
Comput Visual Sci (2013) 16:195–217
DOI 10.1007/s00791-015-0234-2

Saturation estimates for hp-finite element methods

Randolph E. Bank · Asieh Parsania · Stefan Sauter

Received: 24 March 2014 / Accepted: 28 May 2014 / Published online: 27 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper we will prove saturation estimates
for the adaptive hp-finite element method for linear, sec-
ond order partial differential equations. More specifically we
will consider a sequence of nested finite element discretiza-
tions where we allow for both, local mesh refinement and
locally increasing the polynomial order. We will prove that
the energy norm of the error on the finer level can be esti-
mated by the sum of a contraction of the old error and data
oscillations. We will derive estimates of the contraction fac-
tor which are explicit with respect to the local mesh width and
the local polynomial degree. In order to cover p-refinement
of finite element spaces new polynomial projection operators
will be introduced and new polynomial inverse estimates will
be derived.
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1 Introduction

In this paper, we will consider the discretization of linear,
second order elliptic partial differential equations by finite
elements. Nowadays, adaptive techniques based on a pos-
teriori error estimation have been established to set up a
sequence of finite element approximations which should
converge towards the exact solution. The advantage com-
pared to uniform mesh refinement is that the finite element
spaces are enriched from level to level in a problem oriented
way.

A posteriori error estimation and adaptivity are well
established methodologies for the numerical solution of
partial differential equations by finite elements (cf. [2,4–
6,11,18,25,32,36,38]).

Some types of error estimators as, e.g., hierarchical
error estimators (see, e.g., [9,10,12]) require explicitly or
implicitly the saturation assumption which states that the
error on the refined mesh and/or with higher polynomial
degree is strictly smaller than the error on the previous
mesh/polynomial degree. In the pioneering paper [19] the
saturation assumption is proved for the P1-finite element
method for the Poisson problem in two spatial dimensions
under the assumption that the data oscillations are small.
In [25] the convergence of adaptive finite element meth-
ods (AFEM) for general (nonsymmetric) second order lin-
ear elliptic partial differential equations is proved, where the
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196 R. E. Bank et al.

term “adaptivity” is understood in the sense of adaptive mesh
refinement and the polynomial degree stays fixed. The theory
in [25] also generalizes the proof of the saturation property
to quite general 2nd order elliptic problems and estimate the
error on the refined mesh by the error of the coarser mesh
plus a data oscillation term.

In this paper, we will focus on adaptive hp-refinement,
i.e., the finite element space is enriched by increasing locally
the polynomial degree of the ansatz functions while we allow
also for conventional local h-refinement, where the elements
of the finite element mesh are geometrically subdivided. We
will show (and quantify) that, for residual a posteriori error
estimation, the saturation property, i.e., the error contrac-

tion from level to level behaves like
(

1 − C
p5/2

)
provided

the data oscillations are sufficiently well resolved. Hence, p-
refinement should be combined with h-refinement in order
to guarantee that the numerical solution converges towards
the exact solution. Common strategies for hp-refinement are
based on the estimation of the local regularity of the solu-
tion on a triangle by using error estimators for different local
polynomial orders in order to decide for h- or p-refinement;
for details we refer to [3,14,17,21,29,33,34,37]. The hp-
refinement indicator which is implemented in the software
package PLTMG (cf. [7]) is based on the superconvergence
result that recovered derivatives for elements of degree p
have higher order accuracy, provided the true solution has
the required smoothness (cf. [8]).

Our a posteriori error estimation takes into account data
oscillations but does not incorporate errors due to numerical
quadrature [1], to iterative approximations of the solution of
the linear system [22], and to approximations of the domain
[15,20].

The paper is organised as follows. In Sect. 2 we will
introduce the elliptic boundary value problem and formu-
late appropriate assumptions to ensure the well-posedness of
this problem.

The hp-finite element method will be defined in Sect. 3 and
standard assumptions on mesh refinment, shape regularity,
and the polynomial degree distribution will be introduced.

In Sect. 4 we will recall the definition of the residual a pos-
teriori error estimator for hp-finite elements and its reliability
estimate.

In Sect. 5 we will introduce some polynomial projection
operator which maps global polynomials on triangle patches
to piecewise polynomials of lower degree. This allows to
localize projected residuals by multiplying the resulting
piecewise polynomials with appropriate bubble functions.
We will investigate the stability constant of the projection
operator while its explicit dependence on the polynomial
degree for p-refinement will be analysed numerically in
“Appendix 1”.

The saturation estimate will be proved in Sect. 6.

In “Appendix 2” we will derive polynomial inverse esti-
mates containing those bubble functions as weights which
have been used in Sect. 6 to prove the saturation property.

Remark 1 The theory in [25] indicates how an adaptive finite
element procedure should be defined such that the sequence
of finite element solutions converges. Note that the rate of
convergence for adaptive finite elements is investigated in,
e.g., [11,35,36].

Besides the estimates derived for the saturation property,
the convergence theory requires a reduction of the data oscil-
lations which, for h-refinement, is (essentially) related to the
fact that the local mesh width shrinks by a fixed factor for
the marked elements. For p-refinement, the analogue condi-
tion is that the hp-weight of the data oscillations term also
shrinks by a factor smaller than one. Due to the non-robust
p-dependence of polynomial inverse estimates this cannot be
expected in a straightforward way. In order not to overload
this paper we decided to leave the convergence of an adap-
tive hp-finite element method as well as the detailed descrip-
tion of the hp-adaptive refinement strategy to a forthcoming
paper. We also emphasize that a posteriori error estimators
which are based on the hypercircle method (cf. [30]) such
as the equilibrated residual error estimates are p-robust (see
[13]).

2 Setting

Let Ω ⊂ R
d be a bounded Lipschitz domain. Consider the

Dirichlet problem for given f ∈ L2 (Ω) :
− div (A∇u)+ 〈b,∇u〉 + cu = f inΩ,

u = 0 on ∂Ω (2.1)

with variational formulation: Find u ∈ H1
0 (Ω) such that

a (u, v) :=
∫

Ω

〈A∇u,∇v〉 + (〈b,∇u〉 + cu) v =
∫

Ω

f v

=: F (v) ∀v ∈ H1
0 (Ω) . (2.2)

Assumption 1 The coefficients in (2.2) satisfy A ∈ C0,1(
Ω,Rd×d

sym

)
, b ∈ C0,1

(
Ω,Rd

)
, c ∈ L∞ (Ω), and

0 < α := inf
x∈Ω inf

v∈Rd\{0}
〈Av, v〉
〈v, v〉 ≤ sup

x∈Ω
sup

v∈Rd\{0}
〈Av, v〉
〈v, v〉

:= β < ∞
0 ≤ inf

x∈Ω

(
c (x)− 1

2
div b (x)

)
.

We set c∞ := ‖c‖L∞(Ω) and b∞ :=
max
{
‖b‖L∞(Ω,Rd) , ‖div b‖L∞(Ω)

}
. The energy norm is

denoted by
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Saturation estimates for hp-finite element methods 197

‖v‖PDE := a (v, v)1/2 ,

where Assumption 1 implies that ‖·‖PDE is a norm and
Friedrichs inequality implies

‖v‖2
PDE ≥

∫

Ω

〈A∇v,∇v〉 ≥ α ‖∇v‖2
L2(Ω)

≥ α

cF
‖v‖2

H1(Ω)
, (2.3)

where cF denotes the Friedrichs constant. In fact, the norms
‖·‖PDE and ‖·‖H1(Ω) are equivalent since also

‖v‖2
PDE ≤ Ca ‖v‖2

H1(Ω)
with Ca := b∞

2
+ max {c∞, β} .

(2.4)

For a subdomain ω ⊂ Ω we set

‖v‖2
PDE,ω := aω (v, v)

:=
∫

ω

(
〈A∇v,∇v〉 + 〈b,∇v〉 v + cv2

)
.

Remark 2 The constants in the estimates below possibly
depend (continuously) on α, β, c∞, and b∞ and might tend
to infinity with increasing β, b∞, c∞, α−1. We suppress the
dependence in the notation.

Note that these conditions ensure that problem (2.2) is
well posed and the coercivity estimate holds trivially

a (v, v) = ‖v‖2
PDE ∀v ∈ H1

0 (Ω) .

Assumption 1 implies the continuity of a (·, ·), i.e.,

a (u, v) ≤ CS ‖v‖PDE ‖v‖PDE ∀v ∈ H1
0 (Ω) (2.5)

with CS := 1 + cF
b∞
α

.

3 Conforming hp-finite elements

Let Ω ⊂ R
2 be a polygonal domain and let T :=

{Ki : 1 ≤ i ≤ N } denote a conforming simplicial finite ele-
ment mesh. With each element K ∈ T we associate of poly-
nomial degree pK ∈ N≥1 which are collected into the poly-
nomial degree vector p = (pK )K∈T . Then, we define the
conforming hp-finite element space for the mesh T with
local polynomials of degree pK by

Sp
T :=

{
u ∈ H1

0 (Ω) | ∀K ∈ T u|K ∈ PpK

}
. (3.1)

Here Pp denote the space of bivariate polynomials of maxi-
mal total degree p. For a subset ω ⊂ Ω , we write Pp (ω) to
indicate explicitly that we consider u ∈ Pp (ω) as a polyno-
mial on ω. Formally we define P−1 := {0}. We set

pT := max {pK : K ∈ T } .

By convention the triangles K ∈ T are open sets.
The boundaries of the triangles K ∈ T consist of one-
dimensional edges which are collected in the set E . Fur-
thermore, let EΩ := {E ∈ E | E ⊂ Ω}. The union SΩ :=⋃

E∈EΩ E forms the inner skeleton of the mesh T . For each
E ∈ E we fix one unit vector nE which is perpendicular to
E . If E ⊂ ∂Ω , the orientation is chosen such that nE points
to the exterior of Ω . The E-piecewise constant vector field
n is given by n|E := nE . Finally we define the jump of
some piecewise smooth function g ∈∏K∈T H1 (K ) across
E ∈ EΩ by

[g]E (x) := lim
ε↘0

(g (x + εnE )− g (x − εnE )) ∀x ∈ ◦
E .

This defines the jump function [g]|E := [g]E for all E ∈ EΩ
almost everywhere.

Let N 1
Ω denote the set of inner vertices of T . For z ∈ N 1

Ω ,
we denote by b1

z ∈ S1
T the canonical continuous, piecewise

affine basis function. The volume star for the node z is given
by ωz := supp b1

z and its measure is denoted by |ωz |. For

z ∈ N 1
Ω , we set Ez :=

{
E ∈ E : E ⊂ SΩ ∩ ◦

ωz

}
and Tz :=

{K ∈ T : K ⊂ ωz}. Let VK denote the set of inner vertices
of K and let ωK :=

⋃
z∈VK

ωz .

We denote by ∇T the trianglewise gradient and by divT
the trianglewise divergence operator. Let hT denote the T -
piecewise constant function with values hT |K := diam K
for all K ∈ T . Similarly we define hE : SΩ → R as the E-
piecewise constant function hE |E := diam E for all E ∈ EΩ .
The maximal mesh width in T is defined by

hT ,max := max {diam K : K ∈ T } .
If T is clear from the context we write h short for hT ,max.
The shape regularity of T is described by the constant

ρT := max

{
diam K

diam BK
: K ∈ T

}
, (3.2)

where BK is the maximal inscribed ball in K . Since T
contains finitely many simplices the constant ρT is always
bounded but becomes large if the simplices are degenerate,
e.g., are flat or needle-shaped. The constants in the follow-
ing estimates depend on the mesh via the constant ρT —they
are bounded for any fixed ρT but, possibly, become large for
large ρT .

Concerning the polynomial degree distribution we assume
throughout the paper that the polynomial degrees of neigh-
bouring elements are comparable1:

ρ−1
T (pK + 1) ≤ pK ′ + 1 ≤ ρT (pK + 1)

∀K , K ′ ∈ T with K ∩ K ′ �= ∅. (3.3)

1 We use here the same constant ρ as for the shape regularity to simplify
the notation.
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Fig. 1 Refinement patterns of a triangle which satisfies the interior
node property. Second row, from left to right: Pic. 1: Regular refinement.
Pic. 2,3: Refinement patterns for the elimination of hanging nodes. Third
row if two triangles K1, K2 share an edge E and they will be both h-
refined, then the common edge E must get an interior point xE

The finite element solution is defined by:

Find up
T ∈ Sp

T such that a
(
up

T , v
) = F (v) ∀v ∈ Sp

T .

(3.4)

In view of an adaptive solution process we generate a
sequence S	 := Sp	

T	 , 	 ∈ N0, of finite element spaces, where
we require that all meshes T	 are conforming and the con-
stants ρ	 corresponding to the shape regularity of the mesh T	
and the polynomial degree vector p	 are uniformly bounded
from above by some positive constant ρ. We also assume that
T	+1 is a refinement of T	 in the sense that for any K ∈ T	
there is a subset sons (K ) ⊂ T	+1 such that

K =
⋃

K ′∈sons(K )

K ′.

To reduce technicalities we make the following assump-
tion concerning the concrete refinement method (cf. Fig. 1).
As usual for conforming h-refinement, there exists two types
of refinements. Some triangles are marked for refinement
while this marking induces some additional refinement of
neighbouring triangles in order to avoid hanging nodes.

Assumption 2 (a) A triangle K , which is marked for refine-
ment, is regularly refined by connecting the midpoint of
the edges as well as the midpoint of the longest side with
the opposite vertex in K (cf. Fig. 1, Pic 1) so that the set
sons (K ) contains six new triangles.

Fig. 2 Definition of the polynomial degrees. From left to right: Pic1:
regular refinement. Pic 2: K is h-refined, K̃ is p-refined and pK̃ ≥ pK .
Pic 3: K is h-refined, K̃ is p-refined and pK̃ < pK . Pic 4: p-refinement

(b) To eliminate hanging nodes neighbouring triangles are
refined by inserting a line L from one hanging node to
the opposite vertex and connecting the vertices of K with
the midpoint of L (cf. Fig. 1, Pic 2). If there is a further
hanging node then this node is connected also with the
midpoint of L (cf. Fig. 1, Pic 3). If K contains three
hanging nodes or the shape regularity of the new triangles
exceeds some threshold it will be regularly refined.

(c) For any triangle K ∈ T	, one of the following conditions
are satisfied (cf. Fig. 2):

(i) K will be p-refined, i.e., K ∈ T	+1 and the polyno-
mial degree is raised by 1.

(ii) K will be h-refined, i.e., there exists a set of sons
σ (K ) ⊂ T	+1 with K =

⋃
K ′∈sons(K )

K ′ and at least

one vertex of each K ′ lies in the interior of K . The
polynomial degree pK defines the polynomial degree
on K ′ ∈ sons (K ) as follows

pK ′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pK if K is regularly refined,

pK + 1 if

⎛
⎜⎜⎝

∃K̃ ∈ T	 : K ′ ∩ K̃ is a full
edge of K̃
K̃ is p − refined
pK̃ ≥ pK

⎞
⎟⎟⎠ ,

pK otherwise.

Assumption 2 implies the interior node property (cf. [25,
Sec. 3.4]).

Definition 1 (interior node property) Any K ∈ T	 which
will be regularly h-refined and the three adjacent triangles
T ′ ∈ T	 as well as their common sides contain a node of the
finer mesh T	+1 in their interior and the resulting triangula-
tion T	+1 has no hanging nodes.

Remark 3 Let K1, K2 ∈ T	 denote two triangles which share
an edge E and let pm := pKm , m = 1, 2. The condition
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Saturation estimates for hp-finite element methods 199

u ∈ H1
0 (Ω) in the definition of Sp	

T	 in (3.1) implies that
for any u ∈ S	 the one-dimensional polynomial degree of u
along E satisfies

deg (u|E ) ≤ pE := min {p1, p2} .
Notation 3 To reduce the number of indices we write u	
short for up	

T	 , h	 short for hT	 , div	 short for divT	 , p	 short

for pT	 , N 1
	 for the inner triangle vertices for the mesh T	,

etc. The star ωz corresponds always to the triangulation T	
while we suppress this additional index in the notation of ωz .

Definition 2 The saturation estimate for a sequence of finite
element solutions (u	)	 is an estimate of the form

‖u	+1 − u‖PDE ≤ κ	 ‖u	 − u‖PDE

for some κ	 < 1 such that
∏∞

	=1
κ	 = 0.

It was proved in [19] that the saturation estimate holds
for the case of a bounded, two-dimensional domain Ω with
coefficients

A = I,b = 0 and c = 0, (3.5)

where I is the 2×2 unit matrix and the analysis was restricted
to P1 finite elements with h-refinement. It was proved that it
is necessary and sufficient for the saturation estimate that the
data oscillations [which will be introduced in (6.5)] are con-
trolled. Here, we generalize this result to the setting described
in Sect. 2 and also derive p-explicit estimates for the con-
traction factor κ	.

4 Residual a posteriori error estimation

The Galerkin error is denoted by e	 := u −u	. In the follow-
ing, we will investigate under which condition the saturation
estimate of the form

‖e	+1‖PDE ≤ κ	 ‖e	‖PDE , (4.1)

hold for some κ	 ∈ ]0, 1[ depending only on the polynomial
degree p and the shape-regularity of the mesh but not on the
mesh width.

For the proof of the saturation estimate, we will use tools
from residual a posteriori error estimation which we briefly
recall: To obtain an a posteriori error estimate we obtain by
Galerkin’s orthogonality for every v ∈ S	

‖e	‖2
PDE = a (e	, e	 − v) =

∫

Ω

res (u	) (e	 − v)

+
∫

SΩ

Res (u	) (e	 − v) , (4.2)

where the volume residual res : S	 → L2 (Ω) is given by

res (v) := f + div	 (A∇v)− 〈b,∇v〉 − cv

and the edge residual Res : S	 → L2 (SΩ) is given by

Res (v) := − 〈An, [∇v]〉 a.e. in SΩ.

By choosing v ∈ S	 as the Clément interpolation of e	 and
using a trace inequality for the last term in (4.2), results in
the classical residual a posteriori error estimation. In [26,27]
the local and global residual a posteriori error estimator is
defined by

η2
K (v) :=

∥∥∥∥
hK

pK
res (v)

∥∥∥∥
2

L2(K )

+
∑

E⊂∂K∩Ω

∥∥∥∥∥

√
hE

2pK
Res (v)

∥∥∥∥∥
2

L2(E)

∀v ∈ S	 ∀K ∈ T	.

(4.3)

The global error estimator is given by

η	 (v) :=
√∑

K∈T	
η2

K (v).

Due to the finite overlap of the stars ωz , the error estimator
(4.3) is equivalent to

ηstar
	 (v) :=

√√√√
∑

z∈N 1
	

η2
z (v) with

η2
z (v) :=

∥∥∥∥
hz

pz
res (v)

∥∥∥∥
2

L2(ωz)

+
∑
E∈Ez

∥∥∥∥∥

√
hz

pz
Res (v)

∥∥∥∥∥
2

L2(E)

(4.4)

and

pz := min {pK : K ⊂ ωz} and

hz := max {hK : K ⊂ ωz} . (4.5)

Theorem 4 (Melenk, Wohlmuth) LetΩ ⊂ R
2 be a bounded

Lipschitz domain. Let a (·, ·) in (2.2) satisfy Assumption 1
and let f ∈ L2 (Ω). The solution of (2.2) is denoted by
u and its Galerkin approximation by u	 [see (3.4)]. There
exists a constant Crel independent of the local mesh width
and the local polynomial degree but, possibly, depending on
the constants in Assumption 1 such that

‖u − u	‖PDE ≤ Crelη	 (u	) ≤ Crelη
star
	 (u	) .

The proof of this theorem is a slight modification of [27,
Theorem 3.6] and we include it here for completeness.

Proof The error u − u	 can be estimated by using (4.2) and
by setting w = e	 − I e	 with the hp-Clément interpolation
operator I as in [27, Section 2.1]:
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‖e	‖2
PDE =

∫

Ω

w res (u	)+
∫

SΩ

w Res (u	)

≤ Crelη	 (u	) ‖e	‖PDE

for all v ∈ S	. Clearly we have

η	 (v) ≤ ηstar
	 (v) ≤ C
η	 (v) ,

where C
 depends only on the constant ρ	 in (3.2) and
(3.3). ��

5 Projection of polynomials onto piecewise polynomials

The proof of the saturation estimate is based on estimates
of some projection of the volume residual to the space of
piecewise polynomials locally on stars ωz . In this section,
we will derive stability estimates for this projection.

We start with a result of a weighed L2 projection of global
polynomials of maximal total degree p to piecewise polyno-
mials of lower degree. The setting is as follows.

Let z ∈ R
2 and let Tz := {Ki : 1 ≤ i ≤ q} denote a trian-

gle patch around z, i.e., Tz is a set of (open) triangles which

– are pairwise disjoint,
– share z as a common vertex.
– For all 1 ≤ i ≤ q, the triangles Ki−1 and Ki share one

common edge.2

Let3 ωz := int
(⋃q

i=1
Ki

)
and let S := ωz ∩

⋃q

i=1
∂Ki

denote the inner mesh skeleton. We denote by Pp (Tz) the
space of piecewise polynomials, i.e.,

Pp (Tz) := { f : ωz\S → R | ∀1 ≤ i ≤ q;
f |Ki

∈ Pp (Ki )
}
. (5.1)

Next, we will introduce weighted scalar products and asso-
ciated norms. The weights are defined triangle- and edge-
wise and depend whether the triangle will be h-refined of
p-refined.

Definition 3 (a) p-refinement.
If K will be p-refined, then, the cubic weight functionΦ(3)K
and quadratic edge bubble ΦE are given, on the reference

element K̂ := conv
((0

0

)
,
(1

0

)
,
(0

1

))
and on the reference

interval Ê := (0, 1), by

Φ
(3)
K̂
(x1, x2) = (1 − x1 − x2) x1x2 and

ΦÊ (x) = x (1 − x) , (5.2)

2 We use here the convention K0 := Kq . Clearly q ≥ 3 holds.
3 For a subset ω ⊂ R

2, we denote by int (ω) the open interior of ω.

Fig. 3 Illustration for the notation of a regulary h-refined triangle K .
The edge E = AMA splits K into the two triangles K1 and K2. The
subtriangle K ′

1 has vertices A,MC , xK while the vertices of K ′
2 are

A, xK ,MB

while on K and E we set

Φ
(3)
K := Φ

(3)
K̂

◦�−1
K and ΦE := ΦÊ ◦�−1

E , (5.3)

where �K : K̂ → K and �E : Ê → E are affine pull-
backs.4

(b) h-refinement.
The edge bubble ΦE for h-refinement is the same as for
p-refinement.

(b1) Let K be regularly refined (cf. Fig. 3). Then,
Φ
(1)
K ,K is the piecewise linear function on the sub-

mesh sons (K )which has value 1 at xK and value
0 at all other vertices of the refined mesh. Let E
denote the edge as indicated in Fig. 3 which splits
K into the triangles K1 and K2.
Then Φ(2)K is the product of the barycentric coor-
dinates for the two endpoints of E with respect to
the two triangles K1 and K2.

(b2) If K is non-regularly h-refined (cf. Fig. 1, Pic.
2,3), then the weight function for K is the piece-
wise linear bubble function Φ(1)K which interpo-

latesΦ(3)K at the vertices of the submesh sons (K ).

The weight function for a triangle K is

ΦK :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φ
(3)
K if K will be p-refined,

Φ
(1)
K if K will be non-regularly

h-refined,

Φ
(1)
K ,K +Φ

(2)
K if K will be regularly h-refined.

(5.4)

For z ∈ N 1
Ω , the function Φz : ωz → R is given by

Φz |K := ΦK ∀K ∈ ωz (5.5)

and extended by zero to Ω .

4 Note that the scalings compared to the scalings in [39, p. 83] differ
by fixed constants of order 1.
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Saturation estimates for hp-finite element methods 201

These weight functions induce bilinear forms (·, ·)K and
(·, ·)z via

(u, v)K :=
∫

K
ΦK uv and

(u, v)z :=
∑

K⊂ωz

(u, v)K =
∫

ωz

Φzuv

and a corresponding norm ‖·‖z := (·, ·)1/2z .

Next we define a projection

�
p
K : Pp (K ) → Pp−1 (K )

by∫

K
ΦK
(
�

p
K v
)
w =

∫

K
ΦK vw ∀w ∈ Pp−1 (K ) , (5.6)

where the definition ofΦK is as in (5.4), i.e., depends on how
K will be refined.

Definition 4 For a triangle patch Tz , let pz be as in (4.5). The
star-wise polynomial projection�z is applied to polynomials
v ∈ Ppz−1 (ωz) and given by

(�zv)|K :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ
(3)
K �

pz−1
K v if K is p-refined,

Φ
(1)
K v if K is non-

regularly h-refined,

Φ
(1)
K ,K v +ΦK�

pz−1
K v if K is regularly

h-refined,

Theorem 5 Let p ≥ 1. For all u ∈ Pp (ωz), the condition
∑

K∈Tz

∫

K
Φ
(3)
K uw = 0 ∀w ∈ Pp−1 (Tz) . (5.7)

implies u = 0.

For a proof we refer to [24, Theorem 1.1]. A consequence
of Theorem 5 is the following corollary. To reduce technicali-
ties we make an assumption on the minimal local polynomial
degree.

Assumption 6 For all 	 and z ∈ N 1
	 it holds: If all K ⊂ ωz

will be p-refined then pz ≥ 2 otherwise pz ≥ 1.

Corollary 1 Let Assumption 6 be valid. The projection �z

is injective.

Proof If all triangles in ωz are p-refined, then the injectivity
follows from Theorem 5.

If, at least, one triangle is h-refined we distinguish between
two cases:

(a) K is non-regularly h-refined. Then, the positivity ofΦ(1)K
implies (�zv)|K = 0 �⇒ v = 0.

(b) K is regularly h-refined. We use the notation as intro-
duced in Fig. 3. Note that (�zv)|K ′

1∪K ′
2

:=
(
Φ
(1)
K ,K

(
v +�

pz−1
K v

))∣∣∣
K ′

1∪K ′
2

.

(b1) If the degree of v satisfies deg v = pz − 2,
it holds �

pz−1
K v = v|K Then, �zv|K ′

1∪K ′
2

=
2 Φ(1)K ,K v

∣∣∣
K ′

1∪K ′
2

. The positivity ofΦ(1)K ,K on K ′
1 ∪ K ′

2

together with the analytic continuation principle, i.e.,
v|K ′

1∪K ′
2

= 0 �⇒ v = 0, imply the injectivity of
�z for this case.

(b2) If deg v = pz − 1, it holds v + �
pz−1
K v �= 0. The

positivity of Φ(1)K ,K again implies (�zv)|K ′
1∪K ′

2
�= 0.

��

Corollary 2 Let Assumption 6 be valid. For all z ∈ N 1
Ω , the

estimates

inf
v∈Pp−1(ωz)\{0}

(v,�zv)L2(ωz)

‖v‖2
z

≥ cπ . (5.8)

c
∥∥∥Φ−1/2

z �zv

∥∥∥
L2(ωz)

≤ (v,�zv)
1/2
L2(ωz)

≤ ‖v‖z

≤ ‖v‖L2(ωz)
. (5.9)

hold. The constant cπ in (5.8) satisfies 0 < cπ ≤ 1 and
depends, possibly, on the polynomial degree p and the shape
regularity of the mesh.

Proof For the proof of (5.8), we distinguish between the fol-
lowing cases.

(a) If all triangles in ωz are p-refined, estimate (5.8) for
some constant cπ > 0 follows from the injectivity of
�z via the compactness argument in [24, Theorem 6.4]
and the equivalence of norms on the finite dimensional
space Ppz−1 (ωz).

(b) At least one triangle in ωz is h-refined. Let K ⊂ ωz .
(b1) K is non-regularly h-refined. Then, the positivity ofΦ(1)K

implies (v,�zv)L2(K ) =
∥∥∥Φ1/2

K v

∥∥∥
2

L2(K )
> 0 for all v ∈

Ppz−1 (K ) \ {0}.
(b2) K is regularly h-refined. We use the notation as intro-

duced in Fig. 3. Then,

(v,�zv)L2(K )

=
(
v,Φ

(1)
K ,K v

)
L2(K )

+
(
v,ΦK�

pz−1
K v

)
L2(K )

=
(
v,Φ

(1)
K ,K v

)
L2(K )

+
(
�

pz−1
K v,ΦK�

pz−1
K v

)
L2(K )

=
∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥
√
ΦK�

pz−1
K v

∥∥∥
2

L2(K )

≥
∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
.

Again, the positivity of Φ
(1)
K ,K on K ′

1 ∪ K ′
2 implies

(v,�zv)L2(K ) > 0 for all v ∈ Ppz−1 (K ) \ {0}.
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For the estimate (5.9) we again consider the different
refinement options separately. It is easy to check that point-
wise on K , we have ΦK ≤ 1 so that Φ2

K ≤ ΦK .

(a) K is p-refined, i.e., ΦK := Φ
(3)
K . Estimate

(v,�zv)L2(K ) =
∫

K
ΦK v�

pz−1
K v ≤

∥∥∥
√
ΦK v

∥∥∥
2

L2(K )

(5.10a)

holds since �pz−1
K is a projection. On the other hand,

(v,�zv)L2(K ) =
∫

K
ΦK

(
�

pz−1
K v

)2

=
∥∥∥Φ−1/2

K �zv

∥∥∥
2

L2(K )
. (5.11a)

(b) K is non-regularly h-refined. Then,

(v,�zv)L2(K ) =
∥∥∥
√
ΦK v

∥∥∥
2

L2(K )
. (5.10b)

From (5.10b) we get

(v,�zv)L2(K ) =
∥∥∥Φ−1/2

K ΦK v

∥∥∥
2

L2(K )

=
∥∥∥Φ−1/2

K �zv

∥∥∥
2

L2(K )
. (5.11b)

(c) K is regularly h-refined. Then,

(v,�zv)L2(K )

=
∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥
√
ΦK�

pz−1
K v

∥∥∥
2

L2(K )

≤
∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥
√
ΦK v

∥∥∥
2

L2(K )

≤ 2
∥∥∥
√
ΦK v

∥∥∥
2

L2(K )
. (5.10c)

For the first estimate in (5.9) we use the pointwise estimate
on K

(�zv)
2 =
(
Φ
(1)
K ,K v +ΦK�

pz−1
K v

)2

≤ 2

((
Φ
(1)
K ,K v

)2 +
(
ΦK�

pz−1
K v

)2
)

≤ 2
(
Φ
(1)
K ,K +ΦK

)(
Φ
(1)
K ,K v

2 +ΦK

(
�

pz−1
K v

)2
)

≤ 4ΦK

(
Φ
(1)
K ,K v

2 +ΦK

(
�

pz−1
K v

)2
)

to get

∫

K
Φ−1

K (�zv)
2 (5.11c)

≤ 4

(∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥
√
ΦK�

pz−1
K v

∥∥∥
2

L2(K )

)

= 4 (v,�zv)L2(K ) .

The second estimate in (5.9) follows by summing the
inequality (5.11c) over all K ⊂ ωz while the third one is
a consequence of ‖v‖z ≤ ‖v‖L2(ωz)

since 0 ≤ Φz ≤ 1.
The first estimate in (5.9) also follows by summation over

all K ⊂ ωz the inequalities (5.11). ��
The derivation of a sharp positive lower bound for cπ

seems to rather involved. Instead we have performed numer-
ical experiments (cf. “Appendix 1”) to support the following
conjecture.

Conjecture 1 The constant cπ is bounded from below by a
constant c0 > 0 which only depends on the shape regularity
of the mesh but neither on the mesh width nor on the polyno-
mial degree p.

For z ∈ N 1
	 , we introduce the subspaces for K ∈ T	 (recall

Notation 3)

S	+1,K := {u ∈ S	+1 | supp u ⊂ K } and

S	+1,z := {u ∈ S	+1 | supp u ⊂ ωz} . (5.12)

Theorem 7 Let Assumptions 2 and 6 be satisfied. For z ∈
N 1
	 , E ∈ Ez , and w ∈ S	, let JE (w) := 〈AnE , [∇w]E 〉. Set

p := pz [cf. (4.5)]. For any v ∈ Pp−1 (ωz), there exists a
ϕ	+1,z ∈ S	+1,z such that

∑
E∈Ez

∫

E
JE b1

z =
∑
E∈Ez

∫

E
JEϕ	+1,z, (5.13a)

cπ ‖h	v‖z ≤
∣∣∣∣
∫

ωz

v
(

b1
z − ϕ	+1,z

)∣∣∣∣ , (5.13b)

∥∥∥Φ−1/2
z

(
b1

z − ϕ	+1,z

)∥∥∥
L2(ωz)

+ c2
hz

p

∥∥∥
(

b1
z − ϕ	+1,z

)∥∥∥
PDE,ωz

≤ C1hz . (5.13c)

The constant c2 > 0 only depends on α, β, b∞, c∞, and the
shape-regularity of the mesh while C1 is a number.

Proof We make the ansatz

ϕ	+1,z = b1
z − ψ	+1,z,

for some ψ	+1,z with ψ	+1,z
∣∣
K ∈ S	+1,K for all K ⊂ ωz .

Hence ψ	+1,z
∣∣
K vanishes on all edges and condition (5.13a)

trivially is satisfied.
Statement (5.13b) is trivial for v = 0 and we consider here

v ∈ Pp−1 (ωz) \ {0} . Let

ψ	+1,z = hz
�zv

‖v‖z
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and observe that ψ	+1,z ∈ S	+1,z . Hence, by Corollary 2 we
obtain

∣∣∣∣
∫

ωz

v
(

b1
z − ϕ	+1,z

)∣∣∣∣ = hz

∣∣(v,�zv)L2(ωz)

∣∣
‖v‖z

≥ cπhz ‖v‖z .

Finally, we consider estimate (5.13c) and get

∥∥∥Φ−1/2
z

(
b1

z − ϕ	+1,z

)∥∥∥
L2(ωz)

= hz

∥∥∥Φ−1/2
z �zv

∥∥∥
L2(ωz)

‖v‖z

(5.9)≤ hz

c

(v,�zv)
1/2
L2(ωz)

‖v‖z

(5.9)≤ C̃hz . (5.14)

For the H1-seminorm we get
∥∥∥∇
(

b1
z − ϕ	+1,z

)∥∥∥
L2(ωz)

= hz

∥∥∥∥∇
(
�zv

‖v‖z

)∥∥∥∥
L2(ωz)

. (5.15)

We distinguish again three cases.
Case a Let K ⊂ ωz be a triangle which will be p-refined.

Hence, ΦK = Φ
(3)
K (cf. Definition 3).

We apply Lemma 3 to obtain

‖∇ (�zv)‖2
L2(K ) ≤ C ′

0
p2

h2
z

∥∥∥Φ1/2
K �

pz−1
K v

∥∥∥
2

L2(K )
(5.16a)

≤ C ′
0

p2

h2
z

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K )
.

The last inequality in (5.16a) is trivial for pK > p since
(�zv)|K = v, while, for pK = p, we employ (5.10a) and
(5.11a).

Case b Let K ⊂ ωz be a triangle which is non-regularly
h-refined. Hence, ΦK = Φ

(1)
K . We introduce the function5

dK : K → R by

dK = dK̂ ◦�−1
K with dK̂ (x) := dist

(
x, ∂ K̂

)
,

where �K is as in (5.3). Since both, Φ(1)K and dK are piece-
wise linear bubble functions with maximal value O (1) in the
interior it is easy to verify that the pointwise estimates hold

cdK ≤ Φ
(1)
K ≤ CdK

c ‖∇dK ‖ ≤
∥∥∥∇Φ(1)K

∥∥∥ ≤ C ‖∇dK ‖

}
a.e. (5.17)

with fixed constants 0 < c,C = O (1). Estimates (5.17)
imply the pointwise estimate

1

2
‖∇ (vΦK )‖2 ≤ Φ2

K ‖∇v‖2 + ‖∇ΦK ‖2 v2

≤ C2
(

d2
K ‖∇v‖2 + v2 ‖∇dK ‖2

)
.

5 The function dK differs from the function ΦK in [27, (27)] only by a
scaling constant which is of order 1.

Hence, we may use [27, (23) with δ = 1 and (22) with α = 0
and β = 1] to obtain

1

2
‖∇ (�zv)‖2

L2(K ) = 1

2
‖∇ (vΦK )‖2

L2(K ) (5.16b)

≤ C2

h2
K

(
p2
∥∥∥Φ1/2

K v

∥∥∥
2

L2(K )
+ ‖v‖2

L2(K )

)

≤ C̃2 p2

h2
K

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K )
.

Case c Let K ⊂ ωz be a triangle which is regularly h-
refined. We employ the notation as explained in Definition
3(b1); illustrated in Fig. 3. It holds

∇ ( (�zv)|K

) = ∇
(
Φ
(1)
K ,K v +ΦK�

pz−1
K v

)

= ∇
(
Φ
(1)
K ,K

(
v +�

pz−1
K v

))
+ ∇
(
Φ
(2)
K �

pz−1
K v

)
.

For the first term and the piecewise linear bubble Φ(1)K ,K we
can argue as in Case b to obtain

∥∥∥∇
(
Φ
(1)
K ,K

(
v +�

pz−1
K v

))∥∥∥
2

L2(K )
(5.18a)

≤ C̃2 p2

h2
K

∥∥∥∥
√
Φ
(1)
K ,K

(
v +�

pz−1
K v

)∥∥∥∥
2

L2(K )
,

while we employ Lemma 4 for

∥∥∥∇
(
Φ
(2)
K �

pz−1
K v

)∥∥∥
2

L2(K )
(5.18b)

≤ Ĉ2 p2

h2
K

∥∥∥∥
√
Φ
(1)
K ,K

(
�

pz−1
K v

)∥∥∥∥
2

L2(K )
.

Thus,

∥∥∇ ( (�zv)|K

)∥∥2
L2(K ) (5.16c)

≤ 2

(∥∥∥∇
(
Φ
(1)
K ,K

(
v +�

pz−1
K v

))∥∥∥
2

L2(K )

+
∥∥∥∇
(
Φ
(2)
K �

pz−1
K v

)∥∥∥
2

L2(K )

)

(5.18)≤ 2
(

C̃2 + Ĉ2
) p2

h2
K

(∥∥∥∥
√
Φ
(1)
K ,K

(
v +�

pz−1
K v

)∥∥∥∥
2

L2(K )

+
∥∥∥∥
√
Φ
(2)
K

(
�

pz−1
K v

)∥∥∥∥
2

L2(K )

)

≤ 4
(

C̃2 + Ĉ2
) p2

h2
K

×
(∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥∥
√
Φ
(1)
K ,K�

pz−1
K v

∥∥∥∥
2

L2(K )
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+
∥∥∥∥
√
Φ
(2)
K

(
�

pz−1
K v

)∥∥∥∥
2

L2(K )

)

= 4
(

C̃2 + Ĉ2
) p2

h2
K

×
(∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥
√
ΦK�

pz−1
K v

∥∥∥
2

L2(K )

)

(5.16a)≤ 4
(

C̃2 + Ĉ2
) p2

h2
K

×
(∥∥∥∥
√
Φ
(1)
K ,K v

∥∥∥∥
2

L2(K )
+
∥∥∥
√
ΦK v

∥∥∥
2

L2(K )

)

≤ 8
(

C̃2 + Ĉ2
) p2

h2
K

∥∥∥
√
ΦK v

∥∥∥
2

L2(K )
.

The combination of (5.16) with (5.15) leads to
∥∥∇ϕ	+1,z

∥∥
L2(ωz)

≤ C̃0 p.

��

6 The saturation property

Note that the Pythagoras theorem

‖e	‖2
PDE = ‖e	+1‖2

PDE + ‖u	 − u	+1‖2
PDE

only holds for symmetric bilinear forms, i.e., b = 0 in (2.2).
For non-symmetric bilinear forms one can prove a quasi-
orthogonality and we follow here [25, Proof of Lemma 2.1.].
One ingredient in the proof is an Aubin-Nitsche argument
(see, e.g., [16]) which we recall here. For 0 < s ≤ 1, we say
that the adjoint problem

For given g ∈ L2 (Ω) findψg ∈ H1
0 (Ω) such that

a
(
v,ψg

) :=
∫

Ω

gv ∀v ∈ H1
0 (Ω)

is H1+s (Ω)-regular if, for any right-hand side g ∈ L2 (Ω),
the solutionψg is in H1+s (Ω) and there exists a constant Cs

independent of g ∈ L2 (Ω) such that
∥∥ψg
∥∥

H1+s (Ω)
≤ Cs ‖g‖L2(Ω) .

We introduce the adjoint approximation property for a sub-
space S ⊂ H1

0 (Ω) by

η (S) := sup
g∈L2(Ω)\{0}

inf
v∈S

∥∥ψg − v
∥∥

PDE

‖g‖L2(Ω)

.

In our context, we obtain, e.g., from [16] the estimate

‖e	+1‖L2(Ω) ≤ CSη (S	+1) ‖e	+1‖PDE .

If the adjoint problem is H1+s (Ω)-regular, standard approx-
imation results for finite elements lead to

η (S	) ≤ Ca sup
g∈L2(Ω)\{0}

inf
v∈S	

∥∥ψg − v
∥∥

H1(Ω)

‖g‖L2(Ω)

≤ CaCapproxhs
	 sup

g∈L2(Ω)\{0}

∥∥ψg
∥∥

H1+s (Ω)

‖g‖L2(Ω)

≤ CaCapproxCshs
	,

where Capprox only depends on the shape regularity of the
mesh. Hence,

‖e	+1‖L2(Ω) ≤ Cdualh
s
	+1 ‖e	+1‖PDE with

Cdual := CSCaCapproxCs . (6.1)

Lemma 1 Let Assumption 1 be satisfied and let the adjoint
problem be H1+s (Ω) regular for some 0 < s ≤ 1. Then,
there exists some C� > 0 depending only on α, β, b∞, c∞,
and the shape regularity of the mesh such that, for any finite
element mesh T	+1 with maximal mesh width h	+1 < C−s

� ,
the quasi-orthogonality

‖e	+1‖2
PDE ≤ �2

	+1 ‖e	‖2
PDE − ‖u	+1 − u	‖2

PDE

with �2
	+1 := 1

1 − C�hs
	+1

(6.2)

holds.

The proof is adapted from [25, Lem. 4.1] and included
here for completeness.

Proof We set ε̂	 := u	+1 − u	. It is easy to conclude from
Galerkin’s orthogonality that

‖e	‖2
PDE = ‖e	+1‖2

PDE + ‖̂ε	‖2
PDE + a (̂ε	, e	+1)

holds. Then, integration by parts yields

a (̂ε	, e	+1) = a (e	+1, ε̂	)+
∫

Ω

(〈b,∇ ε̂	〉 e	+1

−〈b,∇e	+1〉 ε̂	)
=
∫

Ω

(2 〈b,∇ ε̂	〉 + (div b) ε̂	) e	+1.

Hence,

‖e	+1‖2
PDE = ‖e	‖2

PDE − ‖̂ε	‖2
PDE −

∫

Ω

(2 〈b,∇ ε̂	〉
+ (div b) ε̂	) e	+1. (6.3)

The integral can be estimated by Young’s inequality and esti-
mate (6.1)

−
∫

Ω

(2 〈b,∇ ε̂	〉 + (div b) ε̂	) e	+1

≤ δ ‖e	+1‖2
L2(Ω)

+ (3b∞)2

2δ
‖̂ε	‖2

H1(Ω)
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(2.3)≤ δ ‖e	+1‖2
L2(Ω)

+ 9b2∞cF

2δα
‖̂ε	‖2

PDE

≤ δC2
dualh

2s
	+1 ‖e	+1‖2

PDE + 9b2∞cF

2δα
‖̂ε	‖2

PDE .

Inserting this into (6.3) leads to

(
1 − δC2

dualh
2s
	+1

)
‖e	+1‖2

PDE ≤ ‖e	‖2
PDE

−
(

1 − 9b2∞cF

2δα

)
‖̂ε	‖2

PDE .

We choose δ such that both parenthesis have the same value
and obtain

‖e	+1‖2
PDE ≤ ‖e	‖2

PDE

1 − C�hs
	+1

− ‖̂ε	‖2
PDE with

C� := 3Cdualb∞
√

cF

2α
.

Let the mesh width h	+1 of T	+1 satisfy hs
	+1 < C−1

� . Then
the assertion holds with �2

	+1 as in (6.2). ��

The proof of the saturation estimate requires conditions
on the data oscillations. First, we will introduce some edge
bubble for triangles with a common edge. For E ∈ EΩ , let
K1, K2 ∈ T	 denote the triangles which share E as the com-
mon edge.

Case a Both, K1, K2 will be p-refined.
In this case, let ϕ(2)K1,K2

∈ S	+1 be the quadratic edge
bubble, i.e., the product of the barycentric coordinates in K1,
K2 for the endpoints of E .

Case b Both K1, K2 will be h-refined.
Let xE ∈ E denote the interior vertex on the edge E (cf.

Fig. 1) and let K ∈ {K1, K2} be an adjacent triangle with
inner vertex xK . Let K ′ := conv {xE , xK , A} and K ′′ :=
conv {xE , B, xK } with A, B denoting the endpoints of E .
Then, the piecewise affine edge bubble ϕ(1)K1,K2

, restricted to
K , has value 1 at xE and vanishes at all other vertices of
triangles in sons (K1). Assumption 2 ensures that ϕ(1)K1,K2

∈
S	+1.

Case c K1 will be p-refined and K2 will be h-refined.
Let pm := pKm , m = 1, 2 and define pE := min {p1, p2}.
Let K ′ ∈ sons (K2) be the triangle which contains E as an

edge. Then, ϕ(2)K1,K ′
∣∣∣
K1

(resp. ϕ(2)K1,K ′
∣∣∣
K ′ ) is the product of the

barycentric coordinates in K1 (resp. K ′) for the endpoints of
E and zero outside K1 ∪ K ′.

Case d K1 will be h-refined and K2 will be p-refined.
Then ϕ(2)K ′,K2

is defined as in Case c by interchanging the
roles of K1 and K2.

We define

ϕE :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ
(2)
K1,K2

in Case a,

ϕ
(1)
K1,K2

in Case b,

ϕ
(2)
K1,K ′ in Case c,

ϕ
(2)
K ′,K2

in Case d.

(6.4)

For g ∈ L2 (Ω), we define averages gz ∈ Ppz−1 (ωz) [with
pz as in (4.5)] as the L2 (ωz)-orthogonal projection onto
Ppz−1 (ωz).

The data oscillations are defined by

osc (v) :=
√√√√
∑

z∈N 1
	

osc2
z (v) with

oscz (v) :=
∥∥∥∥

hz

pz
Φ

1/2
osc,z (res (v)− resz (v))

∥∥∥∥
L2(ωz)

(6.5)

with

Φosc,z := p5
z

c2
π

Φz + p3
zΦE,z + 1 and ΦE,z :=

∑
E∈Ez

ϕE

and resz (v) is a shorthand for (res (v))z .

Theorem 8 Let Assumptions 1, 2, and 6 be satisfied. We
assume that the adjoint problem is H1+s (Ω) regular for
some 0 < s ≤ 1. Further we assume that the maximal mesh
width of T	+1 satisfies h	+1 < C−s

� with C� as in Lemma 1.
Let cπ be as in (5.13b) and Crel as in (4).

There exists a constant C2 > 0 depending on α, β,
b∞, c∞, and ρ but independent of h	, p	, u, and f such
that for any 0 ≤ μ ≤ 1 and any C3 > C2Crel the condition

osc (u	) ≤ μ

C3
‖e	‖PDE (6.6)

implies the error reduction

‖e	+1‖PDE ≤ κ	 ‖e	‖PDE with

κ	 :=

√√√√√
⎛
⎝�2

	+1 −
(

cπ

C3 p5/2
	

)2 (
1 − μ2

)
⎞
⎠.

Remark 4 The condition on C3 implies that κ	 > 0. From
the definition of �2

	+1 = 1
1−C�hs

	+1
with h	+1 < (2C�)−1/s

as in (6.2) it follows that the condition

h	+1 ≤ H (p	) := C4

(
cπ

p5/2
	

)2/s

with

C4 :=
(

1

C� (2C3Crel)
2

)1/s

implies

�2
	+1 −

(
cπ

C3Crel p5/2
	

)2

≤ 1 − 1

2

(
cπ

C3Crel p5/2
	

)2
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and, for 0 ≤ μ < 1/
√

2, it holds

κ	 ≤
√√√√1 −

(
cπ

C3Crel p5/2
	

)2 (
1

2
− μ2

)
< 1.

Proof of Theorem 8 Since u	+1 − u	 ∈ S	+1, the quasi-
orthogonality (cf. Lemma 1) implies

�2
	+1 ‖e	‖2

PDE ≥ ‖e	+1‖2
PDE + ‖u	+1 − u	‖2

PDE (6.7)

with �2
	+1 as in (6.2). Hence it is sufficient to prove a lower

bound for ‖u	+1 − u	‖2
PDE in terms of ‖e	‖2

PDE and data
oscillations. The residual a posteriori error estimate can be
recast in the form of stars [cf. (4.4)]: By a triangle inequality
we obtain

‖e	‖2
PDE ≤ 2C2

rel

∑

z∈N 1
	

(∥∥∥∥
hz

pz
resz (u	)

∥∥∥∥
2

L2(ωz)

+
∑
E∈Ez

∥∥∥∥∥

√
hz

pz
Res (u	)

∥∥∥∥∥
2

L2(E)

(6.8)

+
∥∥∥∥

hz

pz
(resz (u	)− res (u	))

∥∥∥∥
2

L2(ωz)

)
.

Hence, it is sufficient to bound the jumps and projected vol-
ume residuals from above by ‖u	+1 − u	‖PDE and to control
the last term by the oscillation condition (6.6).

We start with the jump term and employ the same argu-
ments as in [25, Proof of Lemma 3.1, Step 2]. Since u	 is
continuous, [∇u	]E is parallel to nE , i.e., [∇u	]E = jE nE

and jE =
[
∂u	
∂nE

]
E

∈ PpE −1 with pE := min {p1, p2} (cf.

Remark 3). The continuity of the coefficient matrix A implies

JE := 〈AnE , [∇u	]E 〉 = 〈AnE ,nE 〉 jE =: aE jE , (6.9)

where α ≤ aE (x) ≤ β (cf. Assumption 1). Consequently

∥∥√ϕE JE
∥∥2

L2(E) =
∫

E
αE ( jEϕE ) JE ≤ β

∫

E
( jEϕE ) JE

∥∥√ϕE JE
∥∥2

L2(E) =
∫

E
α2

E j2
EϕE ≥ α2

∫

E
j2
EϕE

[26, Lem. 2.4]≥ c
α2

p2
E

‖ jE‖2
L2(E)

≥ c

(
α

βpE

)2

‖JE‖2
L2(E) . (6.10)

Thus∥∥∥
√

hEϕE JE

∥∥∥
2

L2(E)
≤ βhE

∫

E
〈An, [∇u	]E 〉 ( jEϕE ) .

Next we extend jE toωE . For K ⊂ ωE , let�K ,�E be chosen
such that [cf. (5.3)] �K |x2=0 = �E holds. Let Ẑ (x) :=
(x1, 0)ᵀ for x = (x1, x2) ∈ R

2. We define j�E : ωE → R

trianglewise by

j�E
∣∣
K := jE ◦�K ◦ Ẑ ◦�−1

K . (6.11)

Note that j�E is a polynomial of degree pE − 1 on both trian-
gles which share E as the common edge. The construction
of ϕE along the definition of the polynomial degrees on the
refined mesh (cf. Assumption 2) imply ϕE j�E ∈ S	+1. By
using partial integration and the fact that u	+1 is the Galerkin
solution we get for any E ⊂ ωz

1

β

∥∥∥
√

hEϕE JE

∥∥∥
2

L2(E)
≤ hE

∫

E
〈An, [∇u	]E 〉 ( jEϕE )

(6.12a)

= hE

∫

ωE

〈
A∇u	,∇

(
j�EϕE

)〉+ div	 (A∇	u	)
(

j�EϕE
)

(6.12b)

= hE

{
a
(
u	 − u	+1, j�EϕE

)+
∫

ωE

resz (u	)
(

j�EϕE
)

+ (res (u	)− resz (u	))
(

j�EϕE
)}
. (6.12c)

From Lemma 5 and Corollary 6 we conclude by an affine
pullback to the reference element that

∥∥√ϕE j�E
∥∥

L2(ωE )
≤ C5

∥∥∥
√

hEϕE jE

∥∥∥
L2(E)

(6.9)≤ C5

α

∥∥∥
√

hEϕE JE

∥∥∥
L2(E)

, (6.13a)

∥∥ϕE j�E
∥∥

PDE ≤ C6 pE

∥∥∥∥
√
ϕE

hE
JE

∥∥∥∥
L2(E)

, (6.13b)

where C5, C6 only depend on α, β, b∞, c∞ and the shape
regularity of the mesh. The combination of (6.12) with (6.13)
and (6.10) leads to

∥∥∥∥∥

√
hE

pE
Res (u	)

∥∥∥∥∥
L2(E)

≤ C7 p3/2
E

{
‖u	 − u	+1‖PDE,ωE

+
∥∥∥∥

hE

pE
ϕ

1/2
E resz (u	)

∥∥∥∥
L2(ωE )

(6.14)

+
∥∥∥∥

hE

pE
ϕ

1/2
E (res (u	)− resz (u	))

∥∥∥∥
L2(ωE )

}

with C7 depending only on α, β, b∞, c∞, and ρ. A summa-
tion of the squared inequality (6.14) over all E ∈ Ez yields

∑
E∈Ez

∥∥∥∥∥

√
hE

pE
Res (u	)

∥∥∥∥∥
2

L2(E)

≤ C8 p3
z

×
{

‖u	 − u	+1‖2
PDE,ωz

+
∥∥∥∥

hz

pz
Φ

1/2
E,z resz (u	)

∥∥∥∥
2

L2(ωz)

+
∥∥∥∥

hz

pz
Φ

1/2
E,z (res (u	)− resz (u	))

∥∥∥∥
2

L2(ωz)

}
. (6.15)
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Hence, we are left with the estimate of the volume residual.
Partial integration and the fact that u	 solves the Galerkin

equations leads to

∑
E∈Ez

∫

E
JE b1

z =
∫

ωz

〈
A∇u	,∇b1

z

〉
+ div	 (A∇	u	) b1

z

=
∫

ωz

res (u	) b1
z (6.16)

=
∫

ωz

resz (u	) b1
z +
∫

ωz

(res (u	)− resz (u	)) b1
z .

We choose ϕ	+1,z as in Theorem 7 such that (5.13) holds and
obtain as in (6.12c)

∑
E∈Ez

∫

E
JEϕ	+1,z =

∑
E∈Ez

∫

E
〈An, [∇u	]E 〉ϕ	+1,z

=
∑

K⊂ωz

∫

K

〈
A∇u	,∇ϕ	+1,z

〉+ div	 (A∇u	) ϕ	+1,z

= a
(
u	 − u	+1, ϕ	+1,z

)+
∫

ωz

resz (u	) ϕ	+1,z

+
∫

ωz

(res (u	)− resz (u	)) ϕ	+1,z . (6.17)

The combination of (6.16) and (6.17) with (5.13a) allows
to eliminate the jump residuals and we obtain

∫

ωz

resz (u	)
(

b1
z − ϕ	+1,z

)
= a
(

u	 − u	+1, ϕ	+1,z − b1
z

)

+
∫

ωz

(res (u	)− resz (u	))
(
ϕ	+1,z − b1

z

)
. (6.18)

Recall the definition of ϕ	+1,z as in the proof of Theorem 7

b1
z − ϕ	+1,z = vz with vz := hz

�zv

‖v‖z

and we apply this definition for v = resz (u	). From this and
(5.13b) we obtain a bound of the averaged volume residual
on stars

cπ
∥∥∥Φ1/2

z hz resz (u	)
∥∥∥

L2(ωz)

≤ CS ‖u	−u	+1‖PDE,ωz

∥∥∥ϕ	+1,z−b1
z

∥∥∥
PDE,ωz

+
∥∥∥hzΦ

1/2
z (res (u	)− resz (u	))

∥∥∥
L2(ωz)

h−1
z

×
(∥∥∥Φ−1/2

z

(
ϕ	+1,z − b1

z

)∥∥∥
L2(ωz)

)
. (6.19)

Hence, from (5.13) we conclude

cπ
∥∥∥Φ1/2

z hz resz (u	)
∥∥∥

L2(ωz)
≤ CS

C1

c2
pz ‖u	 − u	+1‖PDE,ωz

+ 2C1

∥∥∥hzΦ
1/2
z (res (u	)− resz (u	))

∥∥∥
L2(ωz)

. (6.20a)

Note that6∥∥∥Φ1/2
z hz resz (u	)

∥∥∥
L2(ωz)

≥ c

p1−s
z

×
∥∥∥∥

hz

pz
Φ

s/2
E,z resz (u	)

∥∥∥∥
L2(ωz)

for s ∈ {0, 1} . (6.20b)

The first and second term in the right-hand side in (6.8) can
be estimated by means of (6.14) and (6.20)

‖e	‖2
PDE ≤ 2C2

relC
∑

z∈N 1
	

(
p5

z

c2
π

‖u	 − u	+1‖2
PDE,ωz

+
∥∥∥∥

hz

pz
Φ

1/2
osc,z (res (u	)− resz (u	))

∥∥∥∥
2

L2(ωz)

)
, (6.21)

where, again, C9 only depends on α, β, b∞, c∞, and ρ.
Taking into account the finite overlap of the supports ωz

we end up with

‖e	‖2
PDE ≤ (C2Crel)

2

(
p5
	

c2
π

‖u	 − u	+1‖2
PDE + osc2 (u	)

)

(6.22)

where C2 only depends on α, β, b∞, c∞, and ρ.
Choose C3 > C2Crel. The assumption that the data

oscillations are small, i.e., osc (u	) ≤ μ
C3

, implies for any
0 ≤ μ < 1

∑

z∈N 1
	

‖u	 − u	+1‖2
PDE,ωz

≥ c2
π

C2
3 p5

	

(
1 − μ2

)
‖e	‖2

PDE .

The combination with (6.7) finally leads to

‖e	+1‖2
PDE ≤ �2

	+1 ‖e	‖2
PDE − ‖u	+1 − u	‖2

PDE

≤
⎛
⎝�2

	+1 −
(

cπ

C3 p5/2
	

)2 (
1 − μ2

)⎞⎠ ‖e	‖2
PDE

and this is the assertion. ��
6 For s = 1 this follows from Corollary 6. For s = 0, we conclude
from [39, Prop. 3.37, Cor. 3.40, Prop. 3.46] that
∥∥∥∥
√
Φ
(3)
K v

∥∥∥∥
L2(K )

≥ c

p2
‖v‖L2(K ) ∀v ∈ Pp (K ) , p ≥ 1

holds and from [27, (22) with α = 0 and β = 1]
∥∥∥∥
√
Φ
(1)
K v

∥∥∥∥
L2(K )

≥ c

p
‖v‖L2(K ) ∀v ∈ Pp (K ) , p ≥ 1

for some constant c > 0 which is independent of p and hK . Finally, for
Φ
(1)
K ,K +Φ

(2)
K we employ

Φ
(3)
K ≤ Φ

(1)
K ,K +Φ

(2)
K pointwise

to obtain
∥∥∥∥
√
Φ
(1)
K ,K +Φ

(2)
K v

∥∥∥∥
L2(K )

≥
∥∥∥∥
√
Φ
(3)
K v

∥∥∥∥
L2(K )

≥ c

p2
‖v‖L2(K )

∀v ∈ Pp (K ) , p ≥ 1.
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Corollary 3 Let the assumptions of Theorem 8 be satisfied.
Condition (6.6) follows from the computable condition

osc (u	) ≤ μ̂cπ

C10 p5/2
	

⎛
⎝ ∑

E∈EΩ

∥∥∥∥∥

√
hE

pE
Res (u	)

∥∥∥∥∥
2

L2(E)

⎞
⎠

1/2

(6.23)

for sufficiently small 0 < μ̂ ≤ μ̂0, where μ̂0 depends on
α, β, b∞, c∞, μ,C3, and ρ.

Proof Observe that (6.12c) and (6.17) remain true if u	+1

is replaced by u. Hence, we may also replace u	+1 by u in
(6.14) and (6.20). By doing so, the combination of (6.14)
and (6.20) yields after summing the squared norms over all
z ∈ N 1

	 the estimate
⎛
⎝ ∑

E∈EΩ

∥∥∥∥∥

√
hE

pE
Res (u	)

∥∥∥∥∥
2

L2(E)

⎞
⎠

1/2

≤ C10

(
p5/2
	

cπ
‖e	‖PDE + osc (u	)

)
,

where C10 only depends α, β, b∞, c∞, and ρ. The condition
(6.23) implies (since 0 ≤ cπ ≤ 1 [cf. Cor. (2)]

osc (u	) ≤ μ̂
1

C10

cπ

p5/2
	

⎛
⎝ ∑

E∈EΩ

∥∥∥∥∥

√
hE

pE
Res (u	)

∥∥∥∥∥
2

L2(E)

⎞
⎠

1/2

≤ μ̂ ‖e	‖PDE + μ̂osc (u	) .

For sufficiently small 0 < μ̂ ≤ μ̂0, this implies (6.6). ��
Corollary 4 Assume that the sequence of meshes and poly-
nomial distributions are chosen such that the oscillation con-
dition (6.6) holds on every level 	. Let Conjecture 1 be sat-
isfied. Then, the contraction of the error on level 	 is given
by

ζ	 :=
	∏

k=1

(
1 − C

p5/2
k

)

for a constant 0 < C ≤ 1 which is independent of the poly-
nomial degrees, i.e.,

‖e	‖PDE ≤ ζ	 ‖e0‖PDE .

Recall that pk denotes the maximal polynomial degree
at level k which is monotonously increasing. Define the
sequence (ni )i∈N recursively by n0 = 0 and, for i = 1, 2, . . .,
by the condition

pk = i for ni−1 + 1 ≤ k ≤ ni ,

i.e., the maximal polynomial degree stays fix for δi := ni −
ni−1 consecutive levels.

1. If, for some k0 > 0, it holds nk = ∞ for all k ≥ k0, then

ζ	 ≤
(

1 − Cp−5/2
k0

)	 → 0 as 	 → ∞.

2. If,
∑∞

k=1 p−5/2
k = +∞, then lim	→∞ ζ	 = 0.

3. If δi ≥ ci3/2, then lim	→∞ ζ	 = 0 as 	 → ∞, while
limk→∞ pk = ∞.

Proof The first statement is trivial. For the second statement
we employ for s > 0 and C < 1

ζ	 ≤ exp

(
	∑

k=1

log

(
1 − C

ps
k

))
.

Note that, for 0 < ε < 1,

log (1 − ε) ≤ −ε
so that

ζ	 ≤ exp

(
−C

	∑
k=1

1

ps
k

)
.

From this, the second statement follows. For the third one we
use

lim
	→∞ ζ	 ≤ exp

(
−C

∞∑
i=1

δi

i s

)
.

Hence, for δi ≥ cis−1 we have lim	→∞ ζ	 = 0. ��

7 Appendix 1: Lower bound for the constant cπ :
numerical experiments

In this appendix we will invest the dependence of the stability
constant cπ of the polynomial projection operator �z [cf.
(5.8)] on the polynomial degree p. We consider mainly two
cases: pure p-refinement and h-refinement.

7.1 p-Refinement

First, we will rewrite the definition of cπ as an algebraic
eigenvalue problem which we will solve numerically. We
have performed numerical experiments for the two-dimensi-
onal setting on stars as described in this paper but also con-
sidered the one-dimensional case where ωz consists of the
two intervals which have z as a common endpoint.

7.1.1 Equivalent formulation

The goal is to investigate the dependence of the constant

cπ := inf
v∈Pp(ωz)\{0}

(
v,�

p
z v
)

L2(ωz)∥∥∥Φ1/2
z v

∥∥∥
2

L2(ωz)

(7.1)

on the polynomial degree p numerically. Let d denote the
spatial dimension. Let ωz consists of q ≥ d simplices Ki ,
1 ≤ i ≤ q.
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By employing a global affine map we can pull back the star
ωz to a reference configuration, where K1 = K̂ is the unit
simplex, on the expense that cπ in (7.1) depends additionally
on the shape regularity of K1. Let χi : K̂ → Ki denote affine
bijection with the special choice χ1 = id. Then,

∥∥∥Φ1/2
z v

∥∥∥
2

L2(ωz)
=

q∑
i=1

|Ki |∣∣K̂ ∣∣
∫

K̂
Φ̂K v̂

2
i ,

where v̂i = v ◦χi andΦK̂ denotes the product of barycentric
coordinates. Let (Pn)n∈ιp denote a basis of Pp (ωz) for a
suitable index set ιp. We write

v =
p∑

n=0

vn Pn (7.2)

and obtain
∥∥∥Φ1/2

z v

∥∥∥
2

L2(ωz)
= vᵀM(p)v,

where

(
M(p)

i

)
n,m

:= |Ki |∣∣K̂ ∣∣
∫

K̂
Φ̂K (Pn ◦ χi ) (Pm ◦ χi ) , n,m ∈ ιp

and M(p) :=
q∑

i=1

M(p)
i .

For the special case that Φ̂K̂ is the polynomial bubble func-
tion we can choose an orthogonal basis for Pp

(
K̂
)

(cf.

[23,31]) so that M(p)
1 is a diagonal matrix.

In order to invest (7.1) we introduce a matrix representa-
tion of �p

z v with v as in (7.2) via the ansatz

�
p
z v|Ki =

∑
m∈ιp

wm,i Pm ◦ χ−1
i

The coefficients wi = (wm,i )m∈ιp are determined via

wi =
(

M(p−1)
1

)−1
Wi v with

(Wi )m,n := |Ki |∣∣K̂ ∣∣
∫

K̂
Φ̂K Pn ◦ χi Pm for m ∈ ιp−1, n ∈ ιp.

Hence,

(
v,�

p
z v
)

z = vᵀBv with B :=
q∑

i=1

Wᵀ
i

(
M(p−1)

1,1

)−1
Wi

so that the constant cπ has the algebraic representation

cπ = inf
v∈R

ιp

vᵀBv
vᵀM(p)v

.

Hence, cπ is the smallest eigenvalue of
(

M(p)
)−1/2

B
(

M(p)
)−1/2

.
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Fig. 4 Performance of cπ versus p for the one-dimensional case

7.1.2 The one-dimensional case

In this case we have K̂ = [−1, 1] and Pn are the Jacobi
polynomials P(1,1)n which are defined as follows

P(α,β)n (x) = (2)n
n! 2 F1

(−n, n + α + β + 1
α + 1

; 1 − x

2

)
,

where (·)n is Pochhammer’s symbol and 2 F1 is the termi-
nating Gauss hypergeometric function

2 F1

(−n, b

c
; z

)
=

n∑
k=0

(−n)k(b)k
(c)kk! zk .

We consider K1 = K̂ and K2 = [1, 1 + δ] for some δ > 0.
Note that M(p)

1 in this case is given by

M(p)
1 = diag

[
8

(n + 1)

(2n + 3) (n + 2)
: n ∈ ιp

]
.

The mapping χ2 is defined by

χ2
(
x̂
) = 1 − x̂

2
+ 1 + x̂

2
(1 + δ) .

To observe the behaviour of cπ with respect to p and δ, we
consider three different cases: δ = 0.5, δ = 1, δ = 2, δ =
4. The following observations can be obtained from Fig. 4:

– cπ converges to a positive constant with respect to p,
– cπ is properly bounded from below,
– cπ is decreasing as δ goes to zero.

7.1.3 The two-dimensional case

Now we consider Jacobi bivariate polynomials as our basis
functions on the reference triangle, which are defined as fol-
lows:
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Fig. 5 Illustration of the geometric configuations described in (7.3)

P1,1,1
n,k (x, y) := (1 − x)k P(1,3+2k)

n−k (1 − 2x)P(1,1)k

(
1 − 2y

1 − x

)
,

which is a polynomial of degree n in x and y.
We study different triangulations. Again we assume that

K1 is the unit simplex and the common point of all triangles
in the patch is (0, 0). The meshes consist of the following
nodes and are illustrated in Fig. 5:

v1 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)},
v2 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−2, 0), (−2,−1), (−1,−3),

(0,−3), (1,−1)},
v3 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−3, 0), (−4,−2), (−3,−3),

(−1,−4), (0,−4), (1,−2)}, (7.3)

v4 = {(0, 0), (1, 0), (0, 1), (−1,−1)},
v5 = {(0, 0), (1, 0), (0, 1), (−0.1,−0.2)},
v6 = {(0, 0), (1, 0), (0, 1), (−4, 3), (−4, 0), (−4,−4), (0,−4),

(1,−0.1)}.

Figure 6 shows the behaviour of cπ with respect to p in
each case and we summarize the main observations.

(a) In the first three cases, i.e., the number of triangles (at
least six) is varying while the shape regularity constant
is always moderately bounded, the lower bound of cπ
is approximately 1. It also shows that the constant cπ
is robust with respect to the elongation of the triangles
which is in analogy to the one-dimensional observation
(δ increases).

(b) If we consider the minimal number (three) elements,
again, with moderate shape regular constant, we still get
a proper lower bound. Recall that the dimension of the
image space Pp−1 (Tz) [in (5.1)] increases with the num-
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Fig. 6 Performance of cπ versus p for the two-dimensional cases

ber of triangles so that we expect that the constant cπ
becomes larger with increasing number of triangles.

(c) On the other hand, if we consider the minimal configura-
tion with only three triangles and large shape regularity
constant (the area of the triangles is highly varying) as
described by v5, then the constant cπ becomes smaller
as expected.

(d) Configuration v6 supports the statement that, if the space
Pp−1 (Tz) is large enough, then a few tiny elements can
be still harmless. We can see that these numerical exam-
ples confirm our hypothesis that cπ depends on the shape
regularity of our meshes but does not depend on p.

7.2 h-Refinement

In this section we study the similar problem as in previous
section but with h-refinement instead of p-refinement. In
other word, we apply one level of regular h-refinement on
each mesh and observe the behaviour of the constant cπ with
respect to p on the refined mesh. To be able to make a com-
parison between the results, we take the same patches as in
previous section. From the definition of Φz for this case we
have

cπ =

inf
v∈Pp−1(K )

∑
K⊂ωz

∫
K vΦ

(1)
K ,K v+

∫
K v
(
Φ
(1)
K ,K+Φ(2)K

)∏p−1
K v

∑
K⊂ωz

∫
K v
(
Φ
(1)
K ,K +Φ

(2)
K

)
v

,

where Φ(1)K ,K and Φ(2)K are piecewise linear and quadratic
functions defined as in (5.4). Figure 7 shows the behaviour
of cπ for the same patches with respect to p. It supports our
hypothesis and shows the similar behaviour as in p-version.
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Fig. 7 Behaviour of cπ versus p with one level of h-refinement

Also here we observe that cπ does not depend on p, but it
only depends on the shape regularity of the mesh.

8 Appendix 2: Polynomial inverse estimates

We start with a one-dimensional estimate.

Lemma 2 For a < b, letΦ[a,b] (x) = (x−a)(b−x)
(b−a)2

denote the

one-dimensional bubble function. Then,

∥∥∥(Φ[a,b]v
)′∥∥∥

L2([a,b])
≤C

p + 1

b − a

∥∥∥Φ1/2
[a,b]v

∥∥∥
L2([a,b])

∀v ∈ Pp ([a, b]) .

Proof We first prove the result for (a, b) = (0, 1). Observe

that
∥∥∥Φ ′

[0,1]

∥∥∥
L∞([0,1])

= 1 so that Leibniz rule gives us

∥∥∥(Φ[0,1]v
)′∥∥∥

L2([0,1])
≤ ∥∥Φ ′

[0,1]v
∥∥

L2([0,1])
+∥∥Φ[0,1]v

′∥∥
L2([0,1])

≤ ‖v‖L2([0,1])+
∥∥Φ[0,1]v

′∥∥
L2([0,1]) .

For the first term, we apply [27, Lemma 2.4 with α = 0
and β = 1 ] and for the second term [27, Lemma 2.4 with
δ = 1 ] to obtain∥∥∥(Φ[0,1]v

)′∥∥∥
L2([0,1])

≤ C (p + 1)
∥∥∥Φ1/2

[0,1]v

∥∥∥
L2([0,1])

. (8.1)

The result then follows via a scaling argument. ��
Corollary 5 Let a < b and Φ[a,b] be as in Lemma 2. Let
�[a,b] ∈ W 1,∞ ([a, b]) be a function with the properties
∣∣�[a,b]

∣∣ ≤ C11Φ[a,b] pointwise and
∥∥� ′

[a,b]

∥∥
L∞([a,b])

≤ C12

b − a
.

Then

∥∥∥(�[a,b]v
)′∥∥∥

L2([a,b])
≤C (C11+C12)

p+1

b−a

∥∥∥Φ1/2
[a,b]v

∥∥∥
L2([a,b])

∀ v ∈ Pp ([a, b]) .

Proof Leibniz’ rule gives us
∥∥∥(�[a,b]v

)′∥∥∥
L2([a,b])

≤
∥∥∥� ′

[a,b]v
∥∥∥

L2([a,b])
+∥∥�[a,b]v

′∥∥
L2([a,b])

≤ C12

b−a
‖v‖L2([a,b])+C11

∥∥Φ[a,b]v
′∥∥

L2([a,b])

≤C (C11 + C12)
p + 1

b − a

∥∥∥Φ1/2
[a,b]v

∥∥∥
L2([a,b])

,

where the last inequality follows as (8.1). ��
The two-dimensional version is formulated next. The esti-

mates are similar to those in [39, Sec. 3.6] but differ by powers
of the weight functions in the right-hand side and also by the
choice of the weight function in Lemma 4. The proofs follow
the lines of the proofs in [39, Prop. 3.46] and also employs
tools from [28, Appendix D].

Lemma 3 Let K denote a triangle and let ΦK be the cubic
bubble function as defined in (5.3). Then, it holds for all
v ∈ Pp (K )

‖∇ (ΦK v)‖L2(K ) ≤ C
p + 1

hK

∥∥∥Φ1/2
K v

∥∥∥
L2(K )

.

Proof Let K = K̂ be the two-dimensional reference triangle.
Note that

ΦK̂ (x1, x2) = Φ[0,1−x1] (x2) (1 − x1)Φ[0,1] (x1)

with Φ[a,b] as in Lemma 2. First, we consider the derivative
with respect to x2 and obtain

∥∥∂2
(
ΦK̂ v

)∥∥2
L2(K̂)

=
∫ 1

0

(∫ 1−x1

0

(
∂2
(
ΦK̂ (x1, x2) v (x1, x2)

))2
dx2

)
dx1

=
∫ 1

0
Φ2

[0,1] (x1) (1 − x1)
2

×
(∫ 1−x1

0

(
∂

∂x2

(
Φ[0,1−x1] (x2) v (x1, x2)

))2

dx2

)
dx1.

We then get

(1 − x1)
2
∫ 1−x1

0

(
∂

∂x2

(
Φ[0,1−x1] (x2) v (x1, x2)

))2

dx2

= (1 − x1)
2
∥∥∥(Φ[0,1−x1]v (x1, ·)

)′∥∥∥
2

L2(0,1−x1)

Lem. 2≤ C (p + 1)2
∥∥∥Φ1/2

[0,1−x1]v (x1, ·)
∥∥∥

2

L2(0,1−x1)
.
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Since Φ2
[0,1] (x1)Φ[0,1−x1] (x2) ≤ ΦK̂ (x1, x2) we end up

with

∥∥∂2
(
ΦK̂ v

)∥∥2
L2(K̂)

≤ C (p + 1)2

×
∫ 1

0

∫ 1−x1

0
Φ2

[0,1] (x1)Φ[0,1−x1] (x2) v
2 (x1, x2) dx2dx1

≤ C (p + 1)2
∥∥∥Φ1/2

K̂
v

∥∥∥
2

L2(K̂)
.

Since K̂ , ψK̂ , and the integral are invariant under permuta-
tions of the coordinates, the same estimate holds for the other
partial derivatives. ��
Lemma 4 Let K be regularly h-refined and let Φ(2)K be as
explained in Definition 3 and illustrated in Fig. 3. Then, it
holds for all v ∈ Pp (K )
∥∥∥∇
(
Φ
(2)
K v
)∥∥∥

L2(K )
≤ C

p + 1

hK

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
L2(K )

.

Proof Via an affine transformation it suffices to prove the
result for the reference element K1 = K̂ and K2 =
conv

{(0
0

)
,
(0

1

)
,
(−1

0

)}
. The common edge is E = {0}×(0, 1).

Let K = K1 ∪ K2. The edge bubble Φ(2)K [cf. (5.4)] is given
by

Φ
(2)
K (x1, x2) = x2 (1 − |x1| − x2) .

We first consider the derivative with respect to x2. Let

Φ[0,1−|x1|] (x2) = x2 (1 − |x1| − x2)

(1 − |x1|)2
,

i.e., Φ[0,1−|x1|] is the one-dimensional bubble function for

[0, 1 − |x1|] and satisfies Φ(2)K = (1 − |x1|)2Φ[0,1−|x1|].
Hence,

∥∥∥∂2

(
Φ
(2)
K v
)∥∥∥

2

L2(K )
=
∫ 1

−1
(1 − |x1|)4

×
∫ 1−|x1|

0

(
∂2
(
Φ[0,1−|x1|] (x2) v (x1, x2)

))2
dx2dx1

Lem. 2≤ C (p + 1)2
∫ 1

−1
(1 − |x1|)2

×
∫ 1−|x1|

0
Φ[0,1−|x1|] (x2) v

2 (x1, x2) dx2dx1

= C (p + 1)2
∫

K
Φ
(2)
K v2. (8.2)

Next, we will estimate the derivative with respect to x1.
We split the triangle into the two regions

D1 :=
{(x1

x2

) ∈ K : x2 ≤ 1

2

}
and

D2 := conv
{(1/2

1/2

)
,
(0

1

)
,
(−1/2

1/2

)}
.

In addition, we will need

D3 := conv
{(0

0

)
,
(1/2

1/2

)
,
(0

1

)
,
(−1/2

1/2

)}
.

On D1 we obtain

∥∥∥∂1

(
Φ
(2)
K v
)∥∥∥

2

L2(D1)
≤
∫ 1/2

0
x2

2 (1 − x2)
2

×
∫ 1−x2

x2−1

(
∂1

(
1 − |x1| − x2

1 − x2
v (x1, x2)

))2

dx1dx2

Lem. 5≤ C (p + 1)2
∫ 1/2

0

∫ 1−x2

x2−1

x2

1 − x2

×Φ
(2)
K (x1, x2) v

2 (x1, x2) dx1dx2

≤ C (p + 1)2
∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
2

L2(D1)

, (8.3)

since x2/ (1 − x2) ≤ 1 on D1.
On D2, we observe that

1

2

∥∥∥∂1

(
Φ
(2)
K v
)∥∥∥2

L2(D2)
≤
∥∥∥v∂1Φ

(2)
K

∥∥∥2

L2(D2)
+
∥∥∥Φ(2)K ∂1v

∥∥∥2

L2(D2)
.

(8.4)

Let d : D3 → R be defined by

d (x1, x2) = c3 dist
(
(x1, x2)

ᵀ , ∂D3
)

where the scaling c3 is chosen such that d interpolates Φ(2)K
at the vertices of the two triangles Km ∩ D3, m = 1, 2. Note
that

d ≤ Φ
(2)
K ≤1 pointwise in D3 andΦ(2)K ≤2d pointwise in D2.

Since
∥∥∥∂1Φ

(2)
K

∥∥∥
L∞(K )

≤ C we obtain for the first term in

(8.4) as in (5.16b)∥∥∥v∂1Φ
(2)
K

∥∥∥
L2(D2)

≤ C ‖v‖L2(D2)

≤C ‖v‖L2(D3)
≤C (p+1)

∥∥∥d1/2v

∥∥∥
L2(D3)

≤ C (p + 1)

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
L2(D3)

. (8.5a)

For the second term in (8.4) we get, again, as in (5.16b)∥∥∥Φ(2)K ∂1v

∥∥∥
L2(D2)

≤ 2 ‖d∂1v‖L2(D3)

[26, (23) with δ=1]≤ C (p + 1)
∥∥∥
√

dv
∥∥∥

L2(D3)

≤ C (p + 1)

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
L2(D3)

. (8.5b)

The combination of (8.4) and (8.5) yields
∥∥∥∂1

(
Φ
(2)
K v
)∥∥∥

2

L2(D2)
≤ C (p + 1)2

∥∥∥∥
√
Φ
(2)
K v

∥∥∥∥
2

L2(D3)

. (8.6)

The combination of (8.2), (8.3), and (8.6) yields the
assertion. ��

123



Saturation estimates for hp-finite element methods 213

Fig. 8 Reference triangle K̂
which is split into K̂1 and K̂2.
The shaded regions illustrate the
integration domains in the
splitting of the integral in (8.8)

The following lemma is illustrated in Fig. 8.

Lemma 5 Let K̂ be the reference triangle split into K̂1 =
conv

((0
0

)
,
(a

0

)
,
(0

1

))
and K̂2 = conv

((a
0

)
,
(1

0

)
,
(0

1

))
for some

a ∈ ]0, 1[. Let ϕlin
E denote the continuous, piecewise linear

function which has value 1 at
(a

0

)
and vanishes at ∂ K̂\E1

with E1 = [0, 1] × {0}. Then, for any polynomial v ∈ Pp

which is constant with respect to x2 it holds

∥∥∥∥
√
ϕlin

E v

∥∥∥∥
L2(K̂)

≤ C

∥∥∥∥
√
ϕlin

E v

∥∥∥∥
L2(E1)

,

∥∥∥∇
(
ϕlin

E v
)∥∥∥

L2(K̂)
≤ C (p + 1)

∥∥∥∥
√
ϕlin

E v

∥∥∥∥
L2(E1)

.

Proof We prove this lemma only for a = 1/2 to reduce
technicalities. The arguments apply verbatim for the general
case. The function ϕlin

E and its partial derivatives are given
by

ϕlin
E (x1, x2) =

{
2x1 (x1, x2) ∈ K̂1,

2 (1 − x1 − x2) (x1, x2) ∈ K̂2,

∂1ϕ
lin
E (x1, x2) =

{
2 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2.

∂2ϕ
lin
E (x1, x2) =

{
0 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2,

Since v ∈ Pp is constant with respect to x2 we write, with a
slight abuse of notation, v (x1, x2) = v (x1). Hence,

∥∥∥∥
√
ϕlin

E v

∥∥∥∥
2

L2(K̂)
=
∫ 1

0
v2 (x1)

(∫ 1−x1

0
ϕlin

E (x1, x2) dx2

)
dx1.

The result of the inner integration is

r (x1) :=
∫ 1−x1

0
ϕlin

E (x1, x2) dx2

=
{

2
(∫ 1−2x1

0 x1dx2 + ∫ 1−x1
1−2x1

(1 − x1 − x2) dx2

)

2
∫ 1−x1

0 (1 − x1 − x2) dx2

=
{

x1 (2 − 3x1) x1 ≤ 1/2,
(1 − x1)

2 x1 > 1/2.

Since r ≤ ϕlin
E (·, 0) pointwise on [0, 1], the first assertion

follows.

Next, we investigate the derivative with respect to x2. It
holds

∂2

(
ϕlin

E v
)

= v∂2ϕ
lin
E = v ×

{
0 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2.

Thus,

∫

K̂

(
∂2

(
ϕlin

E v
))2 =

∫

K̂

(
v∂2ϕ

lin
E

)2 ≤ 4
∫

K̂
v2 ≤ 4

∫ 1

0
v2

[26, Lemma 2.4 withα=0 andβ=1]≤ 4 (p + 1)2
∫ 1

0
Φ[0,1]v

2

≤ 4C (p + 1)2
∫ 1

0
ϕlin

E v
2. (8.7)

For the derivative with respect to x1, we get

q (x1, x2) := ∂1

(
ϕlin

E (x1, x2) v (x1)
)

= 2

{
(x1v (x1))

′ in K̂1,

(1 − x1 − x2) v
′ (x1)− v (x1) in K̂2.

The function q is on K̂1 and on K̂2, an affine function with
respect to x2. We split the integral into

∫ 1

0

∫ 1−x1

0
· · ·

=
∫ 1/2

0

∫ 1−2x1

0
· · · +

∫ 1/2

0

∫ 1−x1

1−2x1

· · · +
∫ 1

1/2

∫ 1−x1

0

=: W1 + W2 + W3 (8.8)

and obtain for the summands

W1 = 4
∫ 1/2

0
(1 − 2x1)

(
(x1v (x1))

′)2 dx1

≤
∫ 1/2

0

(
(2x1v (x1))

′)2 dx1

≤
∫ 1

0

((
ϕlin

E (x1, 0) v (x1)
)′)2

dx1

Cor. 5≤ C (p + 1)2
∥∥∥∥
√
ϕlin

E v

∥∥∥∥
2

L2([0,1])
.

For W2 and W3 we use the fact that the Simpson rule is exact
for quadratic polynomials and (8.7) to obtain

W2 = 4
∫ 1/2

0

∫ 1−x1

1−2x1

(
(1 − x1 − x2) v

′ (x1)− v (x1)
)2

dx2dx1

= 2

3

∫ 1/2

0
x1

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎝x1v

′ (x1)−v (x1)︸ ︷︷ ︸
=(x1v(x1))

′−2v(x1)

⎞
⎟⎠

2

+4

⎛
⎜⎜⎜⎜⎜⎝

x1

2
v′ (x1)−v (x1)

︸ ︷︷ ︸
(x1v(x1))

′
2 −3

2 v(x1)

⎞
⎟⎟⎟⎟⎟⎠

2

+ v2 (x1)
)

dx1
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≤ 2

3

∫ 1/2

0
x1

(
4
(
(x1v (x1))

′)2 + 27v2 (x1)
)

dx1

≤ 4

3

∫ 1

0

(((
ϕlin

E (x1, 0) v (x1)
)′)2
)

dx1 + 9 ‖v‖2
L2([0,1])

Cor. 5≤ C (p + 1)2
∥∥∥∥
√
ϕlin

E v

∥∥∥∥
2

L2([0,1])
.

Finally, for W3 we obtain

W3 = 4
∫ 1

1/2

∫ 1−x1

0

(
(1−x1−x2) v

′ (x1)−v (x1)
)2

dx2dx1

= 4
∫ 1

1/2

1 − x1

6

⎛
⎜⎝

⎛
⎜⎝(1 − x1) v

′ (x1)− v (x1)︸ ︷︷ ︸
((1−x1)v(x1))

′

⎞
⎟⎠

2

+ 4

⎛
⎜⎜⎜⎜⎝

(
1 − x1

2

)
v′ (x1)− v (x1)

︸ ︷︷ ︸
1
2 (((1−x1)v(x1))

′−v(x1))

⎞
⎟⎟⎟⎟⎠

2

+ v2 (x1)

⎞
⎟⎟⎟⎟⎠

dx1

≤ 4
∫ 1

1/2

1 − x1

6

(
3
(
((1 − x1) v (x1))

′)2 + 9v (x1)
)

dx1

≤ 1

12

∫ 1

1/2
3
(
(2 (1 − x1) v (x1))

′)2 + 36v2 (x1) dx1

≤ 1

4

∫ 1

0

((
ϕlin

E (x1) v (x1)
)′)2

dx1 + 3 ‖v‖2
L2[0,1]

Cor. 5≤ C (p + 1)2
∥∥∥∥
√
ϕlin

E v

∥∥∥∥
2

L2([0,1])
.

��

Corollary 6 Let K̂ be the reference triangle and letϕE (x1, x2)

= x1 (1 − x1 − x2) denote the quadratic edge bubble on K̂
for the edge E1 = [0, 1] × {0}. Then, for any polynomial
v ∈ Pp which is constant with respect to x2 it holds

∥∥√ϕEv
∥∥

L2(K̂)
≤ C
∥∥√ϕEv

∥∥
L2(E1)

,

‖∇ (ϕEv)‖L2(K̂) ≤ C (p + 1)
∥∥√ϕEv

∥∥
L2(E1)

.

The proof follows by a simple repetition of the arguments
of the proof of Lemma 5.

Lemma 6 Let K be a triangle and E one of its edges. Then,
for any of the functions ϕE (6.4) and corresponding version
ΦK as in (5.4) it holds
∥∥∥ϕ1/2

E v

∥∥∥
L2(D)

≤ C (p + 1)
∥∥∥Φ1/2

K v

∥∥∥
L2(D)

∀v ∈ Pp (D) .

The proof requires two preparatory lemmata and follows
the ideas in [28, Appendix D].

Lemma 7 Let I = [a, b] for some a < b and let ω : I → R

be a weight function which satisfies

∃A, B, D ≥ 0 with{
ω is positive in ]a, b[ ,
ω (x)≤ Aϕa (x)+Bϕb (x)+DΦ[a,b] (x) ,

PI

where ϕb (x) = x−a
b−a , ϕa = 1 − ϕb, and Φ[a,b] = ϕaϕb as in

(2). Then, it holds

∥∥ω1/2v
∥∥

L2(I )≤C (p+1)
∥∥∥
√
ωΦ[a,b]v

∥∥∥
L2(I )

∀v ∈ Pp (I ) ,

where C is independent of p, v, ω, a, b.

Proof By employing an affine transform it is sufficient to
prove the assertion for the unit interval I = [0, 1].

(a) ω (x) = Φ[0,1] (x) = x (1 − x). We may apply standard
inverse estimates to obtain

∥∥∥Φ1/2
[0,1]v

∥∥∥
L2(I )

[26, with α=1,β=2]≤ C (p + 1)
∥∥Φ[0,1]v

∥∥
L2(I )

= C (p + 1)
∥∥∥
√
ωΦ[0,1]v

∥∥∥
L2(I )

.

(b) For ω (x) = ϕb (x) = x we observe that ω (x) ≤
2Φ[0,1] (x) holds for all 0 ≤ x ≤ 1/2 so that

∥∥∥ω1/2v

∥∥∥
2

L2(I )
≤ 2
∥∥∥Φ1/2

[0,1]v

∥∥∥
2

L2(I )
+‖v‖2

L2
([

1
2 ,1
])

[26, Lem. 2.4]≤ C (p + 1)2

×
⎛
⎜⎝
∥∥Φ[0,1]v

∥∥2
L2(I ) +

∥∥∥∥∥Φ
1/2[

1
2 ,1
]v

∥∥∥∥∥
2

L2
([

1
2 ,1
])

⎞
⎟⎠ .

The result now follows from Φ
1/2
[0,1] ≤ ω1/2 pointwise in

[0, 1] and
√

2ω ≥ 1 pointwise on
[ 1

2 , 1
]
.

(c) The ω (x) = ϕa (x) follows from Case b by symmetry.
(d) Let ω be a general weight function which satisfies the

assumptions of the lemma. Hence, from Part a,b,c we
conclude that

∥∥∥ω1/2v

∥∥∥
2

L2(I )
= A
∥∥√ϕ0v

∥∥2
L2(I ) + B

∥∥√ϕ1v
∥∥2

L2(I )

+D
∥∥∥
√
Φ[0,1]v

∥∥∥
2

L2(I )
≤C ′ (p+1)2

∥∥∥
√
ωΦ[0,1]v

∥∥∥
2

L2(I )

holds. ��

The following lemma is a weighted version of [28, Lem.
D3].
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Lemma 8 Let d ∈ (0, 1), a, b be given such that −1+ad <
1 + bd and define the trapezoid

D := D (a, b, d) :=
{
(x1, x2) ∈ R

2 | x2 ∈ (0, d)

and − 1 + ax2 < x1 < 1 + bx2} .
Let ω ∈ P2 (D) be a polynomial such that for any 0 ≤ x2 ≤
d, ω (·, x2) has property P[−1+ax2,1+bx2].

On D we define the weight function

Φa,b,d (x1, x2) := min {|x1 − (−1 + ax2)| , |x1 − (1 + bx2)|}
which measures the distance of the point (x1, x2) from the lat-
eral edges of D. Then, there exists a constant C = C (a, b, d)
such that for all p ∈ N and all polynomials v ∈ Pp (D) it
holds∥∥∥ω1/2v

∥∥∥
L2(D)

≤ C (p + 1)
∥∥∥
√
ωΦa,b,dv

∥∥∥
L2(D)

.

Proof Note that

C13Φ[−1+ax2,1+bx2] (x1) ≤ Φa,b,d (x1, x2)

≤ C14Φ[−1+ax2,1+bx2] (x1)

for positive constants C13,C14 which only depends on
a, b, d. Hence, the one-dimensional case (Lemma 7) implies
∫ 1+bx2

−1+ax2

ω1/2 (x1, x2) v
2 (x1, x2) dx1 ≤ C (p + 1)2

×
∫ 1+bx2

−1+ax2

√
ω (x1, x2)Φa,b,d (x1, x2)v

2 (x1, x2) dx1.

Integrating this estimate over x2 ∈ (0, d) completes the
proof. ��
Proof of Lemma 6 By using an affine pullback we may
restrict to the case that K is the equi-sided triangle conv((0

0

)
,
(1

0

)
, 1

2

( 1√
3

))
and E = (0, 1)× {0}.

It turns out that the proofs for the different cases in (6.4)
for ϕE and in (5.4) for ΦK uses the same arguments and we
work them out exemplarily for the case of the quadratic edge
bubble

ϕE (x1, x2) =
(

x1 − x2√
3

)(
1 − x1 − x2√

3

)

and for ΦK = Φ
(3)
K being the cubic bubble on K .

First, we will cover K with 4 trapezoids and one triangle:
Let v = (cos π4 , sin π

4

)ᵀ = 2−1/2 (1, 1)ᵀ. Then,

1. T1 :=
{(x̂1

0

)+ sv :
(

0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1

(
x̂1
)
)}

with

L1
(
x̂1
) :=

√
6

1 + √
3

(
1 − x̂1

)
.

2. T2 : mirror image of T1 with respect to the angle bisector
at (0, 0)ᵀ .

3. T3 : counter-clockwise rotations of T1 by 3π
4 about the

barycenter of K .
4. T4 : mirror image of T3 with respect to the angle bisector

at (1, 0)ᵀ.
5. T5 := {(x1, x2)

ᵀ ∈ K | x2 ≥ 1/2}.

Case T1: We introduce

χ :
(

0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1

(
x̂1
)
)

→ T1 by χ
(
x̂1, s
) := (x̂1

0

)+ sv

The bubble function ϕE restricted to the line
(x̂1

0

)+sv results
in

ψx̂1 (s) :=ϕE ◦ χ (x̂1, s
)=(L1

(
x̂1
)− s

)
(√

3+1√
6

x̂1+ s

3

)

∀
(

0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1

(
x̂1
)
)
.

Note that the function ψx̂1 satisfies the assumptions of
Lemma 7 and v̂ := v ◦ χ is a polynomial of maximal degree
p. Hence,

∫

T1

ϕEv
2 =
∫ 1/2

0

(∫ L1(x̂1)

0
ψx̂1 (s) v̂

2ds

)
dx1

≤C (p+1)2
∫ 1/2

0

(∫ L1(x̂1)

0
ψx̂1 (s)Φ[0,L1(x̂1)] (s) v̂

2ds

)
dx̂1.

Composing Φ[0,L1(x̂1)] (s) with χ−1 yields the function

d (x1, x2) = 1 + √
3√

3

x2

(
1 − x1 − x2√

3

)

(1 − x1 + x2)
2 .

Note that the distance function

Φ1
K (x1, x2) = dist

(
(x1, x2)

ᵀ , ∂K
)

is piecewise linear on K . It is easy to verify that d (x1, x2) ≤
CΦ1

K (x1, x2) pointwise on T1 for some C = O (1) so that
∫

T1

ϕEv
2 ≤ C ′ (p + 1)2

∫

T1

ϕEΦ
1
K v

2.

Since ϕEΦ
1
K ≤ C̃ΦK pointwise on K we have proved the

assertion for T1.

Case T3: The proof for the trapezoid T3 follows by sym-
metry.

Case T2: Next, we will consider the trapezoid T2 and
first note that by interchanging the x1, x2-variables the case
becomes equivalent to the estimate
∫

T1

ϕẼv
2 ≤ C ′ (p + 1)2

∫

T1

Φ
(3)
K v2 v ∈ Pp (T1) ,
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where ϕẼ is the qudratic edge bubble for the edge

Ẽ = (00
)
,
( 1/2√

3/2

)
with explicit form

ϕẼ (x1, x2) = 2√
3

x2

(
1 − x1 − x2√

3

)
.

This time, the bubble function ϕẼ , restricted to the line
(x̂1

0

)
+ sv, is given by

ψ̃x̂1 (s) := ϕẼ ◦ χ (x̂1, s
) =

√
3 + 1

3
s
(
L
(
x̂1
)− s

)

∀
(

0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1

(
x̂1
)
)
.

The function ψ̃x̂1 satisfies the assumptions of Lemma 7 so
that

∫

T1

ϕẼv
2 =
∫ 1/2

0

(∫ L1(x̂1)

0
ψ̃x̂1 (s) v̂

2ds

)
dx1

≤ C (p+1)2
∫ 1/2

0

(∫ L1(x̂1)

0
ψ̃x̂1 (s)Φ[0,L1(x̂1)] (s) v̂

2ds

)
dx̂1.

Now we can argue as for the Case of T1 to obtain
∫

T1

ϕẼv
2 ≤ C ′ (p + 1)2

∫

T1

ϕẼΦ
1
K v

2.

Since ϕẼΦ
1
K ≤ C̃ΦK pointwise on K the assertion follows

for T2.
Case T4: The proof for the trapezoid T4 again follows by

symmetry from the case T2.
Case T5: On T5 we have the pointwise estimate

ϕE ≤ CΦ(3)K and the estimate for T5 is trivial. ��
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