
Visual Comput (2007) 23: 707–719
DOI 10.1007/s00371-007-0130-y O R I G I N A L A R T I C L E

Parag Chaudhuri
Prem Kalra
Subhashis Banerjee

Reusing view-dependent animation

Published online: 26 June 2007
© Springer-Verlag 2007

P. Chaudhuri (�)
MIRALab, Centre Universitaire
d’Informatique, University of Geneva,
Switzerland
parag@miralab.unige.ch

P. Kalra · S. Banerjee
Department of Computer Science and
Engineering, Indian Institute of
Technology Delhi, India
{pkalra, suban}@cse.iitd.ernet.in

Abstract In this paper we present
techniques for reusing view-
dependent animation. First, we
provide a framework for representing
view-dependent animations. We for-
mulate the concept of a view space,
which is the space formed by the key
views and their associated character
poses. Tracing a path on the view
space generates the corresponding
view-dependent animation in real
time. We then demonstrate that the
framework can be used to synthesize
new stylized animations by reusing
view-dependent animations. We
present three types of novel reuse
techniques. In the first we show how
to animate multiple characters from
the same view space. Next, we show
how to animate multiple characters
from multiple view spaces. We use

this technique to animate a crowd
of characters. Finally, we draw
inspiration from cubist paintings
and create their view-dependent
analogues by using different cameras
to control different body parts of the
same character.

Keywords View-dependent
character animation · Stylized
animation · Animation reuse

1 Introduction

The reuse of previously created animation to synthesize
new animation is a very attractive alternative to creating
animation from scratch. The reuse of stylized animation,
however, is a very challenging problem because the styliza-
tions are often generated for a particular viewpoint. View-
dependent animation allows us to overcome this limitation.
View-dependent animation is a technique of stylized ani-
mation, which captures the association between the cam-
era and the character pose. Since the character’s action
depends on the view, changing the viewpoint generates
a view-dependent instance of the character. These can be
reused to synthesize new animation. We show that view-
dependent variations can be reused to animate multiple

instances of the same character, a group of different char-
acters and even different body parts of the same character.

The view-dependent approach, however, demands that
we define a formal representation of the camera-character
pose association. We introduce the concept of a view
space, defined by the key views and associated key char-
acter poses, which captures all the information required to
produce a view-dependent animation. The framework al-
lows the creation of a view-dependent animation in real
time, whenever the animator traces out a new camera path
on the view space. The animator can explore all the view-
dependent variations quickly.

We present three broad classes of reuse methods. In the
first we show how to animate multiple characters from the
same view space. Next, we show how to animate multiple

708 P. Chaudhuri et al.

characters from multiple view spaces. We use this tech-
nique to animate a crowd of characters. Finally, we draw
inspiration from cubist paintings and create their view-
dependent analogues. We use different cameras to control
different body parts of the same character. We combine the
different body parts to form a single character in the final
animation.

We begin by providing the background for our work
in Sect. 2. Next, we present our framework for view-
dependent animation in Sect. 3. We then present our tech-
niques for reusing view-dependent animations in Sect. 4.
Section 5 concludes with a summary of the work done.

2 Background

We start by exploring the work that has been done toward
capturing the relationship between the pose of the charac-
ter and the view.

2.1 Associating the camera and the character pose

The idea of the dependence of the character’s geometry
on the view direction was introduced by Rademacher [12]
in his work on view-dependent geometry (VDG). In
this work, the animator manually matches the view di-
rection and the shape of a base mesh model with the
sketched poses of the character and creates a view sphere.
Tracing any camera path on this view sphere generates
the appropriate animation with view-dependent defor-
mations. Chaudhuri et al. [5] present a system for doing
view-dependent animation from sketches using the VDG
formulation. Our framework is more general and we
demonstrate that it reduces to the VDG formulation as
a special case. Martín et al. [10] use hierarchical extended
non-linear transformations to produce observer-dependent
deformations in illustrations, in order to capture the ex-
pressive capabilities. However, the technique does not
present any method for authoring such transformations to
obtain the desired animation.

Since we reuse view-dependent animation to synthe-
size new animations, our work bridges across the two
themes of stylized animation and animation synthesis. We
discuss the related work pertaining to these two areas in
the next section.

2.2 Synthesis of stylized animation

Several artwork styles have been explored in stylized
animation and rendering literature [8, 11]. Stylizations
based on innovative use of the camera have also been
researched [1, 13]. Coleman and Singh [6] make one of
Singh’s [13] exploratory cameras a boss (or primary) cam-
era; this camera represents the default linear perspective
view used in the animation. All other exploratory (or sec-

ondary) cameras, when activated, deform objects such that
when viewed from the primary camera, the objects will
appear non-linearly projected. Though this type of camera
based stylization can produce striking effects, which can
be aesthetically harnessed by an artist to create interesting
animations, there is no direct one-to-one correspondence
between the viewpoint and the pose of the character.
Reusing view-dependent variations allow us to produce ef-
fects very similar to those produced in [6]. Glassner [7]
talks about using cubist principles in animation, i.e., ren-
dering simultaneously from multiple points of view in an
animation using an abstract camera model. In one of our
reuse techniques, we draw inspiration from cubist paint-
ings and synthesize a new animation where different parts
of the same character are controlled by separate cameras.

Synthesis of animations using motion synthesis tech-
niques has been widely researched. All previous work in
the direction of animation reuse has generally focused
on creating newer, meaningful motions given a database
of previously recorded motion capture data [2, 9]. Bre-
gler et al. [3] describe a method to capture the motion
from a cartoon animation and retarget to newer characters.
Chaudhuri et al. [4] present a technique for stylistic reuse
of view-dependent animation that uses Rademacher’s [12]
view sphere formulation to generate an animation. Their
method is a subset of the reuse method that we present in
Sect. 4.1. Our method is a more general formulation.

3 Our framework

In this section we present our framework for view-
dependent animation.

3.1 The view space

At a given instant of time the character may be potentially
viewed from a set of different viewpoints. The character
may possibly have a different pose associated to each of
these viewpoints (see Fig. 1). We consider this set of view-
points and associated character poses as one sample. We
assume, for simplicity of explanation, that we are ani-
mating a single character and that the camera is looking
toward the character (i.e., the character is in the field of
view of the camera). We also assume that the view direc-
tion is a unit vector.

We define a representation that enables the aggrega-
tion of such samples as an ordered sequence. These sets
of viewpoints and associated character poses sampled (or
ordered) across time form a view space (see Fig. 2). Every
point on the envelope of this view space represents a view-
point (and a unit view direction), v. If we do not consider
the sampling order then the view space is simply a col-
lection of viewpoints. Since for every viewpoint there is
a unique view direction, we use these terms interchange-
ably. We denote the pose of the character as mv, associated

Reusing view-dependent animation 709

Fig. 1. Different character poses associated with each viewpoint

Fig. 2. Tracing a camera path on the envelope of the view space generates an animation. One character pose is shown for each set of
viewpoints

with a view direction v. A character pose, in this paper,
is the resulting mesh model of the character having un-
dergone any change that may be rigid or non-rigid, i.e.,
it includes mesh deformations as well as changes in the
mesh due to articulation. We couple the character pose
to the view direction. Hence, changing the view direction
changes the pose of the character.

An animation is generated by tracing a path, P, on the
envelope (see Fig. 2). A point p on this path consists of
the view direction associated with the point on the enve-
lope, v, and is indexed by time (runtime of the animation)
along that camera path, t, measured from the start of the
camera path. Note that the runtime of the animation should
not be confused with the sampling time. We refer to points

on a camera path P as p ≡ (v, t). The animation gener-
ated is the sequence of the poses mv associated to v on the
path P, viewed along the direction v. Every distinct cam-
era path generates a distinct animation. This is the basic
idea behind our framework.

In order to create the view space, the animator provides
a set of key viewpoints or key view directions and the asso-
ciated key poses. Let vk represent a key viewpoint, and mvk

represent the associated key character pose. The animator
can provide these in the form of a set of sketches, a video,
or a mix of the two. As an example consider the Hugo’s
High Jump animation (Hugo is the character used in the
animation) where the animator provides the sketches for
the keyframes. These key views and key poses form the

710 P. Chaudhuri et al.

Fig. 3. The left image shows the path traced on the envelope of the view space. The right image shows a close-up view of the path

view space on which the animation is generated. Figure 5
shows some of the sketches used for the purpose.

Now, for each key view the sphere centred at the
look-at point (in this case the end of the unit length view
direction vector) is the set of all possible view directions
from which one can look toward that point. Hence, such
a sphere may be thought of as a view space generated by
just one view. The complete view space is, therefore, the
union of the view spaces generated by all the views, i.e.,
a union of all the spheres (see Fig. 3).

In order to generate an animation along a camera path
P(v, t) on the envelope of the view space, we need to gen-
erate the associated character pose, mv, for every point p
on P. To do this, for any view direction v we determine the
r-closest key viewpoints (closest in the metric defined on
the envelope), vk

j .
For clarity, henceforth we represent vk as v and vk

j
as v̄ . The character pose mv is then given by

mv =
∑

v̄

wv̄ mv̄ . (1)

Thus, mv is a weighted blend of the corresponding mv̄ ’s
(i.e., the r-closest key view poses). The wv̄ ’s are the cor-
responding blending weights. The wv̄ ’s vary inversely
to the proximity of v̄ to v. An example of such a path,
P(v, t), is shown in Fig. 3. Figure 4 shows the selection
of the r-closest key viewpoint for a given position of the
rendering camera on the path.

The path shown in Fig. 3 is obtained by smoothly join-
ing the key viewpoints. Some frames from the animation
obtained from this path are shown in Fig. 5. Here we
see that the generated animation matches the planned sto-
ryboard frames very closely and the path generates the
animation originally intended by the animator. In this an-
imation, we have generated the actual jump as a view-
dependent animation. Hugo’s run-up before the jump,
however, is generated using simple keyframed animation
and it blends in seamlessly with the view-dependent por-
tion. The character is a 3D mesh model with an embedded
articulation skeleton. We use inverse kinematics to pose
this skeleton. The character is also enclosed in a control
lattice made up of tetrahedral cells, with each cell asso-
ciated to one skeleton bone. This allows us to deform

Fig. 4. Blending between the r-closest key views

Fig. 5. Some frames from the planned storyboard and the final ren-
dered animation

the character’s mesh using direct free-form deformation.
We use a combination of these methods and robust com-
puter vision techniques, as explained in [5], in order to
recover the key view directions and the key poses from the
sketches given by the animator.

This complete process is very intuitive for the anima-
tor as she does not have to worry about the camera and
the character separately, once the view space has been cre-
ated. We assume coherence over a local neighbourhood
around any viewpoint both in terms of the view direction
and the character pose, i.e., the pose specified by the ani-
mator for any viewpoint is similar to the pose specified for
any other viewpoint in its small neighbourhood. This guar-
antees spatio–temporal continuity in the generated anima-
tion, i.e., the animation will not have any sudden unwanted
changes in the view or pose between successive frames.

Reusing view-dependent animation 711

The view space for this example (shown in Fig. 3) is an
instance of the general view space formulation. The view
space can have other forms depending on the spatial loca-
tion and sampling order of the sets of viewpoints used to
construct it. The conditions under which they are gener-
ated are enumerated below:

1. If all the view directions, corresponding to a set of
viewpoints sampled at a given instant of time, intersect
at a common point (i.e., they share a common look-at
point), then the instantaneous view space is a single
sphere (also called a view sphere) centered at the point
of intersection. This is trivially true if there is only one
view direction for some time instant. If this condition
holds for all sampling time instants, then the view space
is an aggregation of view spheres. The spatial location
and sampling order of these sets of viewpoints (i.e.,
view spheres) gives rise to the following view space
configurations:

(a) If there is only one set of viewpoints (i.e., there is
only one sample), then the view space is a single
view sphere.

(b) If there are multiple sets of viewpoints and each set
is located at a different point in space and sampled
at a different time instant, then the view space is an
aggregation of view spheres separated in both space

Fig. 6. Change of character pose with change of distance of the current viewpoint along a view direction

and time. The view space shown in Fig. 3 is an ex-
ample of such a case (with only one view direction
for each time instant).

(c) If there are multiple sets of viewpoints at the same
spatial location, sampled at different time instants,
then the view space is an aggregation of view
spheres separated only in time and not in space.

2. If all the view directions, corresponding to a set of view-
points sampled at a given time instant, do not intersect
at a common point, then the instantaneous view space is
not a single sphere. It can be considered as a collection
of spheres (one centered at each distinct look-at point).
Then the complete view space is an aggregation of such
instantaneous view spaces. The view space may have
any of the three configurations analogous to the ones
described above.

In the work by Rademacher [12] the view sphere
formed by view-dependent models is a special case of
our view space. Here a convex hull of the viewpoints is
computed. This partitions the view space by imposing
a triangulation on it. A novel view-dependent model for
any new viewpoint is generated by a barycentric blend
of the key deformations at the vertices of the triangle in
which the new viewpoint lies. This is clearly a special case
of our novel view generation strategy on the envelope.

712 P. Chaudhuri et al.

Fig. 7. Generating a new character pose for the current viewpoint from key viewpoints after incorporating distance

Here, r = 3-closest key viewpoints set up a local barycen-
tric basis for the novel viewpoint. The new character pose
associated with this viewpoint is computed as a weighted
blend of the key poses at the selected key viewpoints,
using the barycentric coordinates of the novel viewpoint as
weights. The major limitations of Rademacher’s formula-
tion are the following:

– It does not handle the distance of the viewpoint, which
is crucial for incorporating zoom effects.

– It cannot handle cases where all the camera view direc-
tions do not intersect at a single look-at point (the center
of a view sphere) thereby limiting the method consider-
ably.

Our framework can deal with both these conditions.

3.2 Distance of the viewpoint

In the previous discussion we developed our framework
considering only the view direction without the distance
of the viewpoint. Now we add the component of distance
to our framework, i.e., we want the character’s pose to
change as the distance of the viewpoint changes (with or
without an accompanying change in the view direction).

We assume that a tuple list (dl
v, ml

v) is associated with
every view direction, v, forming the view space. Here,
dv is the distance of viewing and the associated charac-
ter pose is mv. The list is sorted on the distance field of

each tuple. If the list has L elements, then 1 ≤ l ≤ L. So
the ml

v’s are the different poses of the character along
a view direction at various distances dl

v. As we change the
distance, d : dl1

v ≤ d ≤ dl2
v , along a view direction, v, the

resulting character pose is a blend of the character poses
ml1

v and ml2
v (see Fig. 6).

Now, given a set of key viewpoints, v , and the as-
sociated tuple lists, (dl

v , ml
v), we want to generate an

animation for a camera path P(v, d, t). The added pa-
rameter d is the distance of the viewpoint along the unit
view direction v. The vector qv = d v gives the position
of the current viewpoint (see Fig. 7). We determine the r-
closest key viewpoints to v on the envelope as before. Now
for every key viewpoint, v̄ , in the r-closest set of v, we
project the vector qv on v̄ and find the length of the pro-
jected vector. The projected length, d v · v̄ , is the distance
d projected along v̄ . Find dl1

v̄ and dl2
v̄ from the tuple list of

v̄ such that dl1
v̄ ≤ d v · v̄ ≤ dl2

v̄ . It is always possible to find
a βv̄ such that d v · v̄ = (1−βv̄)dl1

v̄ +βv̄ dl2
v̄ . βv̄ locates

a point, qv̄ , along the corresponding v̄ vector. The pose at
each qv̄ is given by:

mqv̄
= (1−βv̄)ml1

v̄ +βv̄ ml2
v̄ , (2)

where ml1
v̄ and ml2

v̄ are the poses associated with dl1
v̄

and dl2
v̄ . Then the pose corresponding to the current view-

point qv is given as a weighted blend of the pose at

Reusing view-dependent animation 713

each qv̄ , as:

mqv =
∑

v̄

wqv̄
mqv̄

, (3)

where wqv̄
are the weights used for the blending. The

process is shown schematically in Fig. 7.
In order to illustrate this concept, we augment the

view space, shown in Fig. 3, by adding two more poses
for a view direction at different distances. The poses are
reconstructed from sketches given by the animator, and
the camera center is recovered along with the distance of
viewing. Figure 8 shows two camera positions on the left
that differ in the distance from the character, and not the
view direction. On the right the corresponding character
pose is shown, as seen from their associated cameras. Now
we trace another path for the rendering camera, specifying
dp for all points on the path, and the required animation
is generated as explained above. This also illustrates that
there exist other paths that are capable of generating inter-
esting animations. Our framework can generate animation
in real time as the animator traces out a path on the view
space, thus making it possible for the animator to explore
the view space very easily.

Thus, in our framework we incorporate both the view
direction and the distance of a viewpoint. It is easy to in-
corporate changes in the character pose with changes in
focal length of the camera in a manner similar to the one
used for distance of the viewpoint. Since the view space is
an abstract representation, it can be easily used with all the
view parameters encoded in the form of a camera matrix.
We now present our methods for reusing view-dependent
animation, using the framework we have developed to
synthesize new animations.

Fig. 8. Varying the character pose with change in distance of the
viewpoint

4 Reusing view-dependent animations

We consider the different view-dependent animations
made possible by changing the rendering camera, as vari-
ations of each other. We are interested in reusing these
variations to synthesize novel animations. We catego-
rize these ways of reusing view-dependent animation into
three broad categories. In the subsequent sections, we dis-
cuss these categories in terms of their representation in the
machinery of our framework.

4.1 Animating multiple characters from the same view
space

We want to reuse the view-dependent variations of a char-
acter to animate multiple characters and create a novel
animation.

Let us assume that a camera, C1, traces a path
P1(v, d, t) on the view space, VS. A second camera, C2,
traces another distinct path P2(vp, dvp, tp) on VS. The an-
imation generated by C1 can be thought of as an ordered
set of n frames P1, given by P1 = {pi

1 : 1 ≤ i ≤ n}, where
pi

1 is the pose of the character in the i-th frame. The
order implicitly imposed on the set is the temporal se-
quence of the frames in the animation. Similarly, we
have, for the animation generated by C2, another ordered
set of m frames P2, given by P2 = {p j

2 : 1 ≤ j ≤ m}.
The animations P1 and P2 are view-dependent varia-
tions of each other, i.e., they are generated from the
same view space. The poses, pi

1 ∈ VS and p j
2 ∈ VS,

are view-dependent variations, or instances, of each
other.

We then define a novel animation with two characters
as an ordered set Q, given by

Q = {〈
qk

1 ⊕qk
2

〉 : qk
1 = pk

1 and qk
2 = pk

2

∀ k, 1 ≤ k ≤ min(n, m)
}
, (4)

where 〈qk
1 ⊕qk

2〉 indicates that a frame k in Q consists of
two character poses (see Fig. 9). The ⊕ operator indicates
that the two poses are being composed together to form
the synthesized animation frame. The composition can be
done in 3D space if the two poses are registered to a com-
mon coordinate system. The composition can also be done
in 2D image space, by compositing the poses after they
have been rendered into the framebuffer. The novel anima-
tion has min(n, m) frames.

In this manner, we can reuse the view-dependent vari-
ations of a character to animate multiple characters and
create a new animation. As an example of this method of
reuse, we create a view space and plan the movement of
two cameras on it. Figure 10 shows the final frame gen-
erated by compositing the two view-dependent instances
of the character. Note that the compositing done is in the
image space, i.e., in 2D.

714 P. Chaudhuri et al.

Fig. 9. Animating multiple characters from the same view space

Fig. 10. Two view-dependent instances composited together

4.2 Animating multiple characters from multiple view
spaces

The reuse strategy presented in Sect. 4.1 uses multiple in-
stances of the same character, each from the same view
space. We want to further expand this idea and look at an-
imating groups of distinct characters together.

Consider that we have N distinct characters and we
have constructed a view space for each. Then we can gen-
erate the distinct animations, Pr , with 1 ≤ r ≤ N. Note
that the generated Pr’s are distinct even if the path traced

on each view space is the same, because the character in
each is distinct. Each Pr is an ordered set of nr frames and
is given by Pr = {pi

r : 1 < i ≤ nr}. We can now construct
a new animation of a group of these distinct characters as

Q =
{〈 N⊕

l=1

qk
l

〉
: qk

l = pk
l ∀ k, 1 < k ≤ N

min
l=1

(nl)
}
, (5)

where the
⊕

operator indicates that N poses are be-
ing composed together to form the synthesized animation
frame.

We now look at the problem of how to control the paths
that we want to trace on the N distinct view spaces. Let
a camera be associated with every view space. We call this
camera the local camera for the corresponding view space.
Let the path traced by this camera be Pr(vr, dr, tr). Now,
we define a single global camera and the path traced by
this camera as P. The path P is not a path on any view
space, but is the trajectory of the global camera in 3D
space, defined in the global coordinate system.

We can define a path-mapping function fr , Pr =
fr(P), 1 ≤ r ≤ N. The function fr maps the global path to
the corresponding local path on the view space. The func-
tion fr is a coordinate system transfer function, from the
global coordinate system to the local coordinate system
of each view space. In order to create the novel anima-
tion, the animator has to plan the camera trajectory only
for the global camera and define the various fr’s. Then
moving the global camera along P, will cause each of
the local cameras to move along the corresponding Pr on

Reusing view-dependent animation 715

Fig. 11. Animating multiple characters from multiple view spaces

their respective view spaces. This will generate the dis-
tinct Pr ’s. These can be composited together to generate
the final animation (see Fig. 11). A straightforward choice
for the compositing method is to render the various poses
as they appear when viewed through the global camera.
This technique automatically composites them in the ren-
dered frame. The animator, however, can use any other
compositing method as required for the animation. Before
starting the animation process, the animator has to place
the various characters in the global coordinate system as
a part of global scene definition. Hence, the animator al-
ready knows the coordinate system transfer function, gr ,
from the global coordinate system to the local coordi-

Fig. 12. The Mexican wave animation

nate system of each character. The mapping from the local
coordinate system of the character to the coordinate sys-
tem of the view space, hr , is easily recovered during view
space construction. Thus, we have fr = gr ◦ hr (where ◦
represents function composition).

We used this reuse technique to animate a crowd of
characters in the Mexican Wave animation. In this ex-
ample, the same character is replicated many times to
generate a crowd (Fig. 12b). Each character has a local
view space as shown in Fig. 12a. The local key viewpoints
are shown in blue and red, while the current local cam-
era is shown in green. Moving this local camera on the
path shown (in green) causes the single character’s pose

716 P. Chaudhuri et al.

Fig. 13. Mapping the movement of global camera to the local cameras

Fig. 14. Animating different parts of a single character from a single view space

Reusing view-dependent animation 717

change as it is supposed to change during the crowd an-
imation. The movement of the global camera is mapped
to each of these view spaces to move the corresponding
local cameras, which generates the final animation. The
path of the global camera and current look-at is shown in
green in Fig. 12b. Note that the crest of the Mexican wave
is in front of the current camera look-at. We also perform
conservative view culling to efficiently render the crowd.
A final frame of the animation is shown in Fig. 12c.

In this example, finding the path-mapping function, fr ,
which will generate the wave in the crowd, for a specific
movement of the global camera is not difficult. Figure 13
shows the position of the local cameras in their respective
local view spaces for a given position of the global cam-
era. The mapping ensures that the local cameras in local
view spaces outside the bounds of the current view frus-
tum do not move. This mapping function can be intuitively
constructed. For a general case, however, designing a path
mapping function to obtain a desired animation may not
always be easy.

4.3 Animating different parts of a single character from
a single view space

In the previous sections we looked at the problem of
synthesizing a novel animation with multiple characters
using view-dependent variations of one or many char-
acters. Now we draw inspiration from cubist paintings,
which portray the parts of the same character in a paint-
ing from different perspectives. Many such paintings by
Pablo Picasso are perfect examples of a scene that can be
visually thought of as broken into disjoint parts that are
viewed from different perspectives and then patched back
together. Similarly, we want to generate a new animation,
where different parts of the same character are controlled
by separate cameras. All the cameras move on the same
view space. The final animation will have the character
with each separately animated body part blended together.

In order to do this we consider a pose, p, to be made up
of a union of M body parts, bu , i.e., p= ⋃M

u=1 bu . We as-
sume that there is no overlap between the body parts, i.e.,
they are distinct and mutually exclusive. Now, we asso-
ciate a camera Cu with a body part bu . Each camera traces
a path, Pu(vu, du, t u), on the view space. The synthesized
animation of n frames, Q, is then given by

Q = {qi : qi = pi : 1 ≤ i ≤ n}. (6)

At any point, pu on a camera path, the configuration
of the corresponding body part, bu , is computed by using
a process analogous to pose computation at pu for a nor-
mal view-dependent animation as given in Sect. 3. We can
also associate other parameters, like the scaling of each
body part, with the respective cameras. We can then vary
these parameters when the corresponding cameras move.
The various body parts are then composited together to

form the final pose (see Fig. 14). The compositing method
used is the animator’s prerogative.

We present two variations of this reuse technique as ex-
amples. In the first, different body parts are viewed from
their respective cameras and the views are composited in
2D image space to generate a multi-perspective image.
This compositing technique is similar to the one given by
Coleman and Singh [6]. We associate six body cameras,
one each, with the head, torso, two arms and two legs. We
explicitly associate the cameras with the bones of the em-
bedded skeleton for each body part, which automatically
groups the mesh vertices into various body parts as each
mesh vertex is uniquely contained in a control lattice cell,
which in turn is associated to exactly one bone of the em-
bedded skeleton. We also associate scaling parameters of
the various body parts with the position of their respective
body cameras. Since each body camera is at a different
position, each body part is scaled differently, in addition
to having a different perspective. We then composite the
view from each to get the final image shown in Fig. 15.
In this image the head of the character is seen from the
right, the torso from the front, the left hand from the top,
the right hand from the left-bottom, the left foot from the
front, while the right foot is seen from the right side. This
may be thought of as the view-dependent analogue of cu-
bist paintings.

In the second variation, we again associate six body
cameras with the various body parts. The composition of
the body parts is done in object space in 3D. This is done

Fig. 15. A multi-perspective image

718 P. Chaudhuri et al.

Fig. 16. Compositing in object space and rendering from the master camera

by taking one model of the character and by posing the
various body parts as per the associated camera. The con-
nectivity of the body parts is not disturbed, and hence they
can be blended in object space. The rendered viewpoint
is that of a master camera. The body cameras follow the
movement of the master camera. Figure 16 shows frames
from three animations that we generated using this tech-
nique, each with a different set of scaling parameters for
the various body parts. Figure 16a has no scaling, Fig-
ure 16b has scaling that exaggerates the perspective effect,
i.e., the part closer to the camera appears very big, while
the part farther away appears very small. This effect can be
seen in the legs and the head, as the camera moves from
below the character to the top. As the camera moves, the
scaling associated with the body parts changes to main-
tain the exaggerated perspective effect. The hands and the
torso are not scaled. Figure 16c has scaling, which coun-
ters the perspective effect (i.e. the head appears larger).

As a final example of the elegance of our reuse tech-
nique, we stylize the Hugo’s High Jump animation by
associating different cameras with different body parts of
the character. In this animation, as Hugo jumps, his limbs
stretch and his head becomes larger. This is made possible
by the scaling parameters associated with the various mov-
ing body cameras.

5 Conclusion

We have formulated the concept of a view space of key
views and associated key character poses as a framework

for representing view-dependent animations. It captures
all the information about the views and character poses
efficiently and concisely. The animator can trace camera
paths on the view space and the corresponding animation
is generated in real time. The ability to understand and
explore view-dependent animation using our framework
gives us an insight into the reuse of view-dependent ani-
mation.

We have formalized the concept of reusing view-
dependent animations in terms of our framework. We have
presented three novel reuse strategies. In the first we have
shown how to animate multiple characters from the same
view space. Next, we have shown how to animate mul-
tiple characters from multiple view spaces. We used this
technique to animate a crowd of characters. Finally, we
have drawn inspiration from cubist paintings and created
their view-dependent analogues by using different cam-
eras to control various body parts of the same character.
We have thus shown that reusing view-dependent ani-
mation is possible using our framework and it can be
used to synthesize a variety of interesting stylized anima-
tions.

For future work we would like to analyze under what
conditions a suitable mapping function can be designed,
given any desired combination of paths of the global and
local cameras.

Acknowledgement Hugo’s mesh is courtesy of Laurence Boissieux,
INRIA.

References
1. Agrawala, M., Zorin, D., Munzner, T.:

Artistic multiprojection rendering. In:
Proceedings of the Eurographics Workshop
on Rendering Techniques, pp. 125–136
(2000)

2. Arikan, O., Forsyth, D.A., O’Brien, J.F.:
Motion synthesis from annotations. ACM
Trans. Graph. 22(3), 402–408 (2003)

3. Bregler, C., Loeb, L., Chuang, E.,
Deshpande, H.: Turning to the masters:

Motion capturing cartoons. In: Proceedings
of SIGGRAPH, pp. 399–407 (2002)

4. Chaudhuri, P., Jindal, A., Kalra, P.,
Banerjee, S.: Stylistic reuse of
view-dependent animations. In: Proceedings
of Indian Conference on Vision, Graphics
and Image Processing, pp. 95–100 (2004)
Online version is available at
http://www.cse.iitd.ac.in/ ∼parag/

pubs/icvgip2004_preprint.pdf

5. Chaudhuri, P., Kalra, P., Banerjee, S.:
A system for view-dependent animation.
Comput. Graph. Forum 23(3), 411–420
(2004)

6. Coleman, P., Singh, K.: Ryan: Rendering
your animation nonlinearly projected.
In: Proceedings of NPAR, pp. 129–156.
ACM Press, New York (2004)

7. Glassner, A.S.: Cubism and cameras:
Free-form optics for computer graphics.

Reusing view-dependent animation 719

Technical Report (MSR-TR-2000-05)
Microsoft Research. Cited Jan. 2000

8. Hays, J., Essa, I.: Image and video based
painterly animation. In: Proceedings of
NPAR, pp. 113–120. ACM Press, New
York (2004)

9. Kovar, L., Gleicher, M., Pighin, F.: Motion
Graphs. In: Proceedings of SIGGRAPH,
pp. 473–482 (2002)

10. Martı́n, D., Garcı́a, S., Torres, J.C.:
Observer dependent deformations in

illustration. In: Proceedings of the NPAR,
pp. 75–82. ACM Press, New York (2000)

11. Meier, B.J.: Painterly rendering for
animation. In: Proceedings of SIGGRAPH,
pp. 477–484 (1996)

12. Rademacher, P.: View-dependent geometry.
In: Proceedings of SIGGRAPH,
pp. 439–446 (1999)

13. Singh, K.: A fresh perspective. In:
Proceedings of Graphics Interface,
pp. 17–24 (2002) Online version is
available at
http://www.graphicsinterface.org/

proceedings/2002/152/

PARAG CHAUDHURI is a post-doctoral re-
searcher at MIRALab, the University of Geneva.
He received his PhD from the Indian Institute of
Technology Delhi, India, in 2006. He received
the outstanding PhD award from IBM IRL for
2006. His primary research interests include
all types of computer animation. He is also
interested in character animation, motion cap-
ture, real time computer graphics, and computer
vision (geometric and active).

PREM KALRA is a professor in the Department
of Computer Science and Engineering at the
Indian Institute of Technology, Delhi. Earlier,
he was at MIRALab, the University of Geneva
(Switzerland). He obtained his PhD in computer
science from the Swiss Federal Institute of
Technology, Lausanne, in 1993. His research in-
terests include computer vision based modeling
and rendering, 3D visualization and animation,
and image/video super-resolution.

SUBHASHIS BANERJEE received a BE degree
from Jadavpur University, Calcutta, in 1982, an
ME degree in electrical engineering and a PhD
from the Indian Institute of Science, Bangalore,
in 1984 and 1989, respectively. Since 1989 he
has been on the faculty of the Department of
Computer Science and Engineering at IIT Delhi,
where he is currently a professor. His research
interests include computer vision and real-time
embedded systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

