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Abstract We address stability of a class of Markovian discrete-time stochastic hy-
brid systems. This class of systems is characterized by the state-space of the system
being partitioned into a safe or target set and its exterior, and the dynamics of the
system being different in each domain. We give conditions for L;-boundedness of
Lyapunov functions based on certain negative drift conditions outside the target set,
together with some more minor assumptions. We then apply our results to a wide class
of randomly switched systems (or iterated function systems), for which we give con-
ditions for global asymptotic stability almost surely and in L;. The systems need not
be time-homogeneous, and our results apply to certain systems for which functional-
analytic or martingale-based estimates are difficult or impossible to get.

Keywords Stochastic stability - Excursion theory - Markov process

1 Introduction

Increasing complexity of engineering systems in the modern world has led to the
hybrid systems paradigm in systems and control theory [22, 31]. A hybrid system
consists of a number of domains in the state-space and a dynamical law corresponding
to each domain; thus, at any instant of time the dynamics of the system depends on the
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domain that its state is in. One would then restrict attention to behavior of the system
in individual domains, which is typically a simpler problem. However, understanding
how the dynamics in the individual domains interact among each other is necessary in
order to ensure smooth operation of the overall system. This article is a step towards
understanding the behavior of (possibly non-Markovian) stochastic hybrid systems
which undergo excursions into different domains infinitely often. Here we consider
the simplest and perhaps the most important hybrid system, consisting of a compact
target or safe set and its exterior, with different dynamics inside and outside the safe
set. Our objective is to introduce a new method of analysis of systems that are outside
the safe set infinitely often in course of their evolution. The analysis carried out here
provides a basis for controller synthesis of systems with control inputs—it gives clear
indications about the type of controllers to be designed in order to ensure certain
natural and basic stability properties in closed loop.

Let us look at two interesting and practically important examples of hybrid sys-
tems with two domains—a compact safe set and its exterior, with different dynamics
in each. The first concerns optimal control of a Markov process with state constraints.
Markov control processes have been extensively studied; we refer the reader to the
excellent monographs and surveys [3, 4, 14, 15] for further information, applications
and references. For our purposes here, consider the canonical example of a linear
controlled system perturbed by additive Gaussian noise and having probabilistic con-
straints on the states. A hybrid structure of the controlled system naturally presents
itself in the following fashion. Except in the most trivial of cases, computing the
constrained optimal control over an infinite horizon is impossible, and one resorts
to a rolling-horizon controller. (Rolling-horizon controllers are considerably popular,
for basic definitions, comparisons and references see e.g., [26] in the deterministic
context, and [7] and the references therein in the stochastic context.) Computational
overheads restrict the size of the window in the rolling-horizon controller, and de-
termine the maximal (typically bounded) region—called the safe set—in which this
controller can be active. No matter how good the resulting controller is, the additive
nature of the Gaussian noise ensures that the states are subjected to excursions away
from the safe set infinitely often almost surely. Once outside the safe set, the rolling-
horizon controller is switched off and a recovery strategy is activated, whose task is
to bring the states back to the safe set quickly and efficiently. This problem is of great
practical interest and a subject of current research, see e.g., [7] and the references
in them for possible strategies inside the safe set, and [6] for one possible recovery
strategy. Evidently, stability of this hybrid system depends largely on the recovery
strategy, since as long as the states stay inside the safe set, they are bounded. How-
ever, traditional methods of stability analysis do not work well precisely because of
the unlimited number of excursions. Theorem 2.2 of this article addresses this issue,
and provides a method of ensuring strong boundedness and stability properties of
the hybrid system. Intuitively it says that under the recovery strategy there exists a
well-behaved supermartingale until the states hit the safe set, then the system state
is bounded in expectation uniformly over time. A complete picture of stability and
ergodic properties of a general controlled hybrid system is beyond the scope of the
present article, and will be reported elsewhere. We refer the reader to [9, Chap. 3]
for earlier work pertaining to stability of a class of hybrid systems, and to [27] for
stability of general discrete-time Markov processes.
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The second example is one that we shall pursue further in this article, namely,
a class of discrete-time Markov processes called iterated function systems [2, 23]
(IFS). They are widely applied, for instance, in the construction of fractals [23], in
studies on the process of generation of red blood corpuscles [24, 25], in statistical
physics [21], and simulation of important stochastic processes [32]. Of late they
are being employed in key problems of physical chemistry and computational bi-
ology, namely, the behavior of the chemical master equation [33, Chap. 6] (CME),
which governs the continuous-time stochastic (Markovian) reaction-kinetics at very
low concentrations (of the order of tens of molecules). Invariant distributions, certain
finite-time properties, and robustness properties with respect to disturbances of the
underlying Markov process are of interest in modeling and analysis of unicellular
organisms. It is well-known that the CME is analytically intractable (see [1, 17] for
special cases), but the invariant distribution of the Markov process can be recovered
from simulation of the embedded Markov chain in a computationally efficient way.
This embedded chain is an IFS taking values in a nonnegative integer lattice. From a
biological perspective, good health of a cell corresponds to the IFS evolving in a safe
region on an average, despite moderate disturbances to the numbers of molecules in-
volved in the key reactions. However, in most cases compact invariant sets do not
exist. It is therefore of interest to find conditions under which, even though there are
excursions of the states away from a safe set infinitely often, the IFS is stochastically
bounded, or some strong stability properties hold. Theorem 2.2 of this article leads to
results (in Sect. 3) which address this issue.

This article unfolds as follows. Section 2 contains our main results—Theorems 2.2
and 2.4, which provide conditions under which a Lyapunov function of the states is
L-bounded. We establish this L;-boundedness under the assumptions that a cer-
tain derived process is a supermartingale outside a compact set, and some more mi-
nor conditions.! (The supermartingale condition alone is not enough, as pointed out
in [28], where the authors establish variants of our results for scalar, possibly non-
Markovian processes having increments with bounded p-th moments for p > 2.) For
our results to hold, the underlying process need not be time-homogeneous or Markov-
ian. To wit, in Sect. 2.2 we define a class of hybrid processes that switch between two
Markov processes depending on whether they inside or outside a fixed set in the state-
space, and demonstrate that although the resulting process may be non-Markovian,
our results continue to hold. Connections to optimal stopping problems are drawn
in Sect. 2.3, which gives a systematic procedure for verifying our assumptions. In
Sect. 2.4 we apply the techniques our techniques to a class of sampled diffusion
processes. In addition to the cases considered here, the results in Sect. 2 will be of
interest in queueing theory, along the lines of the works [5, 13]. Section 3 contains
some applications of the results in Sect. 2 to stability and robustness of IFS. The clas-
sical weak stability questions concerning the existence and uniqueness of invariant
measures of IFS, addressed in e.g., [10, 18, 30], revolve around average contractivity
hypotheses of the constituent maps and continuity of the probabilities. In Sect. 3.1 we

It also seems conceivably possible that relaxed Foster-Lyapunov inequalities as in [11, Condition
D(¢, V,C), p. 1356] arising in the context of subgeometric convergence to a stationary distribution can be
employed in the construction of the aforementioned supermartingale; this constitutes future work.
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look at stronger stability properties of the IFS, namely, global asymptotic stability al-
most surely and in expectation, for which we give sufficient conditions. There are no
assumptions of global contractivity or memoryless choice of the maps at each iterate;
we just require a condition resembling average contractivity in terms of Lyapunov
functions with a suitable coupling condition with the Markovian transition probabil-
ities. We mention that although some of the assumptions in [18] resemble ours, the
conditions needed to establish existence of invariant measures in [18] are stronger
than what we employ; see Sect. 3.1 for a detailed comparison. We also demonstrate
in Sect. 3.2 that under mild assumptions, iterated function systems possess strong
stability and robustness properties with respect to bounded disturbances. In this sub-
section the exogenous bounded disturbance is not modeled as a random process.

Notations Let N:={1,2,...}, Ng:={0,1,2,...}, and R>¢ := [0, oo[. We let |-]|
denote the standard Euclidean norm on RY. We let B, denote the closed Euclidean
ball around 0, i.e., B, := {y € R?|||y|| < r}. For a vector v € R? let v denote its
transpose, and ||v|| p denote ~/vTPv for a d x d real matrix P. The maximum and
minimum of two real numbers a and b is denoted by a V b and a A b, respectively.

2 General Results

Before we get into hybrid systems, it will be simpler to follow the arguments if we
start by considering a discrete-time Markov chain.

2.1 Obtaining L1 Bound Using Excursions

Let X := (X;)seN, be a discrete time Markov chain with a state space S. We denote
the transition kernel of this chain by P, i.e., for every x € S, the probability measure
Py (-) := P(x, -) determines the law of X;1, conditioned on X; = x. At this point we
only assume the state space S to be any Polish space.

Assumption 2.1 There exists a nonnegative function ¢ : Ng x § — Rx¢ satisfying
the following.

(i) There exists a subset K C & such that the process (Y;):cn, defined by Y; =
@(t, X;) is a supermartingale under P, for every xo € S \ K until the first time
X, hits K. To wit, if Xg=x09 € S\ K and we define

T, =inf{t > 0| X; € K},

then the process (Y, Aty )reN, 1S a supermartingale under Py, .

(ii) There exists a nonnegative measurable real-valued function V : S — R and a
positive sequence (0 (¢));en, such that

o(t,x)>V(x)/0(t) forall (r,x) e Ngx S,

and C =3, , 0(1) < oo.
(iii) 6 :=sup,cx V(x) < oo.
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Our objective is to prove under the above condition (and another minor assump-
tions) that there exists a bound on sup, E,,[V (X;)] depending on xo.

Theorem 2.2 Consider the setup in Assumption 2.1, and assume that

B := sup E[¢(0, X1)1x,es k|1 X0 =x0] < oc. (2.1)

xoeK

Let y := sup, ¢y, 0(t). Then we have

sup Ex [V(X)] < CB+3+y9(0, xo).

teNy

In the rest of this section we prove the above theorem. Fix a time ¢t € Ny, and
define two random times

g :=sup{seNgls <7, X, € K} and h,;:=inf{seNols>1, X, € K}.

We follow the standard custom of defining supremum over empty sets to be —oo, and
the infimum over empty sets to be +oo.

Note that g; is not a stopping time with respect to the natural filtration generated
by the process X, although #; is. The random interval [g;, A;] is a singleton if and
only if X; € K. Otherwise, we say that X; is within an excursion outside K.

Now we have the following decomposition:

t

Ex[VXD] = B[V XD Lgeon] + D Ex[VEXI L] 22)
s=0

Our first objective is to bound each of the expectations Ey, [V (X;)1{g,—=s}].
Before we move on, let us first prove a lemma which follows readily from As-
sumption 2.1.

Lemma 2.3 Let Xo=x9 € S\ K. Then
EXO[V(XS)I{TK >S}] < @(0,x0)0(s) fors e Ny, (2.3)
where (8(t)):eN, is defined in Assumption 2.1.

Proof This is a straightforward application of Optional Sampling Theorem (OST) for
discrete-time supermartingales. Applying OST for the bounded stopping time s A T
to the supermartingale (¢ (¢, X;));eN,, in view of ¢ > 0, we have

(,0(0, x0) = EXO[QO(S ATk, Xs/\rK)] z EXO [gD(S, XS)I{TK>S}:|'

Now, by condition (i) in Assumption 2.1, we can write ¢(s,x) > V(x)/6(s). Thus,
substituting back, one has

(0, x0) = Ex, [V(X) 1, . ]/0(5).

Since (0(1)):en, 1s positive, we arrive at (2.3). O
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We are ready for the proof of Theorem 2.2.

Proof of Theorem 2.2 Let us consider three separate cases:

Case 1. (—oo < g; < t). In this case g; can take values {0, 1,2,...,¢ — 1}. Now,
ifse{0,1,2,...,t — 1}, then

Exo[ V(X 1ig=s}] = Exo [V (X1 (x,ex)1ixi¢K, i=s+1,....1}]

= f P* (xo, dx)/ PO, dy) Ey[V(Xi—s—D1 _, o ]
K S\K K
and by Lemma 2.3 it follows that the right-hand side is at most
/ P* (xo, dx)/ P(x,dy) ¢(0,y)0( —s —1).
K S\K
Thus, one has
Exo[V(X)1jg=s)] <01 —s— 1)f P (xo, dx)/s P(x,dy) ¢(0, y)
K \K

<6(t —s— 1) sup Ex[@(0, X)1{x,e8\k} ]
xek
=0(t—s—18B. 2.4)
Case 2. (g; = t). This is easy, since X; € K implies V (X;) < 4. Thus
Exo[V(X)1{g=r] <8Py, (X, € K) <56.

Case 3. (g = —o0). This is the case when the chain started from outside K and
has not yet hit K, and therefore,

Exg [V (X0 g=00)] = Ex [V D1, -] < 00, x0)0(0).

Combining all three cases above, we get the bound:

t—1

Ex[V(X0)] < ZQ(I —s—=DB+5+ 90, x0)0(1). (2.5)
s=0

Maximizing the right-hand side of (2.5) over ¢, we arrive at

sup Ey, [V(X)] < B 60(s) +6 + ¢(0, x0) sup 6(1),

teNy $=0 teNy
which is the bound stated in the theorem. O

Often it will turn out that ¢(¢, x) is a function (¢, V(x)) as in the case of the
classical Foster-Lyapunov type supermartingales [27]. In that case ¢(z, x) = e*' V (x),
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for some positive «. Thus ¢(¢, -) is a linear function of V (x) for each fixed ¢, with
0(t) = e~ %, which shows that the sequence (0(1))sen, is summable. See also [12]
and the references therein for more general Foster-Lyapunov type conditions. For
examples which are not linear see Sect. 2.4.

2.2 A Class of Hybrid Processes

The preceding analysis can be extended for processes which switch their behavior
depending on whether the current value is within K or not. They constitute a partic-
ularly useful class of controlled processes in which a controller attempts to drive the
system into a target or safe set K C S whenever the system gets out of K due to its
inherent randomness. Below we give a rigorous construction of such a process.

A process X that is (Y, Z)-hybrid with respect to K Consider a pair of Markov
chains (Y, Z) where Y is a time-homogeneous Markov chain, and Z is a (possibly)
time inhomogeneous Markov chain. We construct a hybrid discrete-time stochastic
process X by the following recipe:

Firstly, let the state space for the process be SN0 along with the natural filtration

FoCHhCHRC---

generated by the coordinate maps.
Secondly, we define the sequence of stopping times op := 7o := —0o0 and 1] <
01 <1p<0p<---by

T = inf{t > 01 | X: € K} and
o; :=inf{t>r,~ |Xt¢K}

for i € Np.
Finally, we define the process X as follows: for a measurable B C S,

X =V,

W Xe=x 3t =t <o { P(Xi 11 € BIF) =P(Y) € BIYy =),

. .. X, =17,
if Xy =x.3it0i <t <1, { P(Xi11 € BIF) =P(Zyy1o; € BIZy—g =X).
To wit, the process defined above behaves as the homogeneous chain ¥ whenever
it is inside K. Once the process X exits the set K, a controller alters the behavior
of the chain which, until it enters K again, behaves as a copy of the inhomogeneous
chain Z starting from a point outside K. The process X is in general non-Markovian
due to the possible time inhomogeneity of Z. Nevertheless, it is a natural class of ex-
amples of switching systems whose Markovian behavior switches in different regions
on the state space. We say that X is (Y, Z)-hybrid with respect to K.
The following generalization of Theorem 2.2 can be proved along lines of the
original proof. The only requirement is a slight modification of the condition (2.1)
which is needed to alter the second inequality in (2.4).

@ Springer



224 Appl Math Optim (2011) 63: 217-237

Theorem 2.4 Consider a stochastic process X that is (Y, Z)-hybrid with respect to
a measurable K C S for some homogeneous Markov chain Y and some possibly
inhomogeneous Markov chain Z. Suppose Assumption 2.1 holds for the process Z
and

pi=sup E[¢(0, YD) iy es\k)1Yo = yo] < oo. (2.6)
Yo€

If the process X starts from xg € S\ K, we have

sup Ex)[V(X)] < CB+8+y9(0, xo). (2.7)

teNy

It is interesting to note that the right side of above bound is a total of individual
contributions by the control (for C), the choice of K (for §), and the initial config-
uration (for xp). We stress that the conclusion holds even when X is no longer a
Markov chain due to the time inhomogeneity of Z. This is important, especially be-
cause operator-theoretic bounds like Foster-Lyapunov, or martingale-based bounds
do not work in such a case.

2.3 Connection with Optimal Stopping Problems

Suppose that we are given a Markov chain Z taking values in S, a function V : § —
R, and a measurable target or safe set K C S. (Alternatively, we may assume that
we are given an S-valued process X that is (Y, Z)-hybrid with respect to a measur-
able K C S.) Our objective is to investigate whether the sequence (V (X;));en, is
L-bounded. To this end one can follow the two-step procedure of first searching for
a function ¢ satisfying Assumption 2.1, followed by an application of Theorem 2.4.
A systematic procedure of doing this is given by the following connection with Opti-
mal Stopping problems.

Let (0(1))sen, be some positive sequence of numbers such that ZteN 0 0(t) is fi-
nite. Define the pay-off or the reward function as

(V&)@ ifxeS\K, teN,
h(”x)‘{o ifx e K, t €Np,

Recall that the Optimal Stopping problem [29, Chap. 1] for the process Z and the
reward function 4 defined above consists of finding a stopping time t* such that

E, [h(-c* ATk, Zr*MK)] =esssupE, [h(‘c ATk, ZmrK)]’ (2.8)
T

where T is the hitting time to the set K, and esssup refers to essential supremum
over the set of all possible stopping times (see [29, Chap. 1, Lemma 1.3]).
Define the value function as

¢(n, xp) :=esssup E[h(r, V(Z)Z, = xo], 2.9)

teT,
where T, is the set of stopping times

{(l’ V 1) A Tk |t an arbitrary stopping time}.
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Theorem 2.5 Suppose that the value function ¢(0, xq) is finite for all xy € S, then
(i) @(t, xo) is finite for all t € Ny and

o(t,x0) > V(xg)/0(t) forall (t,x0) € Ngx (S\K).
(ii) The process (Y})eN, defined by

Y=ot A1k, ZMIK)

is a supermartingale.

Proof The proof follows from the general theory of optimal stopping. See, for exam-
ple, [8, Chap. 4]. The sequence of rewards is given by the process V(Z, /\fK) /0(1),
t=0,1,2,.... Applying [8, Theorem 4.1, p. 66] we get

o(n. x0) = (V (x0)/6(n)) v (E[go(n + 1, Zy sty Ve, = xo]>.

By considering the first of the two terms in the maximum on the right-hand side above
we obtain (i), and (ii) follows from the second. O

In other words, the value function ¢(¢, x) defined in (2.9) satisfies the conditions
of Theorem 2.4.

Theorem 2.6 Consider an S-valued process X that is (Y, Z)-hybrid with respect to
a measurable K C S as in Sect. 2.2. Suppose that for some nonnegative integrable
sequence (0(1)):en, the optimal stopping problem (2.8) has a finite value function
o(t, x0). If additionally condition (2.6) is true, then the bound (2.7) holds.

Let us remark that the value function, being the envelope, is the smallest super-
martingale (hence the sharpest bound) that can satisfy Theorem 2.4. Several methods
of solving optimal stopping problems in the Markovian setting are available and we
refer the reader to [29] for a complete review.

Remark 2.7 There is a parallel converse result employing standard Foster-Lyapunov
techniques for the verification of f-ergodicity and f-regularity [27, Chap. 14] of
Markov processes. The analysis is based on the functional inequality E[V (X1) | Xo =
x]—V(x) < —f(x)+blc(x) for measurable functions V : S — [0, 00] and f: S —
[1, o0[, a scalar b > 0, and a Borel subset C of S; [27, Theorem 14.2.3] asserts that
the minimal solution to this inequality, which exists if C is petite (see [27] for precise
details), is a “value function” given by G¢ (x, f) := E[Zgo f(Xp)|Xo = x], where
oc is the first hitting-time to C. The proof is also based on the existence of a certain
supermartingale, and the Markov property is employed crucially.

2.4 A Class of Sampled Diffusions

In the setting of the process X being (Y, Z)-hybrid with respect to a given set K,
suppose that the state-space for the Markov chains ¥ and Z is R? and the safe set
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K is compact. Observe that the only challenge in applying Theorem 2.4 is to find a
suitable function ¢ given the Markov chain Z and the function V. In applications,
a natural choice for the function V is given by square of the Euclidean norm, i.e.,
Vix) = Z?leiz. For this choice of V, we describe below a natural class of ex-
amples of Markov chains for which one can construct a ¢ that satisfies part (i) of
Assumption 2.1.

Consider a diffusion with a possibly time-inhomogeneous drift function, given by
the d-dimensional stochastic differential equation

dX, = b(t, X,)dt +dW,, (2.10)

where W; = (W;(1), W;(2), ..., W;(d)) is a vector of d independent Brownian mo-
tions, and b : R>q X RY — RY is a measurable function.

We will abuse the notations somewhat and construct a function ¢ : R>g x R>¢o —
R>¢ such that (¢(z, V(X;))):en, 1S a supermartingale outside a compact set K and
satisfies ¢(t, &) > £/0(¢) for some nonnegative sequence (6(?));cn,. We define Z; =
X; ATy for i € Np; Z is the diffusion sampled at integer time points before hitting K.
It is clear that Z is a Markov chain such that (¢ (7, V(Z;)));eN, is a supermartingale
that satisfies the Assumptions 2.1 as long as ZteNo 0(t) < oo.

To construct such a ¢, let us consider a well known family of one-dimensional
diffusion, known as the squared Bessel processes (BESQ). This family is indexed by
a single nonnegative parameter § > 0 and is described as the unique strong solution
of the SDE

dY, =2,/Y, db, + 8dt, Yo=y0 >0, (2.11)
where b := (b;)sen, is a one-dimensional standard Brownian motion. We have the

following lemma:

Lemma 2.8 Let F : R — R>q be a nonnegative, increasing, and convex function,
and fix any terminal time S > 0. Define the function

o, y) =E[F(Ys)|Yi=y], 1€]0,S5], (2.12)

where Y solves the SDE (2.11). Then ¢ satisfies the following properties:

(1) ¢ is increasing in y,
(i) ¢ is convexin y, and
(iil) ¢ satisfies the partial differential equation

{ %—‘f-l-(S(p/—i-Zy(p”:O, y>0,1€(0,9), (2.13)
p(S, y) = F(y).

Note that ¢’ and ¢” in the statement of Lemma 2.8 refers to the first and second
derivatives with respect to the second argument of ¢.

Proof The proof proceeds by coupling. Let us first show that ¢ is increasing as

claimed in (i). Fix § > 0. Consider any two starting points 0 < x < y. Construct
on the same sample space two copies of BESQ processes Y1) and ¥® such that
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both of them satisfy (2.11) with respect to the same Brownian motion b but Yél) =x

and Yéz) = y. It is possible to do this since the SDE (2.11) admits a strong solution
(see [20, Chap. 5, Proposition 2.13]). Hence, by [20, Chap. 5, Proposition 2.18], it
follows that Y,(l) < Yt(z) for all # > 0. Since F is an increasing function, we get

o(t,x) =E[F(Y))] <E,[F(r{)] =0t ).

This proves that ¢ is increasing in the second argument.
For convexity of ¢ claimed in (ii), we use a different coupling. We follow argu-
ments very similar to the one used in the proof of [16, Theorem 3.1]. Consider three

initial points 0 < z <y < x. And let X,Y, Z be three independent BESQ processes
that start from x, y, and z respectively. Define the stopping times

e =inf{ul¥, = X,}, 7 =inf{u|¥, = Z,}.
Fix atime r € [0, S], and let T = S — ¢. Define
o=T, AT AT.
Now, on the event o = 1, it follows from symmetry that

E[(Xr — Zr) F (Y1) o=y ] = E[(Y7 — Z7) F (X7 ) i =2,

R R R (2.14)
E[(Xr = Y1) F(Z1)lio=ey] =0.
Similarly, on the event o = 1., we have
E[(X7 = Z0) F (Y1) lo=ry ] = E[(X7 = V1) F(Z1)Vo=ry ] 215

E[(ZT — ?T)F(XT)I{U:TZ}] =0.

And finally, when 0 = T, we must have 2T < I}T <X 7. We use the convexity prop-
erty of F to get

E[(Xr = Zr)F(¥r)lio=n)] < E[(X7 = Y1) F (Zr)Vio=1)]
+ E[(?T — ZT)F(XT)I{(,:T}]. (2.16)
Combining the three cases in (2.14), (2.15), and (2.16) we get
E[()A(T — ZT)F(?T)] < E[(XT — ?T)F(ZT)] + E[(?T — ZT)F(XT)] 2.17)
We now use the fact that X , ?: and Z are indAependent. Alsg, it is not difficult to see
from the SDE (2.11) that E,[X7] —x =E,[Y7] — y =E;[Z7] — z = §t. Thus, from
(2.17) we infer that
x =2, ) <x—yet,2)+ (-2, x), forall0<z<y<x.

This proves convexity of ¢ in its second argument.

@ Springer



228 Appl Math Optim (2011) 63: 217-237

Finally, to see (iii), it suffices to observe that (2.13) is the classical generator re-
lation for diffusions, for which we refer to [20, Chap. 5.4]. The transition density of
BESQ processes are smooth and have an explicit representation that satisfy (2.13).
The general case can be obtained by differentiating under the integral with respect
to F. g

Let us return to the multidimensional diffusion given by (2.10). We consider the
process (&)reN,, Where & := o(t, || X; %), and @ is the function in (2.12). Note that,
since F is nonnegative, so is ¢. Additionally, since ¢ is convex, we have

9(1,8) = (t,0) +¢'(t,0+)é.
Hence the sequence (0 (t))f:0 is given by
0@)=1/¢'(t,0+), t=0,1,...,8S.
We have the following theorem:

Theorem 2.9 Suppose that there exists a compact set K C R¢ such that the drift
function b= (b1, ba, ..., by) in the SDE (2.10) satisfies the sector condition

d

D xibi(t,x) <0 for (t,x) €R=g x (S\ K).
i=1

Fix any terminal time T > 0. Define the process ({;)ieN, := (@(t, | X; ||2)),6N0, where
@ is the nonnegative, increasing, convex function defined in (2.12) with

F)=Illyl* and 8=d.

Then, with the set-up as above, the stopped process (&, ATy Ar)i=0 is a (local) super-
martingale.

Proof Applying It6’s rule to ({;);eRr.,» We get
d¢
d¢y =dM; + m + Lo |dt, (2.18)

where M := (M;);cRr., is in general a local martingale (M is a martingale under
additional assumptions of boundedness on the first derivative of ¢), and L is the
generator of X. We compute

Bgo 1 o 92
ar T +Z ax,+§Z 2

<

o8]

i=1 9%

d
1
_——|—2(p be, 2[2@ +¢”Z4x3}

i=1
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d
)
=5, +dof +2(le3>¢”+2¢’2% =2¢')_bixi.

i=1 i

where the final equality holds since ¢ satisfies (2.13) at y =), xiz.
We know that ¢" > 0 since ¢ is increasing, and, by our assumption, ) ; x;b; <0
whenever x ¢ K. Thus,
dp

§+£<p§0 for (1,x) €[0,T] x (S\ K).

Now the claim follows from the semimartingale decomposition given in (2.18). U

Note that the supermartingale (; )N, has been defined only for a bounded tem-
poral horizon. Thus, to show that Theorem 2.4 holds, some additional uniformity
assumptions would be needed.

3 Application to Discrete-Time Randomly Switched Systems

In this section we look at several cases of discrete-time randomly switched systems
(or, iterated function systems,) in which Theorem 2.2 of Sect. 2 applies and gives
useful uniform L; bounds of Lyapunov functions. In Sect. 3.1 we give sufficient
conditions for global asymptotic stability almost surely and in L of discrete-time
randomly switched systems. Assumptions of global contractivity in its standard form
or memoryless choice of the maps at each iterate are absent; we simply require a
condition resembling average contractivity in terms of Lyapunov functions with a
suitable coupling condition with the Markovian transition probabilities. In Sect. 3.2
we demonstrate that under mild hypotheses iterated function systems possess strong
stability and robustness properties with respect to bounded disturbances that are not
modelled as random processes.>

3.1 Stability of Discrete-Time Randomly Switched Systems
Consider the system
Xit1= fo, (X)), Xo=x0, t€Np. (3.1

Here 0 : Ng — P :={1,...,N} is a discrete-time random process, the map f; :
R¢ — R? is continuous and locally Lipschitz, and there are points xr e R¢ such that
fi(x}) =0 for each i € P. The initial condition of the system xo € R is assumed to

ZRecall the following notation: We let /C denote the collection of strictly increasing continuous func-
tions @ : R>9 — R such that «(0) = 0; we say that a function « belongs to class-Koo if @ € K and
limy— 00 @ (r) = 00. A function B : R>o x Ng — R belongs to class-KL if B(-,n) € K for a fixed
n € Ny, and if B(r,n) — 0 as n — oo for fixed r € R>(. Recall that a function f : RY — RY is locally
Lipschitz continuous if for every xq € R4 and open set O containing X, there exists a constant L > 0 such
that || f(x) — f(xg)|l <L ||lx — xoll whenever x € O.
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be known. Our objective is to study stability properties of this system by extracting
certain nonnegative supermartingales.

The system (3.1) can be viewed as an iterated function system: X; | = f5, 0+ 0
Jo, © foo(x0). Varying the point xo but keeping the same maps leads to a family
of Markov chains initialized from different initial conditions. The article [10] treats
basic results on convergence and stationarity properties of such systems with the
process (07):¢N, being a sequence of independent and identically distributed random
variables taking values in P, and each map f; is a contraction. These results were
generalized in [18] with the aid of Foster-Lyapunov arguments.

The analysis carried out in [18] requires a Polish state-space, and employs the
following three principal assumptions: (a) the maps are non-separating on an aver-
age, i.e., the average separation of the Markov chains initialized at different points is
nondecreasing over time; (b) there exists a set C such that the Markov chains started
at different initial conditions contract after the set C is reached; and (c) there exists
a measurable real-valued function V > 1, bounded on C, and satisfying a Foster-
Lyapunov drift condition QV (x) <AV (x) + bl (x) for some A €]0, 1[ and b < oo,
where Q is the transition kernel. Under these conditions the authors establish the
existence and uniqueness of an invariant measure which is also globally attractive,
and the convergence to this measure is exponential. In particular, this showed that
the main results of [10], which are primarily related to existence and uniqueness of
invariant probability measures, continue to hold if the contractivity hypotheses on the
family { f;};p are relaxed. In this subsection we look at stronger properties, namely,
L boundedness and stability, and almost sure stability of the system (3.1) under As-
sumption 2.1. No contractivity inside a compact set is needed to establish existence
of an invariant measure under Assumption 2.1.

Assumption 3.1 The process (o7):eN, is an irreducible Markov chain with initial
probability distribution 77° and a transition matrix P :=[p;;INxN-

It is immediately clear that the discrete-time process (o7, X;)eN,, taking values
in the Borel space P x R¢, is Markovian under Assumption 3.1. The corresponding
transition kernel is given by

Q(i,x),P' x B) =Y pijlp(fj(x))
jeP’
for P’ ¢ P, B a Borel subset of Rd, and (i, x) € P x R,

Our basic analysis tool is a family of Lyapunov functions, one for each subsystem,
and at different times we shall impose the following two distinct sets of hypotheses
on them.?

31t will be useful to recall here that the deterministic system x;1| = f;(x), t € Np, with initial condition
X0 is said to be globally asymptotically stable (in the sense of Lyapunov) if (a) for every ¢ > O there exists
a é > 0 such that ||xg — xi*H < § implies |[x; — xi"ll < ¢ for all ¢ € Ny, and (b) for every r, &’ > 0 there
exists a T > 0 such that ||xg — xi*l\ < r implies |lx; — xi*l\ < ¢ forallt > T. The condition (a) goes by the
name of Lyapunov stability of the dynamical system (or of the corresponding equilibrium point x7), and
(b) is the standard notion of global asymptotic convergence to x7.
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Assumption 3.2 There exist a family {V;};cp of nonnegative measurable functions
on R4, functions ], &z € K, numbers Ag € 10, 1[, r > 0 and > 1, such that

V1) ar(llx —x*) < Vi(x) <az(llx — x7|) for all x and i,
(V2) Vi(x) < uV;(x) whenever ||x|| > r, for all , j, and
(V3) Vi(fi(x)) <AopVi(x) forall x and i.

Assumption 3.3 There exist a family {V;};cp of nonnegative measurable functions
on R, functions a1, oy € K, a matrix [} i INnxN with nonnegative entries, and num-
bers r > 0, u > 1, such that (V1)—(V2) of Assumption 3.2 hold, and

(V3) Vi(fj(x)) < AijVi(x) forall x and i, j.

The condition (V1) in Assumption 3.2 is standard in deterministic system the-
ory literature, ensuring, in particular, positive definiteness of each V;. Condition (V2)
stipulates that outside B, the functions {V;};cp are linearly comparable to each other.
The conditions (V1) and (V3) together imply that each subsystem is globally as-
ymptotically stable, with sufficient stability margin—the smaller the number ¢, the
greater is the stability margin. In fact, standard converse Lyapunov theorems show
that (V1) and (V3) are necessary and sufficient conditions for each subsystem to be
globally asymptotically stable. The only difference between Assumptions 3.2 and 3.3
is that the latter keeps track of how each Lyapunov function evolves along trajectories
of every subsystem.

Let us define p :=max;eN pi; and p :=max; jep ix; pij-

Proposition 3.4 Consider the system (3.1), and suppose that either of the following
two conditions holds:

(S1) Assumptions 3.1 and 3.2 hold, and Lo(p + up) < 1.
(S2) Assumptions 3.1 and 3.3 hold, and p - (max;cp ZjeP pijrji) < 1.

Let 7, := inf{t € No| || X;|| < r} and Vi’(x) = V,-(x)le\Br(x). Suppose that
lxoll > r. Then there exists a > O such that the process (e“(”\T")Vém (Xiat,))ieN,
is a nonnegative supermartingale.

Corollary 3.5 Consider the system (3.1), and assume that the hypotheses of Propo-
sition 3.4 hold. Then there exists a constant ¢ > 0 such that SUP;en, Elai (I X/ D] < c.

It is possible to derive simple conditions for stability of the system (3.1) from
Proposition 3.4. To this end we briefly recall two standard stability concepts.

Definition 3.6 If ker(f; —id) = {0} for each i € P, the system (3.1) is said to be

o globally asymptotically stable almost surely if
(AS1) P(Ve>0 36 >0s.t. SUP;en, | X:]| <& whenever ||xo|| <§) =1,
(AS2) P(¥r,&’ > 03T > 0s.t. supy 5,7 | X |l < & whenever ||xoll <r) =1;
o «-stable in L for some « € K if
(SM1) Ve >036 > O0s.t. SUP; e, Elx (|| X;])] < € whenever || xg|| < §,
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(SM2) Vr, e’ >03T >0s.t. supn, s> Ela (1 X:ID] < ¢’ whenever ||xg| <.

Corollary 3.7 Suppose that ker( f; —id) = {0} for each i € P, and that either of the
hypotheses (S1) and (S2) of Proposition 3.4 holds with r =0. Then

o there exists a > 0 such that lim;_, o E[e*' V, (X,)] =0, and
o the system (3.1) is globally asymptotically stable almost surely and o-stable in
L in the sense of Definition 3.6.

The proofs of Proposition 3.4, Corollary 3.5 and Corollary 3.7 are given after the
following simple lemma; the crude estimate asserted in it resembles the distribution of
a Binomial random variable, except that we have p + p > 1. For ¢ € N let the random
variable N; denote the number of times the state of the Markov chain changes on the
period of length ¢ starting from 0, i.e., Ny := Y+ Lo, 0,1}

Lemma 3.8 Under Assumption 3.1 we have for s <t, s,t € Ny,

P(N; — Ny =kloy) < { ()PP AL k=01, 1=,
0 else.

Proof Fixs <t,s,t € Ny, and let ni (s, t) := P(N; — Ny = k|o;). Then by the Markov
property, for k=0,1,...,t —s,

Mi(s, 1) = nk(s, t — DP(Ny — Ny =k|N;—1 — Ny =k, o5)
+ k—1(s, 1 = DP(N; — Ny =k|N;—1 — Ny =k — 1, 05)

< pi(s,t — 1)+ png—1(s,t = 1).

The set of initial conditions n;(s,¢) = 0 for all i > ¢ — s, follow from the trivial
observation that there cannot be more than # — s changes of ¢ on a period of length
t —s. This gives a well-defined set of recursive equations, and a standard induction

argument shows that (s, 1) < (') p“~*7® p*. This proves the assertion. O

Proof of Proposition 3.4 First we look at the assertion under the condition (S1).
Fix s <1, s,t € No. Given (05ar,, Xsaz, ), from (V3) we get V.  (X(s+1)ar) <

SATY

)LOV(;Wr (Xs5a7,), and if o541 # o5, we employ (V2) to get Vé(m)m (X(s+D)Ar,) <
,LLV(;MU (X (s+1)ar,)- Therefore,
V(;(Hl)mr (X(S+1Mfr) = M)‘Ovt;mf, (XS/\fr) if os41)Ar, # Osnr,, and
Vowiing (X+Dag) < AoVy  (Xsar,)  otherwise.

Iterating this procedure we arrive at the pathwise inequality

v/ (XtArr) < MNtArr —Nsnzy )\foAfr—SAfr v’ (XsArr)' (3.2)

OtAty OsAty
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Since s AT, =t AS AT, and t A T, is measurable with respect to §;asnz, , We invoke
the Markov property of (07, X;);en,to arrive at

E[ Ot Aty (XtATV)|(JYAIr7XAYATr)]

< Vi Xopg AT NTE [N =N (o0, Xng,) ]
We now apply the estimate in Lemma 3.8 to get E[uNire =Noawr |(0 00, Xz, )] <
Z/;T(;—S/\Tr (l/\fr;S/\l'r)ﬁ(t/\r,—s/\rr k)pk k _ (P + /Lp)[ATr_S/\T’ and this leads to

E[Va,.. Xine) @5z Xsar)] < Vo (Xsag ) Goo(p 4 pp))! =0T

Osnty
Since Ao (p + up) < 1, letting o’ := Ao (p + up)e® < 1, the above inequality gives

E[e* TV (X yne) Oz, s Xsnz,)]

Ointy

E ones (XXAT,)(a )t/\‘L'r—Y/\‘[r < V (XS/\TV)‘ (33)

Osnty

This shows that (e*¢/%) V(;Wr (Xta1,))ieN, 18 a nonnegative supermartingale.
Let us now look at the assertion of the proposition under the condition (S2). Fix
t € Ny. Then from (V3), ij(fgm). (Xinz,)) <A ij(XMn) for all j € P, and by

(V2),

JOtnty

/ I
Vawiime Soine Xint)) = Ao o Vagsin, Xinw)

/
= 'u’)\"T(H»U/\ry(Tl/\rr V‘Tz‘/\rr (Xt/\l'r)‘

This leads to

ieP

E[Vyo i Xr0ae)|@rnz, s Xing)] < e (max > pijk ,-i> Vs, (Xing,).
jeP

Since by hypothesis there exists & > 0 such that p(max;cp ZjeP pijhji)e* <1, the
last inequality shows immediately that (exAmy! (X, At ))teN, 1S a supermartin-

Ot Aty

gale. This concludes the proof. g

Proof of Corollary 3.5 First observe that since each map f; is locally Lipschitz, the
diameter of the set D; := {fi(x) | x € B,} is finite, and since P is finite, so is the
diameter of | J;.p D;. Therefore, if Q is the transition kernel of the Markov process
(01, X1)1eny» then employing (V1) and the fact that f; is locally Lipschitz for each i,
we arrive at

E[ Vo, (X1 x, crir 5,1 (00, X0) = (i, x0)]

=" pijlga 5, (fj X0 Vi (£;(x0))

jeP
<Y pijlgay 5, (fi Go)ealll £j(xo)lD < D pij L lIxoll < Lr < o0
JjeP jeP
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for ||xg|| < r, where L is such that SUP ;P yed, lfi)II < Llyll. This shows that
condition (2.1) of Theorem 2.2 holds under our hypotheses, and by Proposition 3.4
we know that there exists o > 0 such that (e*/ %) Voine (XtMr)le\E, (Xiat, DreNg
is a supermartingale. Theorem 2.2 now guarantees the existence of a constant C’ > 0
such that sup, cy, E[Vo, (Xt)IRd\B,(Xl)] < C’, and finally, from (V1) it follows that
there exists a constant ¢ > 0 such that sup, ¢y, Ele1 (1 X )] < ¢ < 00, as asserted. []

Proof of Corollary 3.7 We prove almost sure global asymptotic stability and o sta-
bility in L of (3.1) under the condition (S1) of Proposition 3.4; the proofs under (S2)
are similar.

First observe that since ker(f; — id) = {0} for each i € P, i.e., 0 is the
equilibrium point of each individual subsystem, P, (70} < 00) = 0 for xo # O,
where t(0) is the first time that the process (X;);en, hits {0}. Indeed, since
ker(f; — id) = {0} for each i € P and xo9 % 0 we have Q((i,xp),P x {0}) =
Zjep Pijlioy(fj(x0)) = 0, which shows that Q"((i, xo), P x {0}) = 0 whenever
xo # 0. The observation now follows from P (tj0) < 00) = Py, (U, enfTi0) =
n}) < ZneN Py, (ti0y = n). Therefore, with 7|9 = 7, = 00, proceeding as in the
proof of Proposition 3.4 above, one can show that (% Vj,(X/))ren, is a super-
martingale for some « > 0. In particular, With s =0 and 7, = oo in (3.3), we ap-
ply (V1) to arrive at lim;_, o E[e*' Vi, (X;)] = lim;_, o0 E[E[e*' V,, (X;) (00, X0)]] <
limy— o0 a2 (]| x0|1) (@) = 0. Standard supermartingale convergence results and the
definition of zjoy imply that P(lim;— o0 Vi, (X;) =0) = 1. With s =0 and 7, =
T0) = 00, the pathwise inequality (3.2) in conjunction with (V1) give V;, (X;) <
ar([lxo )N AL. The foregoing inequality implies that for almost every sample path
(01, X})sen, corresponding to initial condition Xo = x{, with ||lx;|| < [|lxol|, one has

lim Vo, (X]) < lim oo (llxgIDp™ Al < lim an([lxol)p™ AL =0,
t—00 t—00 t—00

which proves (AS2). Since the family { f;};cp is finite, and each f; is locally Lip-
schitz, there exists L > 0 such that sup;p || fi(x)|| < L |lx]| whenever |x] < 1.
Fix ¢ > 0. By (AS2) we know that for almost all sample paths there exists a con-
stant T > 0 such that sup,>7 || X;|| < & whenever |xol| < 1. Then the choice of
8 = (eL~T) A 1 immediately gives us the (AS1) property.

It remains to verify (SM1) and (SM2). Both the properties follow from (3.3) in the
proof of Proposition 3.4, with s = 0 and 7, = 7(0) = 0. Indeed, with these values of s
and 7,, (3.3) becomes

E[e* a1 (1 X;IDI(00, X0)] < E[e* Vo, (X1)| (00, X0)]
< Voo (X0) (@) < az(llxol) (@)
in view of (V1), where o' = A.(p + up)e® < 1. Therefore, given & > 0, we sim-

ply choose § < o, HORG get (SM1). Given r,&’ > 0, we simply choose T =
0V (In(aa(r)/e")/In(a’)) to get (SM2). This completes the proof. O
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3.2 Robust Stability of Discrete-Time Randomly Switched Systems

Conditions for the existence of the supermartingale (e"‘W\tK ) V(X, ATy )ieN, in
Sect. 2 can be easily expressed in terms of the transition kernel Q. However, if Q
is not known exactly, which may happen if the model of the underlying system gen-
erating the Markov process (X;)sen, is uncertain, one needs different methods. We
look at one such instance below.

Consider the system

X1 = fo,(Xs, wy), Xo=x0, teNp, 3.4

where we retain the definition o from Sect. 3.1, f; : R? x R”™ — R is locally Lip-
schitz continuous in both arguments with f;(0,0) =0 for each i € P, and (w;);en,
is a bounded and measurable R"-valued disturbance sequence. We do not model
(wy)ren, as a random process; as such, the transition kernel of (3.4) is not unique.

Definition 3.9 The system (3.4) is said to be input-to-state stable in L if there
exist functions x, x’ € Koo and ¥ € KL such that Ey,[x (I X;ID] < ¥ (lIxoll, 1) +
supgen, X' (lws|) for all € No.

Our motivation for this definition comes from the concept of input-to-state stability
ISS in the deterministic context [19]. Consider the i-th subsystem of (3.4) x;41 =
fi(xs, w;) for t € Ng with initial condition xp; note that (x;);eN, is a deterministic
sequence. This nonlinear discrete-time system is said to be 1SS if there exist functions
¥ € KL and x € Koo such that [x/[| < ¥ (llxoll, 7) + supgen, x (lwsl)) for z € No.
A sufficient set of conditions (cf. [19, Lemma 3.5]) for 1SS of this system is that
there exist a continuous function V : RY — Rxo, a1, a2 € Koo, p € K, and a constant
A €10, 1[, such that a1 (J|x|) < V(x) < ea(||x]]) for all x € RY, and V (fi(x, w)) <
AV (x) whenever || x| > p([w]]).

In this framework we have the following proposition.

Proposition 3.10 Consider the system (3.4), and suppose that

(1) Assumption 3.1 holds,
(ii) there exist continuous functions V; : RY — Rsg for i € P, 1,2, p € Koo,
a constant w > 1 and a matrix [A;jINxN of nonnegative entries, such that
(@ ar(lx]) < Vi(x) <aa(lx|l) for all x and i,
(b) Vi(x) =uVj(x) forall x and i, j, and
(©) Vi(fj(x)) < AijVi(x) whenever ||x|| > p(|wll) and all i, j,
(i) p(maxiep 3 jep pijhji) < 1.
Then (3.4) is input-to-state stable in L in the sense of Definition 3.9.
Proof We define the compact set K := {(i, y) € P x Rd| Iyl < SUP;eN, p(lwsl)},
and let T :=inf{t € No|X; € K}. In this setting we know from the preceding analysis

that (¢, &) =e*£,0(t) =e %, and C = 1/(1 —e™*). We see from the estimate (2.5)
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in the proof of Theorem 2.2 that

E o[V (X0)] = 000, Viy Gon(6) + - 45 <anlohe™ + L 45

Standard arguments show that there exists some x” € K such that 8 and § are each
dominated by x" (sup,cp, llws ), and therefore, there exists some x € Koo such that
B/(1 —e~*)+ 4 is dominated by x’ (supseN0 llwg ). Applying (ii) (a) on the left-hand
side of the last inequality, we conclude that (3.4) is input-to-state stable with x = o
and ¥ (r, 1) = ap(r)e . a
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