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Abstract. We give a survey of some aspects of the Riemann Hypothesis over finite
fields, as it was proved by Deligne, and its applications to analytic number theory.
In particular, we concentrate on the formalism leading to Deligne’s Equidistribu-
tion Theorem.
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1. Introduction

The goal of this survey is to present some aspects of the Riemann Hypothesis over
finite fields. The context is Deligne’s celebrated work ([5], [6]) and its applications,
and the text is roughly split in two parts. In the first part, we try to introduce and
motivate the framework in which the powerful formalism of étale cohomology and the
Riemann Hypothesis operate, emphasizing aspects leading to Deligne’s remarkable
Equidistribution Theorem. The second part (starting in Section 5) is a discussion
of this theorem, which involves naturally “families” of exponential sums and L-
functions over finite fields, and of some (mostly) recent applications of the Riemann
Hypothesis and Deligne’s theorem, concluding with a short list of open problems
(emphasizing general, “philosophical” issues, rather than specific questions).

This is written with a target audience of readers who are not experts in algebraic
geometry, in particular analytic number theorists. We use a few basic examples as
references, notably Gauss sums, Kloosterman sums (and their average Sato-Tate dis-
tribution) and the very simple – but enlightening – case of finite (zero-dimensional)
algebraic varieties. The emphasis is throughout in situations which, at least at first
sight, are not immediately or obviously analogue to the classical Riemann Hypothesis
for the Riemann zeta and Dirichlet L-functions.

We try to be as accessible as possible to a large audience; however, due to
the author’s bias, much of the examples, applications and problems are directly or
indirectly related to analytic number theory. In some sense, this survey is a follow-up
to Chapter 11, Section 11 of [11], where the cohomological approach to exponential
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sums over finite fields was also surveyed, but with little attention paid to situations
involving families and Deligne’s equidistribution theorem.

Acknowledgments. I wish to thank warmly the organizers of the RISM conference
for inviting me to participate and for the excellent organization. The written version
was prepared at the Institute for Advanced Study (Princeton, NJ) during the fall
semester 2009, while the author was on sabbatical leave. Thanks to this institution
for its support.

Thanks also to M. Ibraimi, F. Jouve and D. Zywina for comments and correc-
tions.

Notation. As usual, |X| denotes the cardinality of a set. By f � g for x ∈ X, or
f = O(g) for x ∈ X, where X is an arbitrary set on which f is defined, we mean
synonymously that there exists a constant C � 0 such that |f(x)| � Cg(x) for all
x ∈ X. The “implied constant” refers to any value of C for which this holds. It may
depend on the set X, which is usually specified explicitly, or clearly determined by
the context.

We write e(z) = e2iπz for z ∈ C. For any q �= 1 which is a power of a prime,
we write Fq for a finite field with q elements, in particular Fp = Z/pZ. The letter p

will always be used to refer to prime numbers.

2. Setting the stage

The Riemann Hypothesis was initially stated as a problem concerning the location
of the zeros of a certain meromorphic function, and was generalized to Dirichlet L-
functions in the same terms. It is possible to present the Riemann Hypothesis over
finite fields in very close analogy (and we will recall this below, see Example 14).

However, applications often appeal to alternate statements, which may look
quite different. For instance, two early occurrences of the Riemann Hypothesis over
finite fields, historically, are the following results of Gauss: (1) for any odd prime
number p, and any integer a coprime with p, we have∣∣∣ p∑

x=1

e
(ax2

p

)∣∣∣ =
√

p (1)

(recall we put e(z) = e2iπz); (2) for any odd prime p with p ≡ 1 (mod 4), the number
of solutions in Z/pZ × Z/pZ of the equation

y2 = x4 − 1

is p − 2a, where a is the unique odd integer such that p may be written p = a2 + b2

with the sign of a fixed by the complex congruence a + ib ≡ 1 (mod 2(1 + i)) (see
the introduction to Weil’s article [24] and his comments [25] for more historical
perspective).

In these results (the first of which is elementary, while the second remains
somewhat challenging), the clue to the Riemann Hypothesis is the exponent 1/2
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hidden in
√

p, in plain sight for (1), and disguised in the bound

|2a| � 2
√

p

which immediately follows from the recipe for a in the second example.
The best reference for purposes of comparison with the classical Riemann Hy-

pothesis is then seen to be the statement∣∣∣∑
p�x

χ(p)
∣∣∣ � 2x1/2(log qx)2, for x � 2,

for all primitive Dirichlet characters modulo q � 1, a concrete estimate which is
known to be equivalent with the Generalized Riemann Hypothesis for the L-functions
of such characters.

The essence of this statement, for our purposes, is that it shows that the values
χ(p), when p ranges over primes (in increasing order) vary extremely randomly –
recall that for randomly chosen, independent, arguments θp ∈ [0, 1], p � x, the mean
square of the sums ∑

p�x

e(θp)

is precisely π(x), by a simple application of the orthogonality of additive characters.
There are two important aspects that we want to emphasize for this survey:

(1) the result – as far as the exponent of x – is best possible, because “there are
zeros on the critical line”; (2) it is completely uniform with respect to the modulus.
Both of these facts are important in applications of the Riemann Hypothesis, to the
distribution of primes for instance, and in both respects, the current unconditional
knowledge is quite poor. And both of these are also already visible in the simplest
example (1) we gave of the Riemann Hypothesis over finite fields.

In the remainder of this survey, we will look at the Riemann Hypothesis from
this point of view, and will explain how it provides not only excellent, often very
explicit, estimates for certain sums ∑

x∈V (Fq)

Λ(x)

over points of algebraic varieties over finite fields, where Λ is typically an oscillating
factor of “algebraic” origin,1 but also does so through a general framework, and a
very powerful formalism.

Before going to the general case, here are a few additional examples that will
reappear many times below as illustrations of the general theory.

Example 1 (Hasse bound). This generalizes the result of Gauss concerning the curve
y2 = x4 − 1 (though a change of variable is required for this to be obvious): for any
prime p �= 2, 3, any integers a, b with 4a3 + 27b2 not divisible by p, we have∣∣∣|{(x, y) ∈ (Z/pZ)2 | y2 = x3 + ax + b}| − p

∣∣∣ � 2
√

p

1 We introduce these more precisely in the next section.
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note again the uniformity in this estimate, where a and b do not occur on the right-
hand side.

Example 2 (Hyper-Kloosterman sums). For any prime p, any n � 1, any a not
divisible by p, let

HK(n; a, p) =
∑

1�x1,...,xn�p−1
x1x2···xn=a (mod p)

e
(x1 + · · · + xn

p

)
(2)

(this is called a Hyper-Kloosterman sum, and is a sum over n− 1 variables, since xn

can be recovered uniquely from x1, . . . , xn−1). Then we have the estimate

|HK(n; a, p)| � np(n−1)/2 (3)

This bound was proved by Weil for n = 2, which is the case of the classical
Kloosterman sums which are of crucial importance in analytic number theory (be-
cause they occur in Kloosterman’s refinement of the circle method, and in the Fourier
expansion of Poincaré series; see, e.g., [11, §20.3, §16]); the general case n � 3 was
proved by Deligne [5]. Note again the sharpness of the statement: the square-root
cancellation showing in the exponent (n − 1)/2, and the explicit constant n.

Before presenting the next example, we recall an important definition:

Definition. Let X be a locally compact metric space, and μ a probability measure2

on X, so that μ(X) = 1. If (Xn) is a sequence of finite sets such that Xn ⊂ X, or
more generally such that Xn is given with a map Xn

θn−→ X, not necessarily injective,
then the sets (Xn) become equidistributed with respect to μ if, for all continuous and
bounded functions f : X → C, we have

1
|Xn|

∑
x∈Xn

f(θn(x)) −→
∫

X
f(x)dμ(x).

The concept of equidistribution turns out to be extremely useful and ubiquitous
in number theory. The link with oscillating sums is given by the well-known Weyl
criterion:

Proposition 3. Let X be a compact space, and let μ be a probability measure on
X. Let (ϕj)j be continuous functions on X which form an orthonormal basis of the
orthogonal complement of the constant function 1 in L2(X,μ), so that in particular∫

X
ϕj(x)dμ(x) = 0, for all j.

Then a sequence of finite sets Xn, either Xn ⊂ X or with Xn
θn−→ X, becomes

equidistributed with respect to μ if and only if
1

|Xn|
∑

x∈Xn

ϕj(θn(x)) −→ 0

for all j.
2 For the standard σ-algebra of Borel sets in X; we always assume μ is finite on compact sets.
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We illustrate with two further examples:

Example 4 (“Average” Sato-Tate law). Example 2, with n = 2, and the fact that
the Hyper-Kloosterman sums with n even are all real numbers, shows that for p

prime and a ∈ (Z/pZ)×, there is a unique angle θp(a) ∈ [0, π] such that

p−1∑
x=1

e
(x + ax−1

p

)
= 2

√
p cos θp(a).

We are interested in the distribution of the angles (θp(a))a∈F× , as p grows (in
other words, in the distribution of values of Kloosterman sums, in the scale

√
p

corresponding roughly to their maximal size); there might be coincidences among
those angles, so we let Xp = F×

p and use

θp :

{
Xp → [0, π]
a 	→ θp(a)

to be in the situation of the definition. N. Katz [14] showed that this sequence of
sets of angles becomes equidistributed as p → +∞ with respect to the so-called
Sato-Tate measure

μ =
2
π

sin2 θdθ on [0, π].

Example 5 (Angles of Gauss sums). Here is a classical example, where already a
number of the previous examples interact: consider an odd prime p, a non-trivial
Dirichlet character χ modulo p and an element a ∈ (Z/pZ)×; the corresponding
Gauss sums are defined by

τa(χ) =
∑

x∈F×
p

χ(x)e
(ax

p

)
(4)

(the link with (1) is that, if χ is the real non-trivial character modulo an odd prime
p, it is easy to show that

τ1(χ) =
∑
x∈Fp

e
(x2

p

)
,

using the fact that the number of x ∈ Fp with x2 = y is given by 1+χ(y) for y ∈ Fp).
Similarly to (1), one shows that |τa(χ)| =

√
p, so (taking a = 1 for simplicity), there

is a unique angle θp(χ) ∈ [0, 1[ such that

τ1(χ) =
√

p e(θp(χ)).

It turns out that, as p → +∞, the finite sets3

{θp(χ) | χ non-trivial (mod p)} ⊂ [0, 1]

3 Again, we are really taking Xp = {χ �= 1} and use θp to map to [0, 1]. However, we will allow this

abuse of notation here and elsewhere.
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become equidistributed to the Lebesgue measure dx. At a very high level, the proof
is as follows: one applies the Weyl criterion with the functions given by the additive
characters

ϕj(x) = e(jx), j ∈ Z − {0},
and then

1
p − 2

∑
χ (mod p)

χ �=1

ϕj(θp(χ)) =
1

p − 2

∑
χ (mod p)

χ �=1

(τ1(χ)√
p

)j

and if j � 1 (the case j � −1 being dealt using symmetry), we can expand the
definition of τ1(χ)j and use orthogonality of characters to obtain∑

χ (mod p)
χ �=1

τ1(χ)j =
∑

x1,...,xj

e
(x1 + · · · + xj

p

) ∑
χ �=1

χ(x1 . . . xj)

= (p − 1)
∑

x1,...,xj∈Fp
x1x2···xj=1

e
(x1 + · · · + xj

p

)

in which we recognize a Hyper-Kloosterman sum in j−1 variables. Applying Deligne’s
estimate (3), we get∣∣∣ 1

p − 2

∑
χ (mod p)

χ �=1

ϕj(θp(χ))
∣∣∣ � j

p − 1
p − 2

1
p1/2 −→ 0

as p → +∞, verifying the Weyl criterion. But note that although a weaker bound
than (3) would suffice, it would still need to be extremely strong: the exponent
(j − 1)/2 can not be replaced by j/2, although the latter would already be quite
good for large j (on the other hand, the leading multiplicative constant j does not
play a big role here, since we apply the bounds for fixed j).

3. Algebraic exponential sums

We will now describe the statement of the Riemann Hypothesis for exponential sums

S(V,Λ; q) =
∑

x∈V (Fq)

Λ(x)

of a quite general type. But general does not mean arbitrary: the summation sets and
summands must have a specific algebraic structure for the theory and formalism to
be available,4 and we will use the (non-standard) shorthand “algebraic exponential
sums” to indicate this.

First, the summation sets are of the type V (Fq) where V is an algebraic variety
defined over a finite field (either Fq or a subfield); the notation indicates, concretely,
the set of points on V which have coordinates in Fq. Quite often, very simple varieties

4 We do not imply, of course, that other types of sums are not interesting; in fact, many exponential

sums not of algebraic type occur in number theory; see, e.g., [11, §8, §13].
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will do: the affine space Ad of dimension d, such that Ad(Fq) = Fd
q (i.e., summing

over Ad(Fq) is a “free summation” over d variables each in Fq); the multiplicative
group Gm with Gm(Fq) = F×

q , and its powers Gd
m with Gd

m(Fq) = (F×
q )d. More

generally but still very concretely, V can be any affine variety determined by the
vanishing of finitely many polynomials in finitely many variables: in such a case,
there exist (fixed, but not unique) integers m, n � 0 and polynomials

F1(X1, . . . ,Xn), . . . , Fm(X1, . . . ,Xn) ∈ Fq[X1, . . . ,Xn]

such that, for any extension field K of Fq, we have

V (K) = {(x1, . . . , xn) ∈ Kn | F1(x1, . . . , xn) = · · · = Fm(x1, . . . , xn) = 0}.
Often (as is the case with Ad or Gd

m for any d � 1), such a description exists5

with polynomials in Z[X1, . . . ,Xn], in which case we have a variety defined over Z,
and (by reducing modulo primes), we can consider its reduction modulo p for any
primes; then V (Fp) makes sense for any p, and V (Fq) for any prime power q �= 1.

Example 6. (1) The Hyper-Kloosterman sums (3) were defined by a summation
over (x1, . . . , xn) in Fn

p subject to the equation x1 · · · xn = a where a ∈ F×
p is fixed;

this set is of the form Vn,a(Fp) for the variety Vn,a/Z defined by the corresponding
polynomial X1 · · ·Xn − ã (choosing ã ∈ Z reducing to a). Note that if one writes

HK(n; a, p) =
∑

(x1,...,xn−1)∈Gn−1
m (Fp)

e
(x1 + · · · + xn−1 + a/(x1 · · · xn−1)

p

)
,

then we are simply exhibiting at this concrete level an isomorphism{
Gn−1

m −→ Vn,a

(xi) 	→ (x1, . . . , xn−1, a
∏

x−1
i ).

(2) Now suppose we tried to look instead at a sum like the following:∑
x∈Vn,a(Fp)∑
xi is a square

e
(x1 + · · · + xn

p

)
,

where being a square refers to being a square in Fp. Despite the algebraic appearance
of the summation set, it is not of the type allowed, because the condition that y ∈ Fq

is a square does not define an algebraic variety (it is not a stable condition under
field extensions; any element y ∈ Fp is a square in the quadratic extension Fp2).

(3) There is one class of particularly simple examples which can sometimes be
used to gain a minimal understanding of the algebraic issues involved: 0-dimensional
varieties. This corresponds to equations where the total number of solutions in an
algebraic closure of the ground field is finite. If we consider the one-variable case, this
means that V is defined by the vanishing of a single polynomial f ∈ Fq[X], f �= 0.
Thus, V (F̄q) contains at most deg(f) points (because we allow multiple roots), and

5 For Gm one must use the trick of introducing an extra variable and seeing Gm as the variety

defined by the polynomial X1X2 − 1.
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V (Fqν ) contains exactly those roots of f which generate a subfield of Fqν . In case f
is irreducible over Fq and of degree � 2, in particular, we have V (Fq) = ∅.

Thus the summation sets are quite simple. The definition of the right type
of summands Λ(x) is more delicate. When we look at a sum over V (Fp), the first
examples that come to mind are those of the type

Λf,g(x) = χ(g(x))e
(f(x)

p

)
(5)

where f , g are polynomial functions on V , with g not taking the value 0 and χ is
a multiplicative character modulo p. These are suggested by the examples of Gauss
sums, with

ΛaX,X(x) = χ(x)e
(ax

p

)
,

and Hyper-Kloosterman sums (seen as sums over V = Gn−1
m , see (6, (1))), with

ΛX1+···+Xn−1+a/(X1···Xn−1),1(x) = e
(x1 + · · · + xn−1 + a/(x1 · · · xn−1)

p

)
, (6)

and indeed by many applications in analytic number theory (for instance, the circle
method). Sums of this type are often called “character sums” or “mixed character
sums”; if g = 1, one speaks of “additive character sums”, and if f = 0, of “multiplica-
tive character sums”. Deligne’s survey [4] of the cohomological techniques to study
these sums is highly rewarding (but requires more knowledge of algebraic geometry).

We need to enlarge this class of summands in two ways, one of which is very
easy to describe, but the other not so much.

We first define analogues of the sums with the summands (5) for V (Fq) where q
is not necessarily prime. This is done by taking χ to be any multiplicative character
of F×

q , and replacing e(f(x)/p) by ψ(f(x)), where

ψ : Fq → C×

is any additive character of Fq. It is very important for the theory that this con-
struction also allows the formation of the “companion” sums

Sν(V,Λf,g; q) =
∑

x∈V (Fqν )

χ(NFqν /Fq
g(x))ψ(TrFqν /Fq

f(x))

over Fqν , ν � 1, which are an important part of the theory. Indeed, it will often
be much easier to understand the behavior of the sums Sν(V,Λf,g; q) in the limit
where ν → +∞, and this may give insight into more difficult situations (e.g., when
q = p is prime). It is customary to refer to this limit (fields of increasing size but
fixed characteristic) as the “vertical direction” (or limit), and to refer to the case of
increasing p as a “horizontal” direction.

Example 7. If we come back to the setting of the Hasse bound, we can see a mul-
tiplicative character sum in the background: indeed, let f(x) = x3 + ax + b, with
notation as in Example 1. The question is to count |E(Fp)|, where E is the algebraic
variety given by the equation Y 2 − f(X). Recall that if p is an odd prime and χ
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is the non-trivial real quadratic character of F×
p , extended to Fp by χ(0) = 0, the

number of solutions of the equation

y2 = f(x)

is equal to 1 + χ(f(x)); it follows that

|E(Fp)| =
∑
y∈Fp

(1 + χ(f(x))) = p + S(A1,Λχ; p)

where Λχ(x) = χ(f(x)). Hence Hasse’s result is equivalent with the upper bound

|S(A1,Λχ; p)| � 2
√

p

for this multiplicative character sum. This is the situation of elliptic curves,6 and if
we allow f to be replaced by an arbitrary polynomial f ∈ Fq[X] with no repeated
root, we will have a similar link between counting points on the so-called (affine)
hyperelliptic curve with equation Y 2 − f(X), and the corresponding multiplicative
sum.

A good theory for (estimates of) character sums is already immensely useful
in number theory. To cite just a few classical examples (before the 1960’s), they
were used extensively in the circle method and in estimates for Fourier coefficients
of modular forms. Many mysteries remain about such sums, and even when good
estimates exist in principle, it is not always easy to check that a concrete instance,
encountered for some specific application, satisfies the assumptions of those results.

However, it is also the case that character sums are not sufficient for certain
purposes, and more complicated summands are sometimes needed.

Example 8. In Example 5, we showed how Hyper-Kloosterman sums (which are
additive character sums) are sufficient to describe the equidistribution properties of
angles of Gauss sums. It may seem natural to try to do the same for the proof of
the average Sato-Tate law of Katz (Example 4). The natural idea of computing the
moments

1
p − 1

∑
a∈F×

p

(HK(2; a, p)
2
√

p

)m
=

1
p − 1

∑
a∈F×

p

(cos θp,a)m,

(as was done for Gauss sums) does not correspond to the Weyl criterion, as we
defined it, because the functions θ 	→ cos(θ)m, for m � 0 and θ ∈ [0, π], are not
orthogonal for the target Sato-Tate measure (e.g.,

∫
(cos θ)2dμST = 1/4).7

As it turns out (this will be justified in Example 25), the most natural or-
thonormal basis for L2([0, π], μST ) is the sequence (Um)m�0 of Chebychev functions
defined by

Um(θ) =
sin((m + 1)θ)

sin θ
, m � 0,

6 More precisely, we are looking here at the affine Weierstrass curve, with no point at infinity.
7 Those moments can however be computed elementarily for the first few values of m; this is already

enough (with m = 2) to check that the (θp,a)a are not uniformly distributed on [0, π] as p → +∞.

See also Example 31.
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which are known to be of the form

Um(θ) = Xm(2 cos θ),

where Xm is a polynomial in Z[X] of degree m (the Chebychev polynomials of the
second kind).

Note that X0 is the constant function 1, and thus the Weyl criterion indicates
that the theorem of Katz is equivalent with the assertion that

1
p − 1

∑
a∈F×

p

Um(θp,a) =
1

p − 1

∑
a∈F×

p

Xm

(HK(2; a, p)√
p

)
−→ 0

as p → +∞, for m � 1. Since a ranges over F×
p = Gm(Fp), this suggests an algebraic

framework where the summand

Λ(a) = Xm

(HK(2; a, p)√
p

)
is permitted. This can not be a character sum, for the simple reason that the sum-
mands are not of modulus 1 (as one can check easily numerically, if it does not seem
clear enough).

To motivate the “black box” that we will need to introduce next, one may first
start by reinterpreting additive character sums in a way that is generalizable to
situations like that of the previous example. From a high-level arithmetic point of
view, what is done is to replace analogues of Dirichlet characters8 with analogues of
Galois-theoretic characters or, in other words, it has something to do with reciprocity
laws.

Many subsequent steps in the theory turn out to follow very naturally from this
change of point of view, so to motivate it, we recall one formulation of the abelian
reciprocity laws for the number field Q. Let χ be a primitive Dirichlet character
modulo q � 1, and let K = K(χ) be the cyclotomic field of q-th roots of unity, with
ring of integer ZK . Then there exists a unique group homomorphism

χ̃ : Gal(K/Q) −→ C×

which corresponds to χ as follows. For every prime p not dividing q, let p ⊂ ZK be
a prime ideal of ZK containing pZ, so that we have an extension Z/pZ ⊂ ZK/pZK

of finite fields. There is then a well-defined Frobenius element Frp ∈ Gal(K/Q),
“lifting” the Frobenius automorphism x 	→ xp acting on ZK/pZK , and we have the
reciprocity

χ̃(Frp) = χ(p).

In fact, this character is easy to construct: since Gal(K/Q) � (Z/qZ)×, with
an isomorphism mapping Frp to p (mod q), one can define it by the composition

Gal(K/Q) � (Z/qZ)× χ−→ C×

8 Although those were only implicit in character sums; see [11, §11.5] for a concrete description of

the Dirichlet character leading to Kloosterman sums.
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(it is a much deeper fact that any Galois-character χ̃ is obtained in this way from a
Dirichlet character; indeed, this is a version of the Kronecker-Weber theorem).

Coming back to our setting of finite fields, if the base variety V/Fq is connected,9

there is a certain group associated to V , the algebraic fundamental group of V ,
which is a compact topological group, denoted π1(V ). This group was constructed
by Grothendieck as a generalization of a Galois group, and its main property for our
purpose is that it contains canonical Frobenius conjugacy classes Frx,qν , associated
with any ν � 1 and x ∈ V (Fqν ), so that for any character sum S(V,Λf,g; q) as above,
there is a character

χf,g : π1(V ) → C×

with the property that

χf,g(Frx,qν ) = χ(NFqν /Fq
g(x))ψ(TrFqν /Fq

f(x)) (7)

when x ∈ V (Fqν ), and in particular, χf,g(Frx,q) = χ(g(x))ψ(f(x)) if x is in V (Fq)
(see, e.g., [11, p. 302] for a sketch of the construction when g = 1, which is related
to the structure of Artin-Schreir extensions yq − y = f(x), in analogy with the
cyclotomic extensions appearing for Dirichlet characters over Q).

This gives an alternate form of the summand for character sums, and it is very
natural from the point of view of harmonic analysis to generalize it by considering
more general homomorphisms

π1(V )
ρ−→ GL(r, k),

where r � 1 and k is some field, and derive from them the summands of the type

Λρ(x) = Tr ρ(Frx,q),

for x ∈ V (Fq) (taking the trace is justified by the fact that the Frobenius elements
are only defined up to conjugacy: their trace is well-defined).

A minor difficulty is the choice of the coefficient field k we have introduced
surreptitiously: in general, taking k = C leads to difficulties because a homomor-
phism with complex values is not continuous if the image of ρ is infinite (because the
topology of π1(V ) is totally disconnected). It is a fact10 that the set of all Frobenius
conjugacy classes

Frx,qν , ν � 1, x ∈ V (Fqν ),

is dense in π1(V ), hence a continuous character is determined by the values taken
on such classes. Therefore, the theory is developed with fields k equipped with a
topology which is more compatible with that topology of π1(V ). These fields depend
on the choice of an auxiliary prime number 
 distinct from the characteristic of Fq

and are extensions of the 
-adic field Q� (for instance, k could be an algebraic closure

9 In a suitable algebraic sense; readers not familiar with the definition can restrict their attention to

the following examples of connected algebraic varieties: (i) Ad or Gd
m for d � 1; (ii) the complement

in Ad of a proper subvariety V .
10 Which is closely related to the Chebotarev density theorem.
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of Q�). For any 
 �= p, the characters χf,g can be seen as a composition of a unique
continuous homomorphism

χf,g : π1(V )
ρ−→ k×

for some finite extension k of Q�, and an embedding k× ι−→ C× which is the
restriction of an injection k

ι−→ C.
Such an injection (in fact, isomorphism) does exist for k = Q̄�, but it is not

unique (its construction requires the axiom of choice). However, for the discussion
in this paper, this is not a very serious problem. (The reader may notice that the
existence of ι means that one could, in principle, take k = C and just change the
topology by means of ι).

Remark 9 (Geometric fundamental group). As we have hinted, the fundamental
group can be considered as a type of Galois group (another analogy is with the
topological fundamental group of a topological space, seen as a group of automor-
phisms of the universal cover).

Later on, it will also be important to use the geometric fundamental group
π1(V̄ ), which is associated in a similar way with the “geometric” variety V̄ , obtained
from V by forgetting its field of definition (V̄ can most conveniently here be identified
with the set V (F̄q) of points of V with coefficients in an algebraic closure of Fq).
There is a natural inclusion homomorphism

π1(V̄ ) −→ π1(V ),

and this makes π1(V̄ ) into a normal subgroup of π1(V ). The quotient is well-
understood (it is abelian, and topologically generated by a single element).

The Frobenius conjugacy classes do not lie in π1(V̄ ), since they are related to
arithmetic properties of V/Fq and its rational points, with the field of definition
taken into account.

Example 10. Let us immediately show that this generalization is, at least formally,
able to handle the Weyl sums for the average Sato-Tate law (Example 8). We can
write

HK(2; a, p)√
p

= 2cos θp,a = eiθp,a + e−iθp,a = Tr
(

eiθp,a 0
0 e−iθp,a

)
, (8)

which may suggest a 2-dimensional representation. Note that the left-hand side
makes sense in any field of characteristic zero containing

√
p and the p-th roots

of unity (after identifying the exponential e(1/p) with a primitive p-th root in the
definition of HK(2; a, p)).

Moreover, there is a well-known interpretation of the Chebychev polynomials
in similar terms:

Xm(2 cos θ) = emiθ + e(m−2)iθ + · · · + e−(m−2)iθ + e−miθ (9)

(a sum of m + 1 terms); this is the trace of the corresponding diagonal matrix, of
course, but more pointedly, this matrix is the image of the 2-dimensional matrix

g(θ) =
(

eiθ 0
0 e−iθ

)
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under the homomorphism

SL(2, k)
Symm

−→ SL((m + 1), k)

called the m-th symmetric power. This makes sense for k any algebraically closed
field of characteristic zero. Concretely, one can think of this as follows: consider the
(m + 1)-dimensional k-vector space Hm of homogeneous forms of degree m in two
variables, say X and Y . This space is spanned by the basis

(Xm,Xm−1Y, . . . ,XY −m−1, Y m),

and for g =
(

a b
c d

)
∈ SL(2, k), one can define Symm(g) as the matrix, in this basis,

of the linear map
P (X,Y ) 	→ P (aX + bY, cX + dY )

(e.g., for g = g(θ), we get XkY n−k 	→ eikθ+i(k−n)θXkY n−k, so that the trace of
Symm(g) is indeed given by (9)).

Hence, if we can write∑
a∈F×

p

HK(2; a, p)√
p

=
∑

a∈Gm(Fp)

TrHK(Fra,p) (10)

for some 2-dimensional representation π1(Gm) HK−→ GL(2, k), we get for free that∑
a∈F×

p

Xm

(HK(2; a, p)√
p

)
=

∑
a∈Gm(Fp)

Tr(Symm ◦HK)(Fra,p)

for any m � 1.
For later purposes, one remark is important: these sums (once they are known to

actually exist) are one-parameter sums, over a very simple algebraic variety. Hence,
their complexity resides almost entirely in the summand involved.

A last condition is needed before we can introduce formally a pretty good
category of possible summands. It has to do with the necessity to ensure that, even
if we need to apply an injection ι to pass from k to C, the values Λρ(x) remain
controlled. This is achieved by restricting them to numbers which are algebraic over
Q (as the values HK(2; a, p)/

√
p are, for instance), and indeed of a special type.

Definition (Weil number). Let k be a field of characteristic zero, q �= 1 a power of a
prime number p and m ∈ Z an integer. An element α ∈ k is a q-Weil number of weight
m if and only if, α is algebraic over Q and for any embedding ι : Q(α) ↪→ k ↪→ C,
we have

|ι(α)| = qm/2.

Concretely, if k is itself a subfield of C, this means that α satisfies an irreducible
polynomial equation P (α) = 0 with P ∈ Q[X] and that all the roots β of P (X) = 0
have the same modulus qm/2.
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Example 11. (1) The simplest example is given by α = 1, a q-Weil number of weight
0 for any q; more generally, any root of unity ξ is a q-Weil number of weight 0
since all its conjugates are also roots of unity and hence lie on the unit circle when
embedded in C. Also, for any q, ξqm/2 is a q-Weil number of weight m.

(2) Let χ be a non-trivial Dirichlet character modulo p and a ∈ (Z/pZ)×. The
Gauss sums τa(χ) ∈ C (see (4)) are then p-Weil numbers of weight 1. Indeed, we
recalled already that

|τa(χ)| =
√

p,

and from the definition we note that τa(χ) is an algebraic integer (a sum of p − 1
roots of unity), and in fact τ(χ) ∈ Q(e(1/p), e(1/(p − 1))), since the values of χ are
roots of unity of order dividing p − 1. The Galois conjugates of τ(χ) are therefore
obtained by applying all the automorphisms of this cyclotomic field; each of these
(say, σ) acts on e(1/p) by

σ(e(1/p)) = e(b/p)
for some b ∈ (Z/pZ)×, and has the property that

χ̃(x) = σ(χ(x))

is itself a non-trivial Dirichlet character modulo p. So we have

σ(τa(χ)) =
∑

x∈F×
p

χ̃(x)e
(abx

p

)
= τab(χ̃),

which is of modulus
√

p again.
(3) For p prime and a ∈ F×

p , we have

HK(2; a, p) = 2
√

p cos θp,a =
√

p · eiθp,a +
√

p · e−iθp,a

and each of
√

pe±iθp,a is a p-Weil numbers of weight 1, while e±iθp,a is a p-Weil
number of weight 0 (which is not a root of unity). This can be checked by a Galois
conjugation argument similar to (2).

Finally, we can define:

Definition (Lisse sheaves; summands for algebraic sums). Let q �= 1 be a power of a
prime p and let V/Fq be a connected algebraic variety. Let 
 �= p be a prime number
and k an 
-adic field, for instance an algebraic closure of Q�.

(1) A lisse sheaf ρ, pointwise of weight m ∈ Z, on V/Fq is a continuous homo-
morphism

π1(V )
ρ−→ GL(r, k)

for some r � 1, with the property that for any ν � 1, and any x ∈ V (Fqν ), all
eigenvalues11 of ρ(Frx,qν) ∈ GL(r, k) are all qν-Weil numbers of weight m.

(2) An algebraic exponential sum S(V,Λ; q) over Fq is a sum of the type∑
x∈V (Fq)

Λ(x)

11 Those are well-defined, although the Frobenius is only well-defined as a conjugacy class.
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where V/Fq is an algebraic variety, and Λ(x) = Tr ρ(Frx,q) is the trace function
associated to a lisse sheaf on V , of some weight m ∈ Z. We also denote

Sν(V,Λ; q) =
∑

x∈V (Fqν )

Tr ρ(Frx,qν )

for ν � 1.

Although we have S(V,Λ; q) ∈ k, note that the sum∑
x∈V (Fq)

Λ(x)

is an algebraic number, and we usually tacitly see it as a complex number using any
embedding of the field it generates to C.

Example 12. (1) Mixed character sums are all of this type, with weight 0, since the
only eigenvalue of the characters χf,g of π1(V ) at x ∈ V (Fqν ) is the value

χf,g(Frx,qν ) = χ(NFqν /Fq
g(x))ψ(TrFqν /Fq

f(x))

itself, which is a root of unity.
A special case, which is historically and practically quite important, is when

the character sum is trivial, i.e., Λ(x) = 1. Then the sum reduces to∑
x∈V (Fq)

1 = |V (Fq)|

and the properties of these numbers of rational points on varieties over finite fields
were the subject of Weil’s original conjectures. The case (Example 1) of the Hasse
bound is one of the simplest non-trivial cases.

(2) Part of the proof of the average Sato-Tate conjecture is the fact, due to
Deligne, that – as was hypothesized in Example 10 – for any p, there exists a lisse
sheaf HK1 on Gm/Fq, of weight 1 and rank r = 2, such that

TrHK1(Fra,p) = HK(2; a, p) (11)

for any a ∈ F×
p , and in fact

TrHK1(Fra,pν) =
∑

x∈F×
pν

e
(TrFpν /Fp

(x + a/x)

p

)

for ν � 1 and a ∈ G(Fpν ). (Properly speaking, such sheaves exist for every choice of
the auxiliary prime 
 used to define the coefficient field k, which must contain the
p-th roots of unity; moreover, the value in k of the sum is obtained by fixing the
meaning of e(1/p) to be one of these primitive p-th roots of unity).

(3) As the rest of Example 10 suggests, one can create new algebraic exponential
sums out of old ones using composites

π1(V )
ρ−→ GL(r, k) π−→ GL(s, k)

where π is an algebraic homomorphism (i.e., all entries of π(g), for g ∈ GL(r, k), are
polynomial functions of the coordinates of g). It is a fact that if ρ is a lisse sheaf
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pointwise of weight m, the composite π ◦ ρ is also pointwise of some weight (see [18,
Proof of Th. 9.2.6]).

Remark 13. More general settings exist for algebraic exponential sums (see, e.g., the
first chapter of [12]). The restriction to the setting above is made for simplicity, and
is also due partly to the author’s restricted knowledge. If V/Fq is not connected, the
fundamental group is not sufficient to capture “independent” sums on the connected
components, but of course these can be treated separately in most applications. More
significantly, N. Katz (unpublished) has found a way to treat some sums where the
summation sets are, for instance, the sets of multiplicative characters of Fqν (which
are not of the type V (Fqν ) for an algebraic variety V/Fq which is independent of ν,
as one can see by comparing the number of elements ϕ(qν − 1) with the asymptotic
for |V (Fq)| that follow from the Riemann Hypothesis...)

The next section will describe the fundamental results of Grothendieck and
Deligne concerning the structural properties and bounds for algebraic exponential
sums.

4. The cohomological formalism

The apparent complexity of the definition of algebraic exponential sums is richly
rewarded by the powerful formalism that becomes available to handle such sums.

The first tool is the Lefschetz-Grothendieck trace formula, which, after ap-
plication of the Riemann Hypothesis, reinterprets the sums S(V,Λ; q) as combi-
nations of suitable Weil numbers (of higher weight than that of the summand
Λ(x) = Tr ρ(Frx,q)) which can be thought of, intuitively, as isolating not only a
“main term”, but also lower frequencies (in a certain sense).

More precisely, given V/Fq (connected) and a lisse sheaf ρ : π1(V ) → GL(r, k),
pointwise of weight m, Grothendieck and his collaborators first constructed a se-
quence of finite-dimensional k-vector spaces

H i
c(V̄ , ρ), i � 0,

called the i-th cohomology “group” of the geometric variety12 V̄ with compact sup-
port and coefficients in ρ. The fact that V is defined with equations with coefficients
in Fq can be recovered by keeping track of the Frobenius automorphism ϕ : x 	→ xq

which acts on V̄ (as well as its inverse F , which is called the “geometric” Frobenius).
In fact, for ν � 1, we have

V (Fqν ) = |{x ∈ V̄ | F ν(x) = x}| = V̄ F ν
,

i.e., V (Fq) is the subset of V̄ consisting of the fixed points of F .
The cohomology groups turn out to encode the algebraic sums in a rather re-

markable way. First, it is a general principle that any natural construction performed
on V̄ will lead to an object where the action of F remains visible in some “induced”
12 Recall (Remark 9) that V̄ can be interpreted as the set of all points of V with coordinates in an

algebraic closure of Fq.
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way. For the cohomology group H i
c(V̄ , ρ), which is a k-vector space, this means that

there exists a k-linear map

F : H i
c(V̄ , ρ) → H i

c(V̄ , ρ)

“naturally induced” by F . Then, the trace formula states that

S(V,Λ; q) =
∑
i�0

(−1)i Tr(F | H i
c(V̄ , ρ)), (12)

where this seemingly infinite sum contains in fact only finitely many terms because
H i

c(V̄ , ρ) is zero for all i large enough – in fact, it is zero for i > 2d, where d is the
dimension of V̄ . More generally, we get

Sν(V,Λ; q) =
∑
i�0

(−1)i Tr(F ν | H i
c(V̄ , ρ))

(when passing from Fq to Fqν , V̄ doesn’t change, but the Frobenius becomes x 	→
xqν

, with inverse F ν).

Example 14 (Counting points). In the particular case where Λ(x) = 1 (i.e., ρ is the
trivial representation), we get a formula for the number of Fq-rational points on V :

|V (Fq)| =
∑
i�0

(−1)i Tr(F | H i
c(V̄ )), H i

c(V̄ ) = H i
c(V̄ , trivial). (13)

The existence of such a formula was already conjectured by Weil, based on
various examples (in particular, curves, see Example 16). However, Weil did not
know how to define the spaces H i

c(V̄ ) in general.
Weil showed how such a formula implied the rationality of the relevant zeta

function. Indeed, coming back to the general case, let [V̄ ] denote the set of orbits of
F acting on V̄ (if V = A1, this can be identified with the set of irreducible monic
polynomials in Fq[T ], each polynomial π corresponding to the set of its roots, which
is a single orbit because of irreducibility). For [x] ∈ [V̄ ], let deg(x) be the number of
elements in this orbit and |x| = qdeg(x). Then, define

L(V, ρ) =
∏

[x]∈[V̄ ]

det(1 − T deg(x)ρ(Frx,|x|))−1

which is a type of Euler product, seen here as a formal power series in k[[T ]] (or
indeed in Q[[T ]], if ρ = 1).

Now, a familiar computation leads to the alternate expression

L(V, ρ) = exp
(∑

ν�1

Sν(V,Λ; q)T ν

ν

)
,

(which can also be taken as the definition of the L-function of ρ). From this, we see
that (as formal power series) we have

T
L′

L
(V, ρ) =

∑
ν�1

Sν(V,Λ; q)T ν ,
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and an application of the trace formula (for each ν) gives

T
L′

L
(V, ρ) =

2d∑
i=0

(−1)i
∑
ν�1

Tr(F ν | H i
c(V̄ , ρ))T ν

= −
2d∑
i=0

(−1)iT
d

dT
log det(1 − TF | H i

c(V̄ , ρ)),

and hence implies the rationality

L(V, ρ) =
P1(T ) · · ·P2d−1(T )
P0(T ) · · ·P2d(T )

where
Pi(T ) = det(1 − TF | H i

c(V̄ , ρ)). (14)
Note also that, for each factor Pi(T ) of the L-function, we have a spectral

interpretation of its zeros, as related to the eigenvalues of the Frobenius acting on
H i

c(V̄ , ρ). At this point one must however still be careful that Pi is, a priori, in
k[T ], and its eigenvalues may be arbitrary elements of k (in particular, they could
be non-algebraic, and the algebraicity of S(V,Λ; q) might arise by cancellation of
transcendental terms).

Example 15 (0-dimensional case). Only one example of the Lefschetz trace formula
can be presented completely elementarily, namely the case where V is 0-dimensional
and ρ = 1 (although V is not connected then in general, the situation is simple
enough to analyze). If V/Fq is defined as the zero set of a non-zero polynomial
f ∈ Fq[X], the set V̄ is just the collection of all zeros in an algebraic closure (note
that multiplicity is allowed), permuted by the Frobenius F . We therefore get

|V (Fq)| = |{x ∈ Fq | f(x) = 0}| = Tr(F | H0
c (zeros of f))

and this is interpreted as follows: the space H0
c is here d-dimensional, where d = |V̄ |

is the number of distinct zeros of f in an algebraic closure; moreover, one can find
a natural basis (ex)x∈V̄ of H0

c in such a way that the induced action of Frobenius is
determined by

F (ex) = eF (x).

In other words, F is a permutation matrix in the basis (ex), associated to the
permutation of the roots induced by the Frobenius. Then the trace formula becomes
the well-known fact that the trace of a permutation matrix is the number of fixed
points of the permutation.

The zeta function identity

L(V, 1) =
∏

[x]∈[V̄ ]

(1 − T deg(x))−1 =
1

det(1 − TF | H0
c (V̄ ))

(15)

is also clear, since the product on the left-hand side is finite: it represents the fac-
torization of the characteristic polynomial of a permutation matrix as a product of
cyclotomic factors (1− T a) where a runs over the lengths of the cycles occurring in
a representation of a permutation as a product of disjoint cycles.
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Example 16 (Algebraic curves). For a smooth projective geometrically connected
curve C/Fq (e.g., a curve y2 = f(x), with f squarefree of odd degree, with the
addition of a point at infinity), we get

exp
(∑

ν�1

|C(Fqν )|T ν

ν

)
=

P1(T )
P0(T )P2(T )

,

where deg(P1) = 2g, g � 0 being an important invariant called the genus of the
curve. One can show easily that P0(T ) = 1 − T and P2(T ) = 1 − qT (the latter is
related to (17)). The polynomial

P1(T ) = det(1 − TF | H1(C̄, trivial)) =
∏

1�j�2g

(1 − αjT ), (16)

which is often called the L-function of C, satisfies the functional equation

P1(T ) = qgT 2gP1

( 1
qT

)
,

which amounts to saying that one can order the roots αj in pairs so that αjα2g+1−j =
q for 1 � j � 2g.

The Riemann Hypothesis, in this case, is the statement that |αj | =
√

q for
all j, but notice that, although we have a spectral interpretation via the Frobenius
automorphism acting on cohomology, this is not sufficient to obtain this!

This case of the Riemann Hypothesis was first proved by Weil, who used con-
structions related to the Jacobian variety of the curve and torsion points to – in
effect – construct the dual of the necessary cohomology groups.

Remark 17. The definition and construction of the étale cohomology groups H i
c(V̄ , ρ)

is a deep and subtle achievement which is unfortunately hard to explain in a few
words, even to an audience familiar with classical algebraic topology. The proof of
the trace formula, even given this construction, is also difficult. The simplest case
(after the 0-dimensional one) is that of counting points on elliptic curves, in which
case the elementary theory of isogenies and of the Weil pairing can lead to a relatively
elementary proof (see [23, §V.2]).

Here is a very simple observation that can at least give a first impression of
what is happening:

• Localizing close to a point x in the Zariski topology amounts to allowing “new”
functions 1/f , where f is regular at x, but may vanish elsewhere;

• “Localizing” close to x in the étale topology allows new functions g(x) which
satisfy (separable) algebraic equations, e.g., g(x) =

√
x on Gm, “defined” via

the second projection

R = {(x, y) | x = y2} −→ Gm.

It may be noticed that the second case is very close to the idea of Riemann for
defining Riemann surfaces of algebraic functions.
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From the point of view of finding estimates for S(V,Λ; q), nothing is achieved
purely from applying the trace formula to get (12), despite its fundamental nature,
because the right-hand side is not yet under control: each individual term in the
alternating sum might be extremely large (not to mention the fact that, in principle,
these terms are in the field k, and not in C, and might not be algebraic). However,
it was part of Weil’s conjecture that the situation should in fact be much better
than this: under appropriate circumstances, for Λ = 1, Weil conjectured that the
Frobenius acting on each cohomology group H i

c should have eigenvalues which are
q-Weil numbers of weight exactly i.

This conjecture was proved by Deligne [5], who then succeeded in [6] in finding
a much more general statement which encompasses all the algebraic sums we have
considered – well beyond the original Weil conjectures:

Theorem 18 (Deligne). Let q be a power of a prime p, m ∈ Z, and consider an
algebraic exponential sum over Fq,

S(V,Λ; q) =
∑

x∈V (Fq)

Λ(x)

where V/Fq is a connected algebraic variety of dimension d, and Λ(x) = Tr ρ(Frx,q)
is the trace function associated to a lisse sheaf of weight m on V .

Then, for every i, 0 � i � 2d, every eigenvalue of F acting on H i
c(V̄ , ρ) is a

q-Weil number – in fact, also an algebraic integer – of some weight, which is � m+i.

Under nice circumstances (related to smoothness and compactness and usu-
ally involving some form of Poincaré duality to transform upper bounds into lower
bounds, or in analytic terms, related to the existence of a good functional equation
for the L-functions), this can be refined to an equality: the eigenvalues α for H i

c are
then q-Weil numbers exactly of weight m + i. This was the case of the original Weil
conjectures, but is not true in general.

Example 19. (1) Consider counting points on Gm/Fq. Of course, the answer is
known: |Gm(Fq)| = q − 1. In the cohomological interpretation, we have H2

c (Ḡm) of
dimension 1 with F acting by multiplication by q, H1

c (Ḡm) of dimension 1, with F
acting by multiplication by 1, and H0

c (Ḡm) of dimension 0.
More generally, if V is of dimension d, the formula (13) and Theorem 18 lead

to
|V (Fqν )| = Tr(F ν | H2d

c (V̄ , trivial)) + O(qν(d−1/2))
for ν � 1, where the implied constant depends on V̄ . Intuitively, we expect this
number of points to be of order of magnitude qνd (by comparison with affine space
of dimension d), and this can be confirmed using one of the few general formulas for
computing cohomology: for V/Fq smooth,13 and for any lisse sheaf ρ : π1(V ) −→
GL(r, k) on V , we have

H2d
c (V̄ , ρ) � ρπ1(V̄ ) (17)

13 In terms of equations (Fi) for V , this means that there is no point on V where all the partial

derivatives ∂xjFi vanish.
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where the right-hand side, the coinvariant space of ρ under the action of the geo-
metric fundamental group (see Remark 9), is defined as the quotient k-vector space

kr/〈ρ(g)v − v, v ∈ kr, g ∈ π1(V̄ )〉
(the largest quotient of kr on which π1(V̄ ) acts trivially).

For the trivial sheaf, r = 1 and ρ(g)v = v for all v and g, so we find that
H2d

c (V̄ , trivial) is of dimension 1. The action of F on this space can also be computed
to be multiplication by qd, if V is geometrically irreducible, and it follows that we
have

|V (Fqν )| = qνd + O(qν(d−1/2)) (18)

for ν � 1 (the implied constant depending on V/Fq). In fact, this asymptotic formula
was first proved by Lang and Weil (by reducing to the case of curves), and it is
equivalent with the assumption of geometric irreducibility.14

(2) One can easily illustrate on simple examples what happens if V/Fq is not
geometrically irreducible. Take for instance the curve with equation

V : x2 + y2 = 0.

If −1 is not a square in Fq, let ε ∈ Fq2 such that −1 = ε2. Over Fq2, the
equation of the variety splits as

(x + εy)(x − εy) = 0,

and so V̄ is the union of two lines in the plane, but those two lines are not defined
over Fq, only over Fq(ε) = Fq2 (and the Frobenius of Fq exchanges them since
F (ε) = −ε). We get

|V (Fq2ν )| = 2q2ν − 1, |V (Fq2ν+1)| = 1,

for ν � 1.
Thus if some components of V/Fq are only defined over finite extensions of Fq,

one may obtain different leading terms for V (Fqν ) depending on the value of ν. This
is also clear when V is of dimension 0, defined by the single equation F (x) = 0 in
one variable: if there are ni distinct irreducible factors of F of degree i, we have

|V (Fqν )| =
∑
i|ν

ni.

(3) In terms of L-functions, we can factor each polynomial Pi given by (14) as

Pi(T ) =
∏

1�j�dimHi
c

(1 − αj,iT )

with αj,i running over the eigenvalues of F on H i
c(V̄ , ρ). For the complex function

Pi(q−s), s ∈ C, Deligne’s Theorem translates to the following analogue of the clas-
sical Riemann Hypothesis: the zeros of Pi(q−s) lie on a union of finitely many lines
of the type Re(s) = j/2, where j is an integer such that j � m + i.

14 For some analytic applications, this means it can sometimes be used to check the latter, instead

of using more algebraic results.
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(4) In cohomological terms, Deligne’s proof of the bound (3) for Hyper-Klooster-
man sums was obtained by showing that for the relevant additive character sum on
V = Gn−1

m (see (6)), we have

H i
c(V̄ ,Λ∑

Xi+a/
∏

Xi
) = 0

if i �= n − 1, while
dimHn−1

c (V̄ ,Λ∑
Xi+a/

∏
Xi

) = n.

Since, for character sums, the summand has weight 0, we get the upper bound
(3). In fact, in that case, Deligne also showed that the eigenvalues on Hn−1

c are all
of weight n − 1.

(5) In [5], Deligne also proved the following remarkable estimate for additive
character sums (which Weil had proved for n = 1): consider

ΛF (x) = e
(F (x)

p

)
,

where F ∈ Fq[X1, . . . ,Xn] is a polynomial of degree d, with (d, p) = 1, in n variables
such that the homogeneous part of degree d, say Fd, defines a smooth projective
hypersurface (for instance, Fd = Xd

1 +· · ·+Xd
n; the components of smaller degree can

then be chosen arbitrarily). Then, considering the sums over V = An/Fq, Deligne
proved that

H i
c(V̄ ,ΛF ) = 0 if i �= n, dim Hn

c (V̄ ,ΛF ) = (d − 1)n.

Hence we get the uniform upper bound∣∣∣ ∑
x1,...,xn∈Fp

e
(F (x)

p

)∣∣∣ � (d − 1)npn/2 (19)

for such polynomials. Here also, Deligne proved that the eigenvalues in Hn
c are all

of weight exactly n.

As these examples suggest, Deligne’s Theorem 18 becomes very powerful when
combined with computations of the dimension of the cohomology groups, in partic-
ular with results of vanishing of cohomology groups. Indeed, a rough general bound
that can be obtained is ∣∣∣ ∑

x∈V (Fq)

Λ(x)
∣∣∣ � Cqm+k/2 (20)

where
k = max{i | H i

c(V̄ , ρ) �= 0}, C =
∑

i

dim H i
c(V̄ , ρ). (21)

The trivial bound, in view of the point counting formula (18), is k = 2d, where
d is the dimension; if one can show that k < 2d, a non-trivial estimate immediately
follows for the sums Sν(V,Λ; q) as ν → +∞ (i.e., for the vertical direction; in hor-
izontal direction, one needs to control C, which depends on p). This basic goal is
often easy to derive from the coinvariant formula (17).
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Example 20 (Ubiquity of non-trivial bounds). Consider a character sum associated
with the summand (5). In this case, the underlying lisse sheaf is the character χf,g :
π1(V ) → k× such that (7) holds, so the rank is 1. Consequently, the coinvariant
space, which is H2d

c (V̄ , χf,g) can only be of dimension 0 (in which case we get that
k < 2d) or 1, and the second case is only possible if χf,g is trivial on π1(V̄ ). This does
not mean, however, that χf,g is entirely trivial – as we mentioned in Remark 9, the
Frobenius conjugacy classes do not belong to π1(V̄ ). But it shows that χf,g(γ) only
depends on the image of γ in the quotient group π1(V )/π1(V̄ ). This group is known,
by Grothendieck’s theory, to be isomorphic to Ẑ, and because we have Frx,qν 	→ −ν in
this isomorphism, this means concretely that in this situation, χf,g(Frx,qν ) depends
only on ν. In particular, this implies that Λf,g(x) is constant for every x ∈ V (Fq).

We can summarize this roughly as follows: for a character sum, either the
summand is constant (and no cancellation can be expected!), or there is some non-
trivial (vertical) estimate. Observe also how the underlying group structure was used
to derive this conclusion.

Obtaining a non-trivial bound is, however, sometimes not sufficient. One often
requires the best possible situation, in which we have k = d (the dimension of V , as
we saw in Example 5 for equidistribution of angles of Gauss sums), together with
an explicit formula or upper bound for C. Hyper-Kloosterman sums and Deligne
polynomials are of this particularly nice type, and it remains an active area of
research to give convenient criteria to compute k and C for “concrete” exponential
sums, and in particular to bound C uniformly with respect to various parameters
that may occur.

Example 21 (Uniformity). We illustrate this last point in the case of character sums.
Here, the most important dependency in analytic applications is that with respect
to p. The basic problem is that even if the parameter variety V is defined uniformly
(by reduction modulo primes of equations which are independent of p, the basic
examples being affine spaces and Gm), and even if the summands are defined (say)
by (5) with g = 1 and a fixed polynomial f with integral coefficients (which can
again be reduced modulo every primes to construct the corresponding sums over
V (Fp)), it remains a fact that the sheaves which encode those summands are, a
priori, constructed for each p separately, hence the corresponding C depends on p.

Examples like Deligne polynomials suggest that C should be independent of
p, or at least bounded independently of p. This was confirmed by Bombieri, using
p-adic techniques to complement the 
-adic formalism, then extended by Adolphson
and Sperber for all character sums, and the most general version is due to Katz [16].

Applied in the way we have sketched in this section, the formalism of the trace
formula and the Riemann Hypothesis can be seen as a way of re-expressing exponen-
tial sums (in a highly non-trivial, indeed, non-combinatorial way) as another sum,
where a usually non-trivial estimation is possible by using that bluntest of tools, the
triangle inequality.
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5. Families, monodromy and Deligne’s equidistribution
theorem

The last remark of the previous section strongly suggests that, although estimates
like (19) might be best possible in vertical respect, some improvements should hold
in cases where the cohomology groups involved have high dimension.

For instance, a character sum over Fn
p with a Deligne polynomial in n � 2

variables and of degree d is expressed as a sum of (d− 1)n Weil numbers, each with
modulus pn/2, say

pn/2e2iπθp,j(F ), 1 � j � (d − 1)n,

where the phases θp,j(F ) ∈ [0, 1] might be expected to be themselves quite random.
Summing those Weil numbers could therefore be expected to lead to smaller values
of the sums

∑
x1,...,xn∈Fp

e
(F (x)

p

)
= pn/2

(d−1)n∑
j=1

e2iπθp,j(F )

at least for most polynomials F , with respect to the factor (d − 1)n (resulting from
the triangle inequality), not the exponent n/2.

It is indeed possible to analyze this situation, and the technique used is very
similar to the one leading to the proof of the average Sato-Tate law (Example 4),
exploiting to the full the formalism of general algebraic sums. The first – and crucial
– point is that, if we fix d and n and a prime p � d, the set of relevant Deligne
polynomials with coefficients in any extension field Fq/Fp is itself the set of Fq-
points of some algebraic variety D(d, n)/Fp. Indeed, Deligne polynomials of degree
d in Fq[X1, . . . ,Xn] are in one-to-one correspondence with the tuples of coefficients
(αM )M where M runs over the set of monomials M = Xm1

1 · · ·Xmn
n in n variables

which are of degree � d, and those are subject only to the condition that the sum∑
deg(M)=d

αMM

defines a smooth projective hypersurface, which is a condition which can be expressed
using finitely many polynomial conditions (vanishing or non-vanishing) among the
coefficients αM with deg(M) = d.

Example 22 (Quadratic Deligne polynomials). Consider n = d = 2; then D(2, 2) �
U(2, 2) × A3 where U(2, 2) ⊂ A3 with coordinates A, B, C is defined by the dis-
criminant equation

AC − B2 �= 0,

which can be represented as a subset of A4 with coordinates A, B, C, D defined by

D(AC − B2) = 1.
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Coming back to general Deligne-type sums, this particular structure of the
family of Deligne polynomials can be used to prove that the assignments

Λ

{
D(n, d)(Fq)

S−→ k
F 	→ S(An,ΛF ; q)

(where k is a suitable extension of Q�, for 
 �= p, containing the p-th roots of unity)
are suitable summands for algebraic sums over D(d, e)(Fq), or in other words, there
exists a lisse sheaf

ρn,d : π1(D(n, d)) → GL((d − 1)n, k)
such that

Tr ρn,d(FrF,q) =
∑

x1,...,xn∈Fq

e
(TrFq/Fp

F (x)
p

)
= qn/2

(d−1)n∑
j=1

e2iπθq,j(F )

for any q and F ∈ D(n, d)(Fq).
This is quite a general feature, and N. Katz has exploited such constructions

in a virtuosic way in many works (see, e.g., [14], [17], [12], or his book with P.
Sarnak [18]) to study distribution properties of families of algebraic sums and their
associated L-functions. These constructions are again quite difficult, and depend on
the general framework of algebraic geometry in a rather sophisticated way.

Example 23 (Kloosterman sheaf). Consider (once more) Hyper-Kloosterman sums

HK(n, a; q) =
∑

x1,...,xn∈Gm(Fq)
x1···xn=a

e
(TrFq/Fp

(x1 + · · · + xn)
p

)
.

Here, Deligne (and Katz) showed that, for every prime p, there exists a lisse
sheaf (now called a Kloosterman sheaf) on Gm/Fp, which we denote HK(n; p), with
the property that

Tr(Fra,q | HK(n; p)) =
HK(n, a; q)

q(n−1)/2 (22)

for all q = pν and a ∈ Gm(Fq). For n = 2, this means that the wild surmise (10) in
Example 10 is indeed correct.

We now consider an arbitrary algebraic sum, and we look at the distribution of
the conjugacy classes ρ(Frx,q), for x ∈ V (Fq). Those lie in GL(r, k), but since their
eigenvalues are algebraic numbers (being q-Weil numbers), there exists matrices in
GL(r,C) with the same eigenvalues, which we denote ρ(Frx,q)C temporarily. If ρ is
of weight m, the conjugacy class

Θ(Frx,q) = q−m/2ρ(Frx,q)C, (23)

can now be interpreted as a conjugacy class in the unitary group U(r,C) (indeed,
all its eigenvalues are of modulus 1). In the example above, this is just the conjugacy
class with eigenvalues e2iπθq,j(F ).

Deligne’s Equidistribution Theorem does two things: first, it shows that these
conjugacy classes always satisfy some form of equidistribution statement similar to
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the average Sato-Tate law (in the vertical direction for x ∈ V (Fqν ) where ν → +∞,
at least, and quite often also for “horizontal” limits); second, it gives an interpreta-
tion of the precise shape of this law. This description is in terms of the algebraic data,
and is another illustration of the “expressiveness” of the group-theoretic framework
(compare with the discussion in Example 20).

This second step is important, because it leads in fact to a much quicker proof,
by suggesting the right set of test functions for an application of the Weyl Criterion
for equidistribution. In principle, it is also very simple: intuitively, the statement is
that the limiting measure is the natural probability measure on the set of conjugacy
classes of the smallest compact group for which such a statement is possible.

To give a precise formulation requires some care because of technical issues,
related partly to the problem of apparent incompatibility of the topology on π1(V )
(in which Frobenius classes lie) and the unitary groups U(r,C) (in which we aim to
get some equidistribution), and partly to the fact that the unitary conjugacy class
Θ(Frx,q) might be “too big”: it might not reflect fully the Frobenius conjugacy class
within π1(V ).

This explains the slightly awkward statement of the following preliminary (im-
perfect) version of Deligne’s theorem:

Theorem 24 (Deligne). Let V/Fq be a smooth, connected, geometrically irreducible,
algebraic variety, and let ρ be a lisse sheaf on V of weight m. For ν � 1, x ∈ V (Fqν ),
let Θ(Frx,qν ) = q−νm/2ρ(Frx,qν )C be as before.

Then there exists a compact subgroup K of U(r,C) such that, for every ν �
1 and x ∈ V (Fqν ), the unitary conjugacy class Θ(Frx,qν ) intersects K, and the
conjugacy class of Θ(Frx,qν ) in K is uniquely defined, and such that, moreover, as
ν → +∞, the finite sets given by{

V (Fqν ) −→ K	

x 	→ Θ(Frx,qν)

become equidistributed in K	 with respect to the natural probability measure, where
K	 is the space of conjugacy classes of K.

Before giving some clarifying remarks and stating another (better) version of
this theorem, we recall the definition of the limiting measure: for any compact group
K, there exists a unique Borel measure μK (the probability Haar measure) on K

which is normalized by μK(K) = 1 and is translation invariant :∫
K

f(xy)dμK(x) =
∫

K
f(yx)dμK(x) =

∫
K

f(x)dμK(x)

for any f ∈ L1(K). Then, the set K	 of conjugacy classes in K inherits a probability
measure μ	

K through the quotient map K −→ K	; concretely, we have∫
K�

f(θ)dμ	
K =

∫
K

f(x)dμK(x)

if f : K → C is invariant under conjugation (e.g., if f is a symmetric function of
the r eigenvalues, for K = U(r,C)).
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Example 25 (Group-theoretic interpretation of the Sato-Tate law). In the case of
the average Sato-Tate law, the relevant group is SU(2,C), the special unitary group
of size 2. The conjugacy classes in this group are all given by(

eiθ 0
0 e−iθ

)
with θ ∈ R, and if we restrict to θ ∈ [0, π], then each conjugacy class is repre-
sented uniquely (because the matrices corresponding to θ and −θ are conjugate in
SU(2,C)). Note that the conjugacy classes in U(2,C) associated to Kloosterman
sums are indeed of this type (see (8)).

Since twice the cosine function is a bijection [0, π] 2 cos−→ [−2, 2], we can also
represent the set of conjugacy classes by the closed interval [−2, 2]. It turns out
that,15 in terms of the coordinate θ, the measure μ	

SU(2) is given by∫
SU(2)�

f(θ)dμ	
SU(2) =

2
π

∫ π

0
f(θ)(sin2 θ)dθ.

This is the group-theoretic explanation of the Sato-Tate measure. In particular,
if we compare with the normalized Lebesgue measure, the factor sin2 θ reflects the
non-commutativity of the group SU(2).

As stated, Theorem 24 is still unsatisfactory, mainly because it does not provide
an a priori description of the group K starting merely from the algebraic data
involved (the algebraic variety V and the lisse sheaf ρ), and especially does not give
any hint of the way this group might be computed for a particular case (e.g., for the
proof of average Sato-Tate conjecture).

We will now explain how this is remedied. Although the reformulation is more
abstract, the outcome well repays the effort that may be involved. The basic obser-
vation is that since ρ is a homomorphism

ρ : π1(V ) −→ GL(r, k),

the most obvious group to look in for equidistribution of Frobenius classes (which
we know are dense in π1(V )) is the image group ρ(π1(V )) ⊂ GL(r, k). However, this
group of matrices with entries in k is on the other side of the mirror from the unitary
group U(r,C), and we can not even hope to map to C in a reasonable way using a
chosen embedding ι : k̄ ↪→ C (since ι is not continuous, the image ι(ρ(π1(V ))) will
not be closed or compact or anything).

However, we can observe that ι (being a field homomorphism) does allow al-
gebraic relations to transfer. So we can consider the collection Iρ of all polynomial
relations (with coefficients in k̄) valid on ρ(π1(V )) – the variables being the entries of
the matrices, and the inverse of the determinant –; then ι(Iρ) is a set of polynomials
with coefficients in C, and we can define a group, called the arithmetic monodromy
group16 of the lisse sheaf ρ, as the set of g ∈ GL(r,C) for which all relations in

15 This is a special case of the so-called Weyl Integration formula.
16 Properly speaking, relative to ι; in fact, most texts define it as the subgroup of GL(r, k̄) where

all relations hold, and only map later to C.
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ι(Iρ) are valid. We denote this group Garith(ρ). Similarly, the geometric monodromy
group of ρ, denoted Ggeom(ρ), is the subgroup of Garith(ρ) of matrices satisfying all
relations in ι(Igeom

ρ ), where Igeom
ρ is the set of polynomial relations satisfied by the

subgroup ρ(π1(V̄ )) ⊂ ρ(π1(V )).

Example 26. (1) Suppose det(ρ(g)) = 1 for all g ∈ π1(V ). This is an algebraic
relation, and hence (since ι(1) = 1) we have Garith(ρ) ⊂ SL(r,C). Similarly, if we
have det(ρ(g))h = 1 for all g ∈ π1(V ), for some fixed h � 1, we have

Garith(ρ) ⊂ {g ∈ GL(r,C) | det(g)h = 1}.
(2) Suppose r = 2g is even and there is a non-degenerate alternating form 〈·, ·〉

on k2g such that the image of ρ lies in the group

Sp(〈·, ·〉, k) = {g ∈ GL(r, k) | 〈g(v), g(w)〉 = 〈v,w〉 for all v,w ∈ k2g}
of symplectic automorphisms of k2g with respect to this pairing. Then, since these
conditions can be phrased polynomially, one can transfer the pairing by ι to a non-
degenerate alternating form on C2g such that the arithmetic (and geometric) mon-
odromy group is a subgroup of Sp(2g,C) with respect to this pairing. Similarly for
a symmetric pairing. And because all alternating (resp. symmetric) bilinear forms
on C are equivalent, up to to a linear change of variable, it is usual in this situation
to omit specific mention of the bilinear form.

The operation just performed17 is summarized in the language of algebraic
geometry by saying that Garith(ρ) (resp. Ggeom(ρ)) is the image under ι of the Zariski
closure18 of ρ(π1(V )) (resp. ρ(π1(V̄ ))); topologically, one exploits the fact that ι is
continuous for the (rather weak) Zariski topology.

This abstract definition turns out to be remarkably useful. If it looks unfamiliar,
it is important to realize that the step of taking the Zariski closure is immensely
simplifying : because Ggeom(ρ), by definition, is defined by polynomial equations as
a subgroup of GL(r,C), it is a much more rigid object than an arbitrary subgroup.
This translates into the fact that there are fewer possibilities, and hence that it is
often possible to classify the possible choices of Ggeom(ρ) and compute it.

We will now present a better version of Deligne’s Equidistribution Theorem.
This will introduce the further restrictions on ρ that it be of weight m = 0, and that
ι(ρ(π1(V ))) ⊂ Ggeom(ρ): these amount to a suitable normalization of the Frobenius

17 Its relevance was essentially realized by Grothendieck, and it was of course exploited masterfully

by Deligne, though the thought process involved was certainly different (historians will notice that [6,

1.1.15] defines the monodromy group to be ρ(π1(V̄ )), and does not give a name to the Zariski closure,

though it is used extensively from [6, 1.3.7] onward.)
18 The Zariski closure DZar of any subset D ⊂ kn, where k is algebraically closed, is the set of

points in kn which satisfy the same polynomial equations as the points of D:

DZar =
⋂

F∈I(D)

{y ∈ kn | F (y) = 0},

where

I(D) = {F ∈ k[X1, . . . , Xn] | F (x) = 0 for all x ∈ D}.
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conjugacy classes (in other words, they can be achieved by a proper algebraic ana-
logue of the division by qm/2 in the definition of the naive unitary classes (23); for
Kloosterman sums, this is the step that passes from the sheaf HK1 of weight 1 –
see (11) –, to the actual Kloosterman sheaf HK, which is of weight 0).

Under these conditions, the subgroup K can be identified as a maximal compact
subgroup19 of Ggeom(ρ); the apparent ambiguity is resolved by the fact that, for the
groups that occur, all such maximal compact subgroups are conjugate in Ggeom(ρ),
hence have “identical” spaces of conjugacy classes, which is where the Frobenius
conjugacy classes lie.

Example 27 (“Big” symmetry groups). In practice, the following three groups are
the most important: in many contexts, the group Ggeom(ρ) turns out to be either one
of them, or to contain one of them as a subgroup with finite index. In Example 33
below, we will give concrete instances of families leading to these groups.

1. The group SL(r), for some r � 1, has (in its incarnation over C) maximal
compact subgroup SU(r,C). It is, essentially, the largest possible subgroup of
U(r,C) that can occur as Ggeom(ρ) for ρ of rank r. This is because there are
general structural properties (due to Grothendieck and Deligne), which imply
that the connected component of the identity G0 in Ggeom(ρ) is semisimple,
under fairly general conditions ([6, Cor. 1.3.9]) – this means that it does not
contain any connected abelian non-trivial normal subgroup, in particular the
center is finite. It follows that if Ggeom(ρ) contains SL(r), it is of the form

{g ∈ GL(r) | det(g)h = 1}
for some integer h � 1, with maximal compact subgroup Uh(r,C) consisting of
unitary matrices with determinant an h-th root of unity.

2. The group Sp(2r,C), defined as the group of elements in GL(2r,C) preserving
a given non-degenerate alternating bilinear form 〈·, ·〉, has maximal compact
subgroup USp(2r,C) = U(2r,C) ∩ Sp(2r,C). Concretely, a conjugacy class
in USp(2r,C) is determined by its reversed characteristic polynomial det(1 −
Tg) ∈ C[T ], which is a polynomial with 2r roots which can be put into r
pairs of inverses (eiθj , e−iθj ), with θj ∈ [0, π], 1 � j � r. This group occurs
typically for families of L-functions of algebraic curves over finite fields (see
Example 16); as we saw, the pairing of roots can be seen as a reflection of the
functional equation of the L-function. Geometrically, it is known that there
exists a non-degenerate alternating bilinear form on H1

c (C̄), which is preserved
by the unitarized Frobenius.

3. The group O(r,C), or its subgroup SO(r,C) of index 2, is defined as the ele-
ments in GL(r,C) (resp. SL(r,C)) which preserve a non-degenerate symmetric
bilinear form. Its maximal compact subgroup is O(r,R) (resp. SO(r,R)), the
corresponding real groups. Note that for r even, the eigenvalues come again in
r pairs of inverses, so a conjugacy class in SO(2r,R) looks exactly like one in
USp(2r,C); however, the measures on SO(2r,R)	 and USp(2r,C)	 are distinct

19 Maximal with respect to inclusion.
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(see, e.g., [18, 5.0.4, 5.0.6] for the Weyl formula which shows this). The underly-
ing orthogonal or symplectic symmetry of a sheaf is therefore not immediately
visible by looking simply at the Frobenius conjugacy classes.

Orthogonal (and special orthogonal) symmetry is found, for instance, in
families of elliptic curves over function fields.
A basic guideline is that, unless and until one has reason to think otherwise,

one should expect that Ggeom(ρ) will be of one of those three types. In Example 31,
we will explain some recent ideas of Larsen and Katz that give quite simple criteria
to (essentially) check if this holds, in very concrete (in fact, numerically testable)
arithmetic ways.

With all this done, we can now state Deligne’s equidistribution theorem:

Theorem 28 (Deligne). Suppose V/Fq is smooth and geometrically connected,20 and
assume ρ is a lisse sheaf of weight 0 on V with the property that, for the fixed
ι : k̄ ↪→ C as above, we have ι(ρ(π1(V ))) ⊂ Ggeom(ρ). Let K be a maximal compact
subgroup of Ggeom(ρ). For ν � 1 and x ∈ V (Fqν ), write

ι(Frx,qν ) = Θx,qνUx,qν (24)

where Θx,qν is diagonalizable, Ux,qν is unipotent,21 and they commute.
Then, as ν tends to infinity, the finite sets given by{

V (Fqν ) −→ K	

x 	→ Θx,qν

become equidistributed in the space K	 of conjugacy classes of K, with respect to its
natural probability measure.

This is a slightly simplified variant of [18, Th. 9.2.6]; it is not difficult to recover
the preliminary statement of Theorem 24 from it, but it is probably best to simply
forget that earlier version.

Remark 29 (Diagonalizability). It is conjectured that (in most cases at least)
ρ(Frx,qν ) is always diagonalizable (or semisimple, as the proper terminology has
it), so that the diagonalization step (24) is not necessary. This is the case for curves
(due to Weil), and also holds (for a given x) whenever the eigenvalues of ρ(Frx,qν )
are all distinct.

This theorem is a powerful confirmation that the viewpoint on algebraic sums
associated with representations of the group π1(V ) is correct: it provides a clear
explanation of the fact (which is not at all obvious and was partly discovered em-
pirically) that whenever there is some equidistribution in a family of exponential
sums, the limiting measure is associated to some group K. Note that such a direct
explanation is not yet available for other conjectured equidistribution results (see
the last section for examples).

20 These are just for simplicity.
21 This is the Jordan decomposition; it is known that Θx,qν and Ux,qν are in Ggeom(ρ), and that

Θx,qν is conjugate to an element of K.
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Moreover, the proof is quite straightforwardly based on the Riemann Hypothesis
and the general formalism of algebraic sums. Because of this it is highly effective
and uniform, and this allows other variants of Deligne’s Theorem to be proved. We
sketch the argument, because its underlying simplicity is the best justification for the
preparatory definitions (and it illuminates the necessity of the specific normalizing
assumption on ρ).

Sketch of the proof. We use the Weyl Criterion and consider, as basis of functions
on K	 with mean zero, the functions

g 	→ Tr π(g)

where π : K → GL(nπ,C) runs over the non-trivial continuous, irreducible repre-
sentations of K (this means that π is a continuous homomorphism, not = 1, and
that we have

∫
K |Tr π(g)|2dμK = 1).

The main fact one needs to know is that such a representation π corresponds
uniquely to an algebraic22 (non-trivial) irreducible representation

Ggeom(ρ) −→ GL(nπ,C),

and the latter (via ι−1) to an algebraic irreducible representation

ι−1Ggeom(ρ) π̃−→ GL(nπ, k̄),

in such a way that

Tr π̃(ι−1(g)) = Tr π(g), if g ∈ K ⊂ Ggeom(ρ)

(this correspondence is due essentially to H. Weyl, and is often called the unitary
trick ; it has to do with the fact that, for π as above, the trace is a symmetric,
polynomial function, of the eigenvalues of g ∈ K: see (9) for an illustration).

This relation applies in particular to the conjugacy classes Θx,qν (because of the
assumption ι(ρ(π1(V ))) ⊂ Ggeom(ρ)), and therefore we find the basic formula∑

x∈V (Fqν )

Tr π(Θx,qν ) =
∑

x∈V (Fqν )

Tr(π̃ ◦ ρ)(Frx,qν ).

One then shows that π̃ ◦ ρ is itself a lisse sheaf on V of weight 0; consequently,
we can apply to the right-hand side the trace formula and then Deligne’s Riemann
Hypothesis to get the estimate∑

x∈V (Fqν )

Tr π(Θx,qν ) = Tr(F ν | H2d
c (V̄ , π̃ ◦ ρ)) + O(qν(d−1/2))

for ν � 1 (the implied constant is the sum of dimensions of the lower-index coho-
mology groups; compare with (20)). The idea for not looking beyond the topmost
index is that we know that

|V (Fqν ))| = qdν + O(qν(d−1/2))

22 Where algebraic means that the coefficients of the matrices representing these homomorphisms

are polynomials.
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(because V is geometrically connected, as explained in (18)) and thus we obtain

1
|V (Fqν )|

∑
x∈V (Fqν )

Tr π(Θ(Frx,qν )) =
Tr(F ν | H2d

c (V̄ , π ◦ ρ))
qdν

+ o(1)

as ν → +∞. To go further, we use the formula (17):

dimk H2d
c (V̄ , π̃ ◦ ρ) = dimk(π̃ ◦ ρ)π1(V̄ ) = (π̃)ρ(π1(V̄ )).

Now we use the following remark: since π̃ is given by polynomial formulas, the
coinvariant quotient of k̄nπ for the action of ρ(π1(V̄ )) is the same as the coinvariants
for the action of its Zariski closure (or “the same” as those for Ggeom(ρ) on Cnπ). But
since π̃ is irreducible and non-trivial, this coinvariant space is 0. So the cohomology
group H2d

c (V̄ , π̃ ◦ ρ) is in fact 0 (compare Example 20) and we deduce

lim
ν→+∞

1
|V (Fqν )|

∑
x∈V (Fqν )

Tr π(Θ(Frx,qν )) = 0,

as desired. �

Example 30. (1) Analytic number theorists should compare the proof with that
of Dirichlet’s Theorem on primes in arithmetic progressions: the basic strategy is
identical, including the important point that one needs to use the “right harmonics”
for the job.

(2) One goes from Deligne’s Theorem to the average Sato-Tate law in two
steps. One is fairly easy: from the identification of the Haar measure on SU(2)	

as the Sato-Tate measure, we see that to prove the “vertical direction” (with a ∈
Fpν with ν → +∞), it is sufficient to show that K = SU(2) for the Kloosterman
sheaf HK(2; p) of Example 10. In turn, this means that we must show that G =
Ggeom(HK(2; p)) is equal to SL(2). Now, this monodromy group is given a priori
as an algebraic subgroup of GL(2), since HK(2; p) is of rank 2, and as stated in
Example 27, its connected component of the identity is semisimple. One can show
that these conditions only leave the possibilities G ⊃ SL(2), or G finite. One can
show that the second alternative does not hold,23 and moreover check that the
determinant of this Kloosterman sheaf is trivial (because the product of the two
eigenvalues is 1), so that G = SL(2), as desired.

Dealing with the horizontal direction of the average Sato-Tate law (as we stated
it originally in Example 4) requires a more careful proof of Deligne’s Theorem,
leading to a uniform version over varying primes. The point is that, once we have
computed that the geometric monodromy group of HK(2; p) is SL(2) for all (odd)
primes p, we can reproduce the argument in the proof while keeping track of the
dependency on p: for any m � 1, one gets

1
p − 1

∣∣∣ ∑
a∈F×

p

Tr(Symm ◦HK)(Fra,p)
∣∣∣ �

√
p

p − 1
× (h0(p) + h1(p))

23 This is not obvious, of course, but roughly it would imply that the Kloosterman sums are “much

simpler than expected”, and satisfy unrealistic properties – which can indeed be disproved.
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where
hi(p) = dimH i

c(Ḡm,Symm ◦HK(2; p))

(the main term is dealt with, uniformly, because the monodromy group turned out
to be independent of p). The main point is the dependency on p, which is a non-
trivial issue because the sheaves involved depend on p. We refer to [14, Ch. 11, 13]
for statements bounding the dimensions24 of these cohomology spaces (valid in the
greater generality of families of Hyper-Kloosterman sums).

6. Some recent applications

We present here a few fairly recent works involving Deligne’s Equidistribution the-
orem and the Riemann Hypothesis.

Example 31 (The Larsen alternative). The main step in applying successfully
Deligne’s Equidistribution Theorem is often the computation (if possible!) of the
geometric monodromy group. Thanks to fairly recent developments, there are now
very concrete criteria to do this in some cases.

Consider a lisse sheaf ρ of rank r satisfying the assumptions of Theorem 28,
and let G = Ggeom(ρ). For integers k � 1, define

Mk(ρ, ν) =
1

|V (Fqν )|
∑

x∈V (Fqν )

|Tr ρ(Frx,qν)|k,

Mk(ρ) = lim
ν→+∞Mk(ρ, ν).

By Deligne’s Theorem and the definition of equidistribution, we know that the
limit exists and is given by the average

Mk(ρ) =
∫

K
|Tr(θ)|kdμK(θ),

in other words, it contains some basic information on the geometric monodromy
group, through the subgroup K.

Larsen’s Alternative is the following remarkable statement:

Theorem 32 (The Larsen Alternative). Suppose one knows that G = Ggeom(ρ) is
infinite. Then the following holds:

(1) If M4(ρ) = 2, then SL(r) ⊂ G, and SU(r,C) ⊂ K.
(2) If r = 2g is even, r � 3, and there exists a non-degenerate alternating

pairing with respect to which G ⊂ Sp(2g), and if M4(ρ) = 3, then G = Sp(2g) and
K = USp(2g,C).

(3) If r � 3 and there exists a non-degenerate symmetric pairing with respect
to which G ⊂ O(r), and if M4(ρ) = 3, then SO(r) ⊂ G and SO(r,C) ⊂ K.

24 Dimensions of cohomology spaces are commonly called Betti numbers.
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In other words, if Ggeom(ρ) is not finite, one can check that it is one of the three
“big” monodromy groups of Example 27 by “simply” computing M4(ρ). The point
of this is that, if ρ was defined so that the summands Tr(ρ(Frx,qν)) are themselves
concrete exponential sums, it is sometimes possible to use this expression to perform
this computation by the standard analytic tool of expanding the fourth power, and
exchanging the order of summation.

It is equally remarkable that the proof of Theorem 32 is, in fact, not very
difficult (see [13], and see [12] for very general contexts in which the computation of
M4 is possible).

Consider, as an example, the average Sato-Tate conjecture again. For ρ =
HK(2; p), we find that by definition (using the fact that the Kloosterman sums
are real) that

M4(ρ, ν) =
1

pν − 1
1

p2ν

∑
a∈F×

pν

( ∑
x∈F×

pν

e
(Tr(x + ax−1)

p

))4

and it is a classical computation (due, in fact, to Kloosterman, see, e.g., [10, §4.4])
that

M4(ρ, ν) =
2p3ν − 3p2ν − pν − 1

p3ν − pν
−→ 2 = M4(ρ),

confirming that G is either finite, or contains SL(2,C).
Furthermore, part of the beauty of the Larsen alternative is that it is quite

amenable to numerical check: in many cases, one can compute an “empirical” fourth
moment M4(ρ, ν) for a given family of (say) exponential sums and ν small; if this is
found to be close to the expected value (2 or 3), there is strong reasons to believe
that this identifies the relevant monodromy group (up to the finite indeterminacy
noticed above). Of course, proving that this is so might be more difficult...

Example 33 (Symmetry examples). We give examples of families with each of the
three “big” symmetry types (Example 27). These (and similar) examples are related
to the conjectures relating L-functions and Random Matrix Theory, as explained
in detail in [18]. In each case, we look for concreteness and simplicity, and select
examples of 1-parameter families: there are many more (and more general) examples
known!

– [Unitary symmetry] Examples of unitary monodromy are given by some of the
Kloosterman sheaves HK(n; p) of rank n (Example 23). Indeed, Katz [14, 11.1]
proved that the corresponding geometric monodromy group is SL(n) if n and p
are both odd. Concretely, by general facts about equidistribution, this means in
particular (after the horizontality is taken care of, as Katz does) that{HK(n; a, p)

p(n−1)/2 | a ∈ F×
p

}
becomes equidistributed on [−n, n] with respect to the image by the trace Tr :
SU(n,C) −→ [−n, n] of the Haar measure of SU(n,C).
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– [Symplectic symmetry] Symplectic monodromy occurs in families of algebraic
curves. For example, let q be odd and let g � 1 be given. Fix a polynomial f ∈ Fq[X]
which is monic, squarefree, and of degree 2g. Then consider the algebraic curves with
equation

Ct : y2 = f(x)(x − t)

where t is a parameter which is not a zero of f . This condition defines an algebraic
variety U/Fq (the complement of the zeros of f ; it is smooth, connected, geomet-
rically irreducible). For each ν � 1 and t ∈ U(Fqν ), we obtain a smooth projective
algebraic curve C̃t/Fqν of genus g (by adding a point at infinity to Ct), with an
L-function as in Example 16. From the general machinery, Katz and Sarnak [18,
§10.1] show that there exists a lisse sheaf ρf,1 of weight 1 on U/Fq such that

det(1 − Tρf,1(Frt,Fqν )) = L(Ct, T ) = det(1 − TF | H1( ¯̃Ct, trivial)).

The functional equation of the L-functions reflects the fact that there exists a
non-degenerate alternating pairing on the cohomology group for which F acts as a
symplectic similitude; after renormalizing, they obtain a sheaf ρf of weight 0 such
that

det(1 − Tρf (Frt,Fqν )) = L(Ct, q
−ν/2T ),

and then they show that ρf (π1(Ū)) ⊂ Sp(2g), and indeed they prove that

Ggeom(ρf ) = Sp(2g). (25)

As a corollary, for instance, one gets

1
|U(Fqν )|

∑
t∈U(Fqν )

det(1 − ρf (Frt,Fqν ))k −→
∫

USp(2g,C)
det(1 − g)kdμ(g)

=
k∏

j=1

1
(2j − 1)!!

, (26)

as ν → +∞, for any fixed integer k � 1 (the last formula being a result of Keating
and Snaith; recall that (2j − 1)!! = 1 · 3 · · · (2j − 3) · (2j − 1)).

– [Orthogonal symmetry] The simplest examples of orthogonal symmetry are given
by twists of elliptic curves over functions fields. The basic theory, which we illustrate
here, is again due to Katz [17] (there is also a short survey in [20]).

For any odd prime power q � 3, any integer d � 1, consider the elliptic curves
over the field Fq(t) which are given by the Weierstrass equation

Ez : y2 = (td − dt − 1 − z)x(x + 1)(x + t)

where z ∈ Fq is a parameter such that z is not a critical value of td − dt− 1, i.e., not
a value of this polynomial at a root of the derivative; again this condition defines a
parameter algebraic variety U/Fq (which depends on d).

Katz shows that there exists a lisse sheaf ρd,1 on U/Fq, of rank 2d and weight
2, such that the associated L-function (which is defined by the “standard” Euler
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product over prime ideals in Fq[t], with suitable ramified factors, as for L-functions
of elliptic curves over Q) is of the form

L(Ez , T ) = det(1 − Tρd,1(Frz,Fqν )).

After normalization, one obtains as before a sheaf ρd of weight 0, and the theory
provides a non-degenerate symmetric pairing for which ρd takes value in O(2d).
Then, for d � 146 at least and provided (p − 1, d − 1) = 1 and p � d(d − 1)(d + 1),
Katz proves that Ggeom(ρd) = O(2d).

As a cautionary tale, here is an example with finite monodromy (see [12, Re-
mark 3.8.3] for a few more). Consider p = 5 and exponential sums of the type

S(f) =
∑
x∈Fq

e(Tr(f(x))/5)

where q = 5ν and f ∈ Fq[X] is monic of degree 3. There is an algebraic variety
D3/F5 parametrizing the polynomials f , and a sheaf ρ3 of weight 0 and degree 2
such that

Tr(ρ3(Frf,5ν )) =
S(f)
5ν/2

for ν � 1 and f ∈ D3(F5ν ). Katz shows that the corresponding Ggeom(ρ3) is a finite
group (but has M4(ρ3) = 2).

Example 34 (Sieve and families of L-functions). A variant of Deligne’s Equidistri-
bution Theorem is a very general version of the Chebotarev density theorem. This
corresponds to the study of the distribution of ρ(Frx,qν ) for a homomorphism ρ of
the type

ρ : π1(V ) −→ G,

where G is a now an abstract finite group (not necessarily seen as a subgroup of
a matrix group). In that situation, there is no problem of continuity or difficulty
with comparison of 
-adic and complex fields (all data involved involves only al-
gebraic numbers). Because of the uniformity and control afforded by the Riemann
Hypothesis, which is applied to sums of the type∑

x∈V (Fqν )

Trπρ(Frx,qν ),

one can prove very explicit and uniform results (in terms of the group G and even
of V/Fq, see, e.g., [20]).

This type of equidistribution results, in turn, can be combined with ideas of
sieve theory to study certain arithmetic properties of families of L-functions over
finite fields given by

det(1 − Tρ(Frx,qν ))

for some lisse sheaf ρ over V/Fq. Those, in many cases (families of curves, for in-
stance) are integral polynomials, and (following a question of Katz that was first
solved qualitatively by N. Chavdarov), one may ask, for instance, whether they
are irreducible? Another arithmetic question which has attracted some interest is
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whether the order of the group of Fq-rational points of the Jacobian is sometimes a
prime number (or an almost prime)?

The basic tool is the existence (in some circumstances) of homomorphisms

ρ� : π1(V ) −→ GL(r,F�)

for every prime 
 �= p, such that

det(1 − Tρ�(Frx,qν )) ≡ det(1 − Tρ(Frx,qν )) (mod 
),

for every x ∈ V (Fqν ). Controlling the distribution of the Frobenius under ρ�, with
sufficient uniformity with respect to 
, and applying various sieve techniques leads
to many interesting applications.

We illustrate this with one particular result which is especially concrete; it is
found (together with further discussion and applications) in [19, §8], and uses the
families of curves in the symplectic symmetry example above.

Theorem 35. Let q �= 1 be a power of an odd prime. Let f ∈ Fq[X] be squarefree of
degree 2g for some integer g � 1. Consider the family of curves of genus g given by
Ct : y2 = f(x)(x − t), and its L-functions

L(Ct) = P1(Ct) =
∏

1�j�2g

(1 − αt,jT ), where |αt,j | =
√

q.

Then

|{t ∈ Fq | P1(Ct) has “small” Galois group}| � g2q1−γg

for some γg ≈ 1/4g2, and some absolute implied constant.

The meaning of “small” is the following: the existence of g pairs of roots αj , αk

with αjαk = g implies that the splitting field of L(Ct) must have Galois group Gt

isomorphic to a subgroup of the group W2g of signed permutation matrices of size
g (i.e., matrices in GL(g,Z) where there is a single non-zero element in each row
and column, and this element is either 1 or −1). To say that L(Ct) has small Galois
group means that Gt is a proper subgroup of W2g.

A crucial input to this result is a deep fact, due to J-K. Yu (and recently
reproved in greater generality by C. Hall [8]): for the relevant ρ�, the group ρ�(π1(V̄ ))
is (isomorphic to) the group Sp(2g,F�) for all 
 �= 2, p. The symplectic nature of
the polynomials shows this is as large as it can be. Although this is a finite-level
analogue to the computation of geometric monodromy groups (25), this is in fact
significantly more difficult: for instance, for every m � 1, the group

{A ∈ Sp(2g,Z�) | A ≡ 1 (mod 
m)}
has Zariski closure Sp(2g), but of course is trivial modulo 
. So the theorem of Yu
must manage to eliminate this type of possibilities.

Example 36 (A problem of harmonic analysis). Here is a very recent example due
to Bombieri and Bourgain [1], involving “classical” character sums. We select it
(among many applications of the Riemann Hypothesis) to illustrate once more how it
sometimes can be applied for problems which seem apparently very remote – maybe
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this will help readers feel some of the same surprise which must have surrounded
the discovery of the link between exponential sums and algebraic geometry...

In 1980, Kahane had proved the existence of trigometric polynomials Pn of
degree n with coefficients of modulus 1, i.e.,

Pn(θ) =
n∑

m=0

P̂n(m)e(mθ), |P̂n(m)| = 1,

such that
|Pn(θ)| =

√
n + O(n1/2−1/17

√
log n), for all θ ∈ R,

thereby confirming a conjecture of Littlewood (and disproving one of Erdős). His
methods were probabilistic and did not allow the explicit construction of Pn.

In [1], Bombieri and Bourgain give an explicit construction of Pn having the
required property (with the exponent 1/2 − 1/17 replaced by 1/2 − 1/9 + ε for all
ε > 0). One of their tools [1, §21] (by no means the only one!) is an estimate (with
optimal cancellation) for the character sums [1, p. 689]

S(a0, . . . , ad; p) =
∑

(y,x)∈Fp×Fd
p

χ(g(y))e
(a0y

p

) d∏
j=1

χ(fj(xj))e
(yxj + ajxj

p

)
,

where ai ∈ Z, g and the fj are integral polynomials with simple roots (and g is
non-constant, deg(fj) � 2). In fact, Bombieri and Bourgain [1, Lemma 33] prove
that

S(a; p) � p(1+d)/2,

the implied constant depending only on d and deg(g). Interestingly, their proof is
an “elementary” argument based on the cohomological formalism and the Riemann
Hypothesis,25 which (in view of the fact that the number of variables is arbitrarily
large) is a striking illustration of its power, and its versatility when combined with
other tools (and certainly with clever ideas)...

7. Problems and speculations

To conclude this survey, we list – rather briefly – some problems and conjectures
surrounding the Riemann Hypothesis over finite fields, emphasizing those closely
connected to practical problems in analytic number theory.

– What happens when we consider character sums with “large degree”, where the
(known) degree of the L-function overwhelms the saving from the Riemann Hypoth-
esis? For instance, consider a character sum∑

1�x�p

e
(f(x)

p

)

25 They also note that Katz has given a faster argument when deg(g) � 1+ d, using more algebraic

geometry.
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where f ∈ Z[X] is such that deg(f) > p1/2. The Riemann Hypothesis gives only
(via (20)) the bound ∣∣∣ ∑

1�x�p

e
(f(x)

p

)∣∣∣ � (deg f)
√

p

which is worse than trivial! There have been quite a few investigations of such
problems, in particular due to Bourgain, Konyagin, Heath-Brown, and these have
shown that this type of questions is closely related to additive combinatorics and
the sum-product phenomenon, for instance. However, no precise link between these
results and the (still existing!) cohomological representation seems to be known.
(See, e.g., [2]).
– What are general, uniform bounds, for the sums of Betti numbers C (see (21))
occurring in the rough bound (20)? In particular, how does this vary with p for
sheaves of rank > 1, and is there a good theory of algebraic sums over the integers
that explains the various uniformity statements which are known empirically (such
as the bounds for Deligne-type character sums)? See the survey of Katz [15] for some
speculations on this problem.
–Related to the previous item is the general question of understanding families of L-
functions over finite fields when the base field (i.e., q) is fixed, but one has a sequence
of sheaves with growing rank. The basic example here is that of families of curves
with increasing genus, and in particular one can ask about the limiting behavior of
the central value of the L-function of hyperelliptic curves given by equations

Cf : y2 = f(x)

where f runs over the set Hg(Fq) of monic squarefree polynomials in Fq[X] of
degree 2g + 1, the limit considered being g → +∞ (see the introduction of [18]
for some discussion). There are conjectures about this problem, which are related
to conjectures concerning moments of the Riemann zeta function (due to Keating-
Snaith), but despite the availability of the Riemann Hypothesis, not much more is
known, e.g., about the asymptotic behavior as g → +∞ of

1
|Hg(Fq)|

∑
f∈Hg(Fq)

|L(Cf , q−1/2)|k,

for k � 1. (Compare with the vertical limit (26)).
However, there is one special case that is much easier: in the 0-dimensional

case (Example 15), it is possible to understand for instance the order of the pole
at T = 1 of the zeta function of a 0-dimensional variety defined by the equation
f(x) = 0, f ∈ Fq[X], with q fixed and deg(f) → +∞ (see (15)), which (for f
squarefree) is just the number of irreducible factors of f . We refer to [21] for a study
of this question, where random permutations and probabilistic models of divisibility
by fixed irreducible polynomials combine; the structure of the asymptotic formulas
obtained closely parallels the conjectures for L-functions.
– Many conjectures about the distribution of Frobenius conjugacy classes in an
“horizontal” direction remain very mysterious, the prototypical example being the
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horizontal Sato-Tate conjecture: in the notation of Example 4, are the angles

{θp,1 ∈ [0, π] | p � x}
equidistributed with respect to the Sato-Tate measure as x → +∞? (Here we fix
the parameter a as p varies, instead of averaging over it). This is an example where
we do not have, a priori, a fixed “source group” Π1 with Frobenius classes Frp, and
homomorphism

ρ : Π1 −→ GL(2, k)
with Tr(ρ(Frp)) = HK(2; 1, p). So there is not even a good reason to expect equidis-
tribution with respect to a measure with group-theoretic origin.26

The strongest result in this direction is a theorem of Duke, Friedlander and
Iwaniec (see [11, Cor. 21.9]), who (using spectral theory of automorphic forms for
GL(2) and sophisticated sieve methods) have solved the analogue conjecture for the
Salié sums defined by∑

x∈F×
p

(x

p

)
e
(x + x̄

p

)
,

(x

p

)
the Legendre symbol.

However, Salié sums are much simpler than Kloosterman sums from the coho-
mological point of view – this translates into the equidistribution measure being the
Lebesgue measure, instead of the Sato-Tate measure –, so this does not give much
hint about the way to proceed for Kloosterman sums.
– Finally, a vexing philosophical question: can one make the theory “easier to apply”?
This is not merely a reflection on the mathematical complexity (or sophistication)
of the cohomological framework, which in some ways is probably, in fact, as simple
as it can be; rather, it has more to do with the lack of any direct link between a
result like the wonderful upper bound

L(1/2, χd) �ε |d|1/6+ε, for all ε > 0,

where χd is a real primitive character modulo d (which is due to Conrey and
Iwaniec [3]), and the – crucial – estimation of the character sums∑

x,y∈Fp

χ(xy(x + 1)(y + 1))e
(xy − 1

p

)

(where χ �= 1 is a multiplicative character modulo p) which enters in the proof.
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