmission can either be initiated auto-
matically by smart objects or manually triggered by
human users. To manually initiate the transmission of
Smoblets from a smart object to a handheld device, the
user selects a smart object for interaction by means of a
small program on her handheld. The device address of
the object is then used to establish a connection and to
retrieve the Java classes from the smart object.

Together with the Smoblets, their functionality is
moved and, therefore, outsourced from a smart object to
a handheld device. Because of the distributed tuple
space, the actual source of data becomes transparent for
the Smoblets. Although they are executed on the hand-
held, they can operate on the data provided by the object
they are originating from and perform computations on

its behalf that were not feasible because of the object’s
limited resources. Outsourcing computations from smart
objects and using handhelds as a remote resource pro-
vider is the core motivation for the Smoblet idea.

We have created a Java framework that simplifies the
development of Smoblets. It provides methods to access
data stored in a distributed tuple space, which can be
used to transparently access remote sensor data of smart
objects via Bluetooth. The distributed tuple space
implementation provides a convenient high-level com-
munication abstraction to the application programmer,
who does not have to care about low-level communi-
cation issues. The tuple space also detaches Smoblets
from any particular communication technology that is
being used by the smart objects.

To illustrate the idea of Smoblets, we have imple-
mented an inventory monitoring application (see
Fig. 11). Here, BTnodes together with sensor boards are
attached to expensive products—in our case, a video
cassette recorder (VCR), but it could also be a bottle of
expensive wine, a book, etc.—in order to notify its
owner or another person when it is being stolen or
damaged. Smoblets stored on the smart VCR allow a
user to customize the behavior of the product.

The scenario is as follows: when nearby, a person
selects a smart object by using the SmobletFinder
application, which triggers the transmission of the cor-
responding Java code from the selected object to her
handheld device (see Fig. 11). The code contains a small
user interface for adapting the behavior of the smart
object. Here, a user can specify a telephone number and
associate messages with certain situations that the
product can be in. For example, in case of damage, a
notification message must be sent to a nearby repair
service. The user input (e.g., the telephone number and
the message text entered into the user interface) is
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Fig. 10 The Smoblet concept: ad-hoc interaction with nearby
handheld devices

78



embedded into a tuple and written into the underlying
distributed tuple space. As the smart object that pro-
vided the user interface is also a member of the tuple
space, it can access the information input by the user. In
our implementation, the smart object registers a callback
on tuples that represent relevant user input. As a cor-
responding tuple is written into the space, the smart
object is automatically notified by the tuple space
implementation. Therefore, the smart object can imme-
diately react on the user input and adapt its behavior
accordingly. When the user closes the application, the
handheld leaves the distributed tuple space.

8 Conclusion

This paper formulated and supported the hypothesis
that smart objects can provide increasingly sophisticated
services to users in smart environments when they are
able to exploit the capabilities of nearby handheld
devices in an ad-hoc fashion. We identified six roles that
describe how smart objects can spontaneously make use
of nearby handhelds: (1) as a mobile infrastructure ac-
cess point; (2) as a user interface; (3) as a remote sensor;
(4) as a mobile storage medium; (5) as a remote resource
provider; and (6) as a weak user identifier. We then
presented an implementation of these roles tailored to-
wards everyday objects that have been augmented with
Bluetooth-enabled sensor nodes. Finally, three applica-
tions—a remote interaction scenario, a smart medicine
cabinet, and an inventory monitoring applica-

tion—illustrated some of the usage scenarios that be-
come feasible when smart objects are able to
spontaneously collaborate with nearby handheld com-
puters. Table 2 summarizes the roles of handhelds in the
presented applications.

Considering the presented applications, the basic
function of handheld devices is to mediate between
smart objects and infrastructure services, between smart
objects and their users, and among smart objects
themselves. For example, in the smart medicine cabinet
application, a patient’s mobile phone serves both as a
mobile infrastructure access point (i.e., it enables smart
objects to communicate with background infrastructure
services) and as a primary user interface (i.e., it facilitates
the user interaction with smart objects). As a remote
resource provider, a handheld provides data storage
capabilities and serves as a platform for outsourcing
computations from smart objects. By providing
resources for smart objects, handhelds enrich smart
objects¢ computational abilities and their interaction
amongst each other.
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