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Abstract The minimum power multicast (MPM) problem is a well-known optimiza-
tion problem in wireless networks. The aim of the MPM problem is to assign trans-
mission powers to the nodes of a wireless sensor network in such a way that multi-hop
communication between a source node and a set of destination nodes is guaranteed,
while the total transmission power expenditure over the network is minimized. Sev-
eral extensions to the basic problem have been proposed, in order to obtain more
realistic mathematical models. In this paper we deal with the probabilistic minimum
power multicast (PMPM) problem, where node failure probabilities are considered
and a global reliability level of the transmission is required. Since the so far avail-
able exact approach can handle only small-sized instances of the PMPM problem,
in this paper we focus on the study of a heuristic approach. A heuristic algorithm
for the PMPM problem is presented, together with a fast method for the reliability
calculation based on previously unexplored combinatorial properties of the model.
Computational experiments are finally discussed.

Keywords Minimum power multicasting · Probabilistic mathematical models ·
Multihop networks · Reliability calculation

1 Introduction

Since the very beginning of research in the area of wireless sensor networks, one of
the major issues has been saving power. This optimization is typically faced during
the design, and prior the deployment of the nodes of a network. Such a high attention
for this factor is easy to identify: the nodes of the network (devices) are typically
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equipped with low capacity, tiny batteries, and they have to stay alive in the longest
possible time horizon. This, in an environment which is usually characterized by
reduced accessibility. A tight management of the power budget is imposed by all
these factors. Another peculiarity of sensor networks is that the largest share of power
consumption is normally due to communication rather than to computation, sensing
and state-changing activities (Negri et al. 2008; Wieselthier et al. 2000). We will base
our study on this assumption.

Wireless sensor networks are typically used in commanding actuators, monitoring
events or measuring values at locations where people cannot reach easily, or where a
long term sensing task is required. Examples of applications are habitat monitoring
(Mainwaring et al. 2002), civil structural monitoring (Kim et al. 2007) and environ-
mental monitoring (Doolin and Sitar 2005). Nodes can usually be characterized as
low cost devices, and are expected to be deployed in a potentially inaccessible area.
Recharging the sensors after the deployment might therefore not be an option, both
for logistic and economical reasons. In this context, energy-efficiency becomes per-
haps the most important design criteria for sensor networks, since it directly impacts
on the time the network itself is kept in operation. Many of the sensor networking ap-
plications are intrinsically about dissemination of information from a well-identified
source node. It is therefore critical to identify energy efficient network topologies,
optimized according to the type of communications that has to be supported. In this
paper we will concentrate on multicasting topologies, where a piece of information
has to be sent from a source node to a set of target nodes of the network. We will
assume to work on a static network, i.e. nodes do not move after the deployment.

In this paper we focus on the problem of minimizing the power required to connect
a source device to a set of hosts. This optimization problem, which is at present an
intensive topic of study, is known as the Minimum Power Multicast (MPM) problem.
Indeed, significant effort is being done for modelling and solving the MPM and its
variants like the Minimum Power Broadcast (MPB) problem (see Leggieri et al. 2008;
Leino 2002; Montemanni and Gambardella 2005 and Das et al. 2003). A detailed
review on exact and heuristic methods to solve both problems can be found in the
recent surveys (Guo and Yang 2007 and Min and Chinchuluun 2006).

All the above works assume a deterministic behavior of the transmitting devices.
In reality it has to be expected that the terminals can be affected by temporary dam-
age or permanent failure. Therefore it is reasonable to extend the deterministic case
to a probabilistic formulation that takes into account the uncertain nature of node
availability. It will be soon clear that this extension introduces an extra layer of com-
plexity to the problem. However, the advances in heuristic and exact algorithms for
the MPM, lead to the opportunity of studying more realistic, although more complex,
models of the problem. Simplified models taking into account failure probabilities as-
sociated with nodes were discussed in Bhandari and Vaidya (2007) and Montemanni
et al. (2008). A more realistic approach was studied in Barta et al. (2011). This work
presented a probabilistic version of the MPM (referred to as PMPM in the remainder
of the paper), that takes into account node failure probabilities. Each device has a
known given probability of failure, due to environmental factors, and it is imposed
that connectivity should be guaranteed with a given level of reliability. Notice that in
wireless networks failure probabilities are also correlated to the transmission power
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assigned to the devices. However, here we focus on situations in which the environ-
mental sources of node failure (e.g. the deployment in a hostile area) dominate the
channel/fading/mobility-related sources of failure. In this paper we do not consider
issues regarding communication protocols, which are delegated to other layers of
wireless architecture.

The resulting mathematical formulation lies into the class of probabilistic integer
programming models. An exact solution approach based on the formulation is finally
discussed. The method is able to solve problems with up to 30 nodes within one hour
(on a modern computer). Some new valid inequalities for the integer programming
formulation are discussed in Barta et al. (2010).

In order to handle (realistic) instances with more than 30 nodes, heuristic methods
have to be developed. In the present paper we devise such an approach, based on the
exploitation on some previously unexplored theoretical properties of the model.

It is trivial to see that PMPM is an NP-hard problem: the deterministic MPM
problem, which is known to be NP-complete (see Cagalj et al. 2002 and Liang 2002),
is a special case of problem PMPM. More precisely, a PMPM instance reduces to an
MPM problem if the probability of failure related to each node is set to zero (see also
Rosenthal 1977; Bodlaender and Wolle 2004 and Garey and Johnson 1979).

The remainder of the paper is organized as follows. Section 3 is devoted to the
definition of reliability of a wireless sensor network, the discussion of the properties
of reliability and the introduction of an efficient algorithm to calculate it. In Sect. 4
a heuristic algorithm for the PMPM, based on the reliability calculation previously
discussed, is introduced. Computational results for the new approach are presented in
Sect. 5. Section 6 is finally devoted to our conclusions.

2 Description of the probabilistic minimum power multicast problem

A network of wireless devices can be modelled mathematically as a directed graph
G = (V ,A), where the elements of the set V are the devices and those of A are all
the possible connections between pairs of devices. We denote by n the cardinality
of the set V and we suppose that n ≥ 3. We select a node s to be the source of the
communication and a subset R of V that contains all nodes that are supposed to be
reached by the signal generated in s. Each node i ∈ V can receive data from other
nodes of the network and send data to any node in its transmission range. With each
arc (i, j) ∈ A we associate the minimum amount pij of power that must be assigned
to node i in order to establish a direct communication with node j . We say that the
source node s is connected with a destination node d ∈ R, if the transmission powers
assigned to the sensors in the network guarantee the existence of a path between
nodes s and d .

The Minimum Power Multicast (MPM) problem consists in defining a range as-
signment function

ρ : V → R
+, i �→ ρ(i),

which assigns to each node i ∈ V a transmitting power ρ(i), in such a way that
the source s can be connected with each destination d ∈ R and that the sum of the
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transmission powers
∑

i∈V

ρ(i)

is minimized. It is important to underline that a wireless network exploits the so-
called wireless multicast advantage (WMA). This fundamental property states that
all the nodes within the transmission range of a transmitting node receive the signal.
In other words several nodes can be covered at the same time by a single transmission.

The probabilistic aspect of our problem lies in the fact that each node i ∈ V is
available with a given probability qi . We assume that for each node i ∈ R ∪ {s} it
holds qi = 1. Typically the value of qi will depend on the characteristics of both
the node and the area where it is deployed. For example a node i positioned in a
dangerous region or in an impervious territory will be assigned a small value of qi .
A consequence of probabilistic node failures is that the connectivity between the
source s and all the destinations d ∈ R can be achieved only with a given probability,
which we refer to as reliability of the network.

The PMPM problem consists in minimizing the sum of the transmission ranges un-
der the constraint that the reliability of the obtained network reaches a given threshold
α ∈ [0,1[. It is easy to see that the PMPM problem reduces to the deterministic MPM
problem if α is set to 0. A more formal definition of the PMPM problem will be given
in the next section.

As an example, Fig. 1 depicts the optimal solution of a 7-nodes PMPM instance
with one source (node 0) and two destinations (nodes 5 and 6). In this particular
PMPM instance the availability qi of the nodes 1,2,3 and 4 has been set to 0.9
and the required reliability to α = 0.95. If, for instance, node 4 is affected by failure,
nodes 1 and 3 still guarantee the connectivity between the source and the destinations.

It is interesting to remark that the PMPM problem can be formulated mathemati-
cally as an integer linear program (see Barta et al. 2011 and Montemanni et al. 2008).
However, as shown extensively in Barta et al. (2011), an exact approach to the PMPM
problem by means of an integer program formulation is reasonable only for small
sized instances.

Fig. 1 Example of a network
with 1 source and 2 destination
nodes
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3 Reliability of a wireless network

Once a transmission range ρ(i) is assigned to each node i ∈ V , only the arcs within
the range are considered as available. In other terms, we can define a subset of active
arcs Aρ = {(i, j) ∈ A|pij ≤ ρ(i)} and consequently a subgraph Gρ = (V ,Aρ), which
we will refer to as the topology generated by the range assignment ρ.

The aim of the PMPM problem is to identify a minimum cost topology, which sat-
isfies the reliability requirement. It is clear that any algorithm based on a search pro-
cedure will have to check the reliability value of many different topologies. Therefore
the issue of the reliability calculation arises as a crucial aspect of the PMPM problem.

The reliability estimation in the exact algorithm for the PMPM problem IRCG
(Iterated Row and Column Generation) presented in Barta et al. (2011) is based on
a simple but quite time-consuming sequential search procedure. In this section we
present a new technique for an efficient calculation of the reliability value of a topol-
ogy Gρ .

3.1 The concept of reliability

In a network model that takes into account probabilistic node failures it is useful to
introduce the concept of node configurations. Since each node i /∈ R ∪{s} is available
with a given probability qi , there are 2n−|R|−1 different network scenarios that can
occur. In the sequel we will refer to any of the possible scenarios as a configuration.
Formally we define a configuration C as the corresponding set of working nodes and
we denote by P the set of all possible configurations. For instance, in the case of the
7-nodes instance in Fig. 1, configuration C = {0,1,3,5,6} represents the scenario in
which the nodes 0,1,3,5 and 6 are available for transmission, while nodes 2 and 4
are affected by failure. The probability of realization of each configuration C ∈ P ,
which we denote by q(C), can be easily calculated as

q(C) =
∏

i∈C

qi ·
∏

i /∈C

(1 − qi). (1)

Therefore the probability of configuration C = {0,1,3,5,6} of the example is
q(C) = 0.92 · 0.12 = 0.0081. We remark that, since the source and the destination
nodes are assumed to be always available, we will usually not mention them explic-
itly in the representation of a configuration. So for instance the representation of the
previous configuration C will be shortened to C = {1,3}.

It is worthwhile to underline that since in a given scenario not all nodes are able
to transmit, each configuration C defines a subset of active arcs Aρ(C) = {(i, j) ∈
Aρ |i ∈ C}, which induces an active topology Gρ(C) = (V ,Aρ(C)). The node con-
figurations C ∈ P can be classified as connective or non-connective by means of the
following definition.

Definition 1 We refer to a configuration C as connective in a topology Gρ , if for
each destination node d ∈ R there is at least one path in the subgraph Gρ(C), that
connects s with d .
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For example, the configuration C = {1,3} considered above is connective, because
its active topology Gρ(C) contains the connecting paths {0,3,1,5} and {0,3,1,6}.
In the remainder of the paper the set of the connective configurations of a topology
Gρ will be denoted by Cρ . The concept of reliability of a topology can now be defined
formally.

Definition 2 Let be Gρ a given network topology. The reliability of the topology Gρ ,
denoted by rel(Gρ), is the sum of the probabilities of the connective configurations
in Gρ , that is

rel(Gρ) =
∑

C∈Cρ

q(C), (2)

or similarly by referring to the complementary event

rel(Gρ) = 1 −
∑

C∈P \Cρ

q(C). (3)

In the case of the topology Gρ shown in Fig. 1 we have that Cρ = {{1,3}, {1,4},
{2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}. Therefore, summing up the
probabilities q(C) of the configurations belonging to Cρ we obtain the exact relia-
bility rel(Gρ) = 0.972.

Finally, using the notation that has been introduced, the PMPM problem can be
stated as defining a transmission range function ρ on a network G in such a way that
the reliability of the induced topology Gρ is at least α and the sum of the transmission
ranges is minimized. More formally we have

PMPM min
∑

i∈V

ρ(i)

s.t. rel(Gρ) ≥ α. (4)

3.2 Reliability calculation

First of all it is worthwhile remarking that an exhaustive approach, based on the
test of the connectivity of each configuration C ∈ P , is reasonable only for small
sized networks. In fact, although the connectivity test of a single configuration is a
polynomial flow-problem (see Barta et al. 2011), the total number of configurations
grows exponentially with the size of the network and makes an exhaustive enumera-
tion impossible. Preliminary tests confirm that this naive approach is not practical for
networks with more than 20–25 nodes.

One main contribution of this paper is an alternative method for the calculation
of the reliability rel(Gρ), that exploits the structural properties of the set of the con-
figurations P . Essentially, this method will turn out to be much more efficient than
the naive approach, because only a small subset of the configurations has to be tested
on connectivity. The following two basic properties of network configurations are the
starting point of the proposed new approach.
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Fig. 2 Representation of an induced set in the Hasse diagram of the configurations

Property 1 (Induced connectivity) Let C be a connective configuration of a topol-
ogy Gρ . Any configuration C̃ such that C ⊆ C̃ is also connective in the topology Gρ .

In the sequel we denote by I (C) the set {C̃ ∈ P | C ⊆ C̃} of all configurations that
include the connective configuration C and we refer to it as the set of the connec-
tive configurations induced by C, or shorter as the induced set of C. An analogous
property can be stated for non-connective configurations.

Property 2 (Induced non-connectivity) Any subset C̃ of a non-connective configu-
ration C is also non-connective.

We denote by Ī (C) the induced set of a non-connective configuration C: Ī (C) =
{C̃ ∈ P | C̃ ⊆ C}. A useful tool for the representation of the above defined induced
sets is the so called Hasse diagram, which shows the lattice obtained by the configu-
rations partially ordered by inclusion (for more details see for instance Stanley 1997).
Figure 2 depicts the Hasse diagram related to the 7-nodes example of Fig. 1. The 16
possible configurations can be divided in connective and non-connective. It is easy
to verify that in our example configuration C = {1,3} is connective. Its induced set
I (C) = {{1,3}, {1,2,3}, {1,3,4}, {1,2,3,4}} contains the configurations that can be
reached following the paths in the lattice outgoing from {1,3}.

Due to the density of the relations in the Hasse diagram, it is to be expected that
an induced set might cover a very large number of configurations. However the sum
of the probabilities of the configurations contained in an induced set can be easily
calculated without an explicit enumeration.

For any connective configuration C we denote by Q(C) the sum of the probabil-
ities of the configurations contained in the induced set I (C). In an analogous way
we refer to Q̄(C) as the sum of the probabilities of the configurations induced by a
non-connective configuration C.
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Property 3 For any connective configuration C of a topology Gρ it holds

Q(C) =
∏

i∈C

qi. (5)

Proof Since the induced set I (C) of a connective configuration C contains all con-
figurations having C as a subset, Q(C) is equal to the probability that at least all
nodes i ∈ C are available, which is

∏
i∈C qi . �

Property 4 For any non-connective configuration C of a topology Gρ it holds

Q̄(C) =
∏

i /∈C

(1 − qi). (6)

Proof The induced set Ī (C) of a non-connective configuration C contains all the
subsets of C. Consequently, Q̄(C) is equal to the probability that at most the nodes
i ∈ C are working, or equivalently that at least the nodes i /∈ C are affected by failure,
which is

∏
i /∈C(1 − qi). �

Properties 3 and 4 suggest that the reliability of a network topology Gρ might
be obtained by expressing the set of the connective configurations Cρ as a union of
induced sets I (C), or similarly by expressing the complementary set P \Cρ as a union
of non-connective induced sets Ī (C). Following this idea a new problem turns out to
be crucial: identifying a minimum number of configurations, such that the union of
their induced sets cover the whole set Cρ , or respectively P \Cρ in the non-connective
case.

Definition 3 We refer to B ∈ Cρ as a minimal connective configuration, if no proper
subset of B is connective in the topology Gρ . Similarly, B ∈ P \Cρ is a maximal non-
connective configuration, if any configuration strictly including B is connective. In
the sequel we denote by B the set of minimal connective configurations, respectively
by B̄ the set of maximal non-connective configurations. In general in the remainder
of the paper we will refer to minimal connective configurations or to maximal non-
connective configurations also as basis configurations.

It is simple to verify that in the case of the topology depicted in Fig. 1 we have
B = {{1,3}, {1,4}, {2,4}} and B̄ = {{1,2}, {2,3}, {3,4}}. According to Definition 3,
set B contains all connective configurations which can not be further reduced without
loosing connectivity. This means that any configuration C ∈ Cρ includes at least one
basis configuration. It follows immediately that the whole set Cρ can be generated via
induction from the minimal connective configurations, that is

⋃

B∈B
I (B) = Cρ (7)

and in the same way we obtain for the non-connective counterpart
⋃

B∈B̄

Ī (B) = P \Cρ. (8)
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In some sense we can say that basis configurations implicitly contain all connectivity
information of the topology Gρ .

In order to calculate the reliability by means of the covering properties (7) or (8)
it is necessary to take into account the overlapping of the induced sets. We overcome
this hurdle by the well-known inclusion-exclusion principle of combinatorial theory
(see for example Stanley 1997), which enables to calculate the cardinality of the
union of several sets or similarly the probability of the union of several events. Given
a collection {A1, . . . ,At } of probabilistic events, the probability of the union

⋃t
i=1 Ai

can be expressed as

prob

(
t⋃

i=1

Ai

)
=

∑

1≤i1≤t

prob(Ai1) −
∑

1≤i1<i2≤t

prob(Ai1 ∩ Ai2) + · · ·

+ (−1)t+1
∑

1≤i1<···<it≤t

prob(Ai1 ∩ · · · ∩ Ait ). (9)

Equation (9) can be adapted to the reliability calculation either through property (7)
of the connective configurations or through property (8) of the non-connective con-
figurations. For simplicity, we first present the connective case and then the non-
connective variant.

Let be B = {B1, . . . ,Bt } the set of all minimal connective configurations of a given
network G. By the covering property (7), the reliability rel(Gρ) can be formulated as

rel(Gρ) =
∑

C∈⋃t
i=1 I (Bi)

q(C), (10)

which can be interpreted as the probability of the union of the induced sets. Applying
the inclusion-exclusion formula (9) the reliability rel(Gρ) becomes

rel(Gρ) =
∑

1≤i1≤t

( ∑

C∈I (Bi1 )

q(C)

)
−

∑

1≤i1<i2≤t

( ∑

C∈I (Bi1 )∩I (Bi2 )

q(C)

)
+ · · ·

+ (−1)t+1
∑

1≤i1<···<it≤t

( ∑

C∈I (Bi1 )∩···∩I (Bit )

q(C)

)
. (11)

In order to simplify equation (11) we need to prove a useful property of the intersec-
tion of induced sets.

Lemma 1 Let be {C1, . . . ,Ck} a collection of connective configurations. The follow-
ing property holds

k⋂

i=1

I (Ci) = I

(
k⋃

i=1

Ci

)
. (12)

Proof C ∈ ⋂k
i=1 I (Ci) ⇔ ∀i = 1, . . . , k : Ci ⊆ C ⇔ ⋃k

i=1 Ci ⊆ C ⇔ C ∈
I (

⋃k
i=1 Ci). �
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As a direct consequence we obtain for the probability of the intersection of induced
sets that

∑

C∈⋂k
i=1 I (Ci)

q(C) =
∑

C∈I (
⋃k

i=1 Ci)

q(C) = Q

(
k⋃

i=1

Ci

)
, (13)

which can be easily evaluated by means of Property 3. The reliability formula (11)
can now be rewritten in its final form

rel(Gρ) =
∑

1≤i1≤t

Q(Bi1) −
∑

1≤i1<i2≤t

Q(Bi1 ∪ Bi2) + · · ·

+ (−1)t+1
∑

1≤i1<···<it≤t

Q(Bi1 ∪ · · · ∪ Bit ). (14)

Applying (14) to the example shown in Fig. 1 we obtain as expected rel(Gρ) =
3 · 0.92 − (2 · 0.93 + 0.94) + 0.94 = 0.972.

An analogous reliability formula can be derived outgoing from the maximal non-
connective configurations. Let be B̄ = {B1, . . . ,Bt̄ } the set of the maximal non-
connective configurations according to Definition 3. The reliability rel(Gρ) can also
be calculated as

rel(Gρ) = 1 −
∑

C∈⋃t̄
i=1 Ī (Bi )

q(C). (15)

It is not surprising that also Lemma 1 has a symmetric counterpart in the non-
connective case:

Lemma 2 Let be {C1, . . . ,Ck} a collection of non-connective configurations. The
following equation holds

k⋂

i=1

Ī (Ci) = Ī

(
k⋂

i=1

Ci

)
. (16)

Lemma 2 can be proved in a very similar way to Lemma 1. It follows that

∑

C∈⋂k
i=1 Ī (Ci )

q(C) =
∑

C∈Ī (
⋂k

i=1 Ci)

q(C) = Q̄

(
k⋂

i=1

Ci

)
. (17)

Therefore we obtain the non-connective variant of the reliability formula (14)

rel(Gρ) = 1 −
( ∑

1≤i1≤t̄

Q̄(Bi1) −
∑

1≤i1<i2≤t̄

Q̄(Bi1 ∩ Bi2) + · · ·

+ (−1)t̄+1
∑

1≤i1<···<it̄≤t̄

Q̄(Bi1 ∩ · · · ∩ Bit̄ )

)
. (18)
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The reliability of the previous example can now be calculated according to equa-
tion (18) by means of the maximal non-connective configurations: rel(Gρ) = 1 −
(3 · 0.12 − (2 · 0.13 + 0.14) + 0.14) = 0.972.

3.3 BASIS: an algorithm for the reliability computation

The main interest of the reliability formulas (14) and (18) lies in the fact that they
can be used to develop an efficient algorithm for the reliability computation of a net-
work. Essentially, the reliability algorithm (BASIS) we propose performs a sequential
search of the basis configurations in the Hasse diagram. The search direction will be
upwards in the Hasse diagram for connective configurations and downwards for non-
connective configurations. Let consider the connective case first.

We enumerate the elements of the set of the configurations P by building a se-
quence {Cl}l∈{1,...,2n−|R|−1} in such a way that |Cl | ≤ |Cl+1| ∀l ∈ {1, . . . ,2n−|R|−1 − 1}.
In other terms the configurations are ordered by a non-decreasing number of available
nodes, which means that the Hasse diagram is visited row by row from the bottom to
the top.

Starting from the lowest scenarios in the diagram each configuration is tested
on connectivity. As soon as a connective configuration Cl is detected, the algo-
rithm checks whether Cl includes any of the already identified basis configurations
B1, . . . ,Bk . If this is not the case, it means that Cl is a new basis configuration and
therefore the current set of basis configurations B = {B1, . . . ,Bk} is updated with
Bk+1 := Cl .

It has to be remarked that BASIS performs the reliability calculation in a dynam-
ical way. In other terms, if the current basis set B contains k configurations, the re-
liability formula (14) is evaluated by setting t := k. Since the induced sets of the k

available basis configurations cover only a subset of Cρ , it is clear that this evaluation
provides a lower bound of the reliability rel(Gρ). Formally, for any k ∈ {1, . . . , t} we
can define an estimate of the reliability

LBk =
∑

1≤i1≤k

Q(Bi1) −
∑

1≤i1<i2≤k

Q(Bi1 ∪ Bi2) + · · ·

+ (−1)k+1
∑

1≤i1<···<ik≤k

Q(Bi1 ∪ · · · ∪ Bik ). (19)

Proposition 1 For any k ∈ {1, . . . , t} the estimate LBk is a lower bound of the relia-
bility rel(Gρ).

Proof

LBk =
∑

C∈⋃k
i=1 I (Bi)

q(C) ≤
∑

C∈⋃t
i=1 I (Bi)

q(C) = rel(Gρ). (20)

�

As soon as a new basis configuration Bk+1 is detected, the current lower bound
LBk is updated to LBk+1 by adding to each sum of (19) the terms that involve the new
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basis configuration Bk+1. It is easy to see that for any k ∈ {1, . . . , t − 1} it holds

LBk < LBk+1 (21)

since
∑

C∈⋃k
i=1 I (Bi)

q(C) <
∑

C∈⋃k+1
i=1 I (Bi)

q(C). (22)

In other words, the lower bounds LBk form an increasing sequence. Moreover usually
good estimates of the exact reliability rel(Gρ) can be obtained already in an early
phase of the sequential search. A simple explanation of this effect is that the induced
sets of the first basis configurations cover a large portion of the set Cρ , while the
contribution of the subsequent basis configurations becomes more and more marginal
because of the overlapping with the previous sets.

As it can be expected from the symmetry of the model, an analogous decreasing
sequence of upper bounds UBk̄ is obtained through a search of the maximal non-
connective configurations in the Hasse diagram. Let be B̄ = {B1, . . . ,Bt̄ } the set of
the maximal non-connective configurations. For any k̄ ∈ {1, . . . , t̄} we define

UBk̄ = 1 −
( ∑

1≤i1≤k̄

Q̄(Bi1) −
∑

1≤i1<i2≤k̄

Q̄(Bi1 ∩ Bi2) + · · ·

+ (−1)k̄+1
∑

1≤i1<···<ik̄≤k̄

Q̄(Bi1 ∩ · · · ∩ Bik̄
)

)
. (23)

Proposition 2 UBk̄ is an upper bound of the reliability rel(Gρ) for any k̄ ∈ {1, . . . , t̄}.

Proof

UBk̄ = 1 −
∑

C∈⋃k̄
i=1 Ī (Bi )

q(C) ≥ 1 −
∑

C∈⋃t̄
i=1 Ī (Bi )

q(C) = rel(Gρ). (24)

�

In addition, it is simple to prove that the sequence of upper bounds UBk̄ is de-
creasing. Summarizing, in algorithm BASIS the reliability calculation is carried out
by improving simultaneously the lower bound LBk and the upper bound UBk̄ . In
order to generate a bidirectional search in the Hasse diagram, to any configuration
C ∈ {Cl}l∈{1,...,2n−|R|−1} we associate its complementary configuration

C̄ = V \ {C \ {s ∪ R}}. (25)

The configurations C and C̄ are complementary in the sense that the not working
nodes of configuration C are available in configuration C̄ and, conversely, the not
working nodes of configuration C̄ are available in C. Therefore it is not difficult to
see that in the complementary sequence {C̄l}l∈{1,...,2n−|R|−1} the number of available
nodes is non-increasing. In other words, as the sequence {Cl}l∈{1,...,2n−|R|−1} defines
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the upwards exploration of the Hasse diagram required for the lower bound, its com-
plementary sequence {C̄l}l∈{1,...,2n−|R|−1} defines the downwards exploration needed
for the upper bound. Algorithm BASIS can now be described formally:

Step 0. Initialization
Set l := 1, k := 0, k̄ := 0, B = ∅ , B̄ = ∅, LBk = 0 and UBk̄ = 1.

Step 1. Check configuration Cl

If Cl is connective and ∀B ∈ B it holds B � Cl , Cl is a new minimal connective
configuration. In this case set k := k + 1, B := B ∪ {Cl} and go to Step 2. Otherwise
go to Step 3.

Step 2. Lower bound
Calculate LBk by adding to LBk−1 the terms involving the new basis Cl (according
to formula (19)). Go to Step 3.

Step 3. Check the complementary configuration C̄l

If C̄l is non-connective and ∀B ∈ B̄ it holds C̄l � B , then C̄l is a new maximal non-
connective configuration. In this case set k̄ := k̄ + 1, B̄ := B̄ ∪{C̄l} and go to Step 4.
Otherwise go to Step 5.

Step 4. Upper bound
Calculate UBk̄ by adding to UBk̄−1 the terms involving the new basis C̄l (according
to formula (23)). Go to Step 5.

Step 5. Exit criterion
If UBk̄ −LBk = 0, the exact reliability has been found. Stop. Otherwise set l := l +1
and go to Step 1.

It is important to remark that the proposed algorithm BASIS always terminates,
providing the exact reliability rel(Gρ). In fact, as soon as all connective and non-
connective basis configurations are identified, by (14) and (19), respectively (18) and
(23) it follows

LBt = UBt̄ = rel(Gρ). (26)

On the other hand, if the search procedure is terminated before its natural end, algo-
rithm BASIS provides useful lower and upper approximations of the exact reliability.

3.4 Performance of the algorithm BASIS

In order to test the efficiency of the reliability calculation via algorithm BASIS, we
generated a set of random networks Gρ with up to 100 nodes and we computed
their exact reliability values rel(Gρ) using both, the basis approach and the naive
sequential approach discussed in Sect. 3.2. The computational experiments have been
carried out on a computer equipped with a Pentium M (1.5 GHz) processor with
512 MB of memory.

The results obtained are reported in Table 1, which is organized as follows. The
first 3 columns contain the parameters of the multicast networks: the number of nodes
n, the number of destination nodes |R| and the exact reliability value rel(Gρ). Col-
umn 4 reports the percentage of the configurations explicitly processed during the
execution of algorithm BASIS. Finally, in the last two columns the computational
times obtained with the two methods considered are compared.
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Table 1 Performance of BASIS
compared with the sequential
search

n |R| rel(Gρ) BASIS SEQ

Conf (%) Seconds Seconds

30 10 0.8533 0.40 0.01 3.19

30 10 0.9987 0.07 0.01 3.60

30 5 0.8984 0.21 0.17 94.63

30 5 0.9957 4e-03 0.01 104.55

40 20 0.7940 0.38 0.03 3.26

40 20 0.9861 0.07 0.01 5.01

50 25 0.6943 0.03 0.07 112.34

50 25 0.7631 0.04 0.05 120.00

70 40 0.9251 6e-03 0.58 –

70 40 0.9941 4e-03 0.51 –

100 50 0.9652 4e-08 7.95 –

100 50 0.9984 1e-08 3.27 –

The results clearly confirm that the approach with basis configurations is much
faster than the sequential approach and that it is able to handle networks with up to
100 nodes. In particular, the percentage of required configurations is extremely low.
This is due to the fact that the quality of the reliability estimates improves rapidly as
soon as the first basis configurations are identified. Consequently, the bidirectional
search in the Hasse diagram is usually able to derive the exact reliability by involving
only a very low number of configurations.

As a consequence of the considerable speed up obtained in the reliability calcu-
lation, the question arises, whether the performance of the exact algorithm for the
PMPM problem presented in Barta et al. (2011) could be significantly improved by
plugging in the procedure BASIS. Preliminary tests clearly showed that the speed
up obtained on the exact approach is marginal. The main reason for this fact is that
the exact algorithm proposed in Barta et al. (2011) is based on an iterative row and
column generation procedure, which requires the solution of a long sequence of in-
teger programs. It could be observed that most of the computational time is needed
for the solution of the large number of integer programs, which vanishes the benefit
of a fast method for the reliability calculation. On the other hand, as it will appear in
Sect. 5, the procedure BASIS turns out to be very useful when plugged in a heuristic
algorithm not based on the solution of integer programs.

4 A heuristic algorithm for the PMPM problem

4.1 Idea of the algorithm

By means of the fast reliability procedure BASIS described in the previous section
it is possible to develop a heuristic algorithm that explores the search space of the
network topologies Gρ and detects feasible solutions for the PMPM problem with a
possibly low cost in terms of transmission power.
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In this section we present a heuristic algorithm based on the simple idea that the
reliability value of a given topology Gρ = (V ,Aρ) can be increased by adding some
new arcs to the set Aρ , i.e. by increasing the transmission range of given nodes. In
an analogous way the reliability decreases, when certain arcs are dropped from the
solution.

Essentially, the algorithm we propose consists of two main phases. In the first
phase, starting from an infeasible solution, a feasible topology is built by adding
new paths that connect the source with one of the destination nodes. We remark that
this first phase could alternatively be implemented using an arc insertion strategy
instead of path insertion. However, since the connectivity of a configuration depends
on the existence of connecting paths, it is reasonable to expect that new paths must be
added to a topology Gρ in order to modify its basis configurations and consequently
increase its reliability. In our preliminary tests we could observe that the insertion of
a single arc often does not affect the connectivity properties of a topology. Therefore,
many attempts of arc insertion are needed to achieve a real reliability increase, which
turns out to be very time consuming. The adopted choice strategy of the paths to be
inserted is essentially random and will be discussed in detail in Sect. 4.2. Once a
feasible solution is obtained, the current optimum is updated, if the new topology has
a lower objective value.

The second phase of the algorithm consists in the elimination of one or more
random arcs from the current topology, in order to reobtain an infeasible solution. It
is interesting to remark that in this elimination phase it suffices to delete few arcs,
because the reliability value of the solution generated in the first phase is usually
little above the threshold α. For this reason in the second phase we implemented the
elimination of single random arcs.

Summarizing, the algorithm, that in the remainder of the paper will be called
ADDPATH, alternates iteratively the two phases of path insertion and arc elimina-
tion, generating a sequence of feasible topologies and thus of upper bounds to the
PMPM problem.

4.2 Detailed description

In this section we describe formally the structure of the heuristic ADDPATH and we
provide a pseudocode of the algorithm.

4.2.1 Path generation and initial solution

Before starting the iterated local search, it is necessary to create a pool of paths with
a low cost in terms of required transmission power, which connect the source with
one of the destination nodes.

The procedure that we implemented is based on a downwards exploration of the
Hasse diagram of the configurations. For each configuration C encountered during
the exploration the algorithm calculates the shortest paths between the source and all
destinations d ∈ R in the active topology G(C) = (V ,A(C)), where A(C) = {(i, j) ∈
A|i ∈ C}. It is easy to see that the top configuration of the Hasse diagram provides
the shortest paths for all destinations d ∈ R and that lower configurations generate
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suboptimal paths, since certain nodes are assumed to be unavailable. The procedure
is terminated when a requested number MAXPATHS of paths is reached or when a
full exploration of the Hasse diagram is completed.

A straight-forward way to generate a suitable initial solution is to overlap the short-
est paths obtained on the first configuration C0 = V and to add further arcs that are
covered according to the WMA property. The obtained topology G0 = (V ,A0) is ad-
equate as initial solution, because it is usually low-cost in terms of power assignment
and has, at the same time, a reliability value greater than zero.

4.2.2 Path insertion phase

The aim of the path insertion phase is to generate a feasible topology by addition of
new paths selected from the pool. The choice of the path h to be inserted is carried
out in the following way: the destination node d of the path is chosen randomly from
the set R. Then each path h in the pool between the source s and the destination node
d is assigned a weight

wh = 1∑
(i,j)∈h pij

(27)

where the denominator contains the transmission power required by path h. Then,
a Monte Carlo mechanism based on these weights is used to select a path. In general,
the shortest paths will be preferred, however longer paths will also be considered for
selection (with a lower probability). This mechanism gives the method the opportu-
nity to explore different paths in a guided random fashion.

Once a path h is identified, the algorithm first checks that h is not already con-
tained in the current topology. It is useful to remark that not only the arcs strictly
belonging to the path h are added to the set of arcs Aρ , but all the arcs covered via
WMA property, that is the set of arcs

A(h) = {(i, k) ∈ A | i ∈ h ∧ ∃j ∈ h : pik ≤ pij }. (28)

The path insertion procedure is repeated until the algorithm BASIS detects that
rel(Gρ) ≥ α.

4.2.3 Arc retracting

Sometimes it is possible to reduce the cost of the feasible solution Gρ obtained via
path insertion without loosing the feasibility. For this purpose we added a so-called
arc retracting procedure to the path insertion phase, which first identifies for each
node i ∈ V a longest arc (i, jmax) ∈ Aρ outgoing from node i, such that

pijmax ≥ pij , ∀j ∈ V and (i, j) ∈ Aρ. (29)

Then it checks for each node i, whether the removal of the longest arc (i, jmax) affects
the feasibility of the solution Gρ or not. If the topology remains feasible (in terms of
reliability) the arc is deleted from Aρ and the new longest arc outgoing from node i



Wireless multicasting under probabilistic node failures 721

is examined. The retracting procedure is terminated when no more longest arc can be
removed from the set Aρ without loosing the feasibility of the topology Gρ .

It is interesting to remark that the information gained from the algorithm BASIS
about the basis configurations of the current topology, turns out to be very useful in
order to speed up the retracting phase. Indeed, as explained in Sect. 3.2, the reliability
rel(Gρ) depends only on the source-destination paths induced by the basis configu-
rations. Therefore an arc (i, j) ∈ Aρ not belonging to the topology activated by any
of the basis configurations, can be regarded as irrelevant in the reliability calculation.
In other words a longest arc (i, jmax) can be removed without affecting the reliability
value rel(Gρ), if the nodes i and jmax do not belong simultaneously to any of the
basis configurations. This test can be easily carried out, once the basis configurations
are known.

4.2.4 Arc elimination phase

In the case that the feasible topology provided by the retracting phase does not im-
prove the current best solution, the algorithm starts an arc elimination procedure.
Substantially, the topology Gρ is reduced by removing randomly chosen longest arcs,
until the reliability value rel(Gρ) sinks under the threshold α. This reduced topology
will be used as an initial solution in the next iteration. In this way the heuristic AD-
DPATH generates a “random walk” in the search space of the PMPM problem.

In order to avoid long unsuccessful random walks, the algorithm controls that
the maximum length of an exploration does not exceed a given value (denoted by
MAXEXP in the following pseudocode). A new exploration starts either when a new
best solution has been found, or when the length of the current exploration reaches the
allowed maximum. The heuristic ADDPATH terminates providing the best feasible
topology, when the allowed computational time is reached.

4.2.5 Pseudocode of algorithm ADDPATH

The algorithm ADDPATH can now be formalized in the following pseudocode:

Step 0. Path generation and initial solution
Generate the pool of connecting paths and an initial solution Gρ = (V ,Aρ) (accord-
ing to Sect. 4.2.1). Set Nexp := 0, Niter := 1 and c∗ := +∞.
If rel(Gρ) < α go to Step 1, otherwise set i := 0 and go to Step 2.

Step 1. Path insertion
Choose a random path h from the pool (see Sect. 4.2.2).
Add the arcs covered by the path h to the topology Gρ , that is set Aρ′ := Aρ ∪A(h),
Gρ′ := (V ,Aρ′) and ρ := ρ′.
If rel(Gρ) < α repeat Step 1. Otherwise a feasible topology has been found: set
i := 0 and go to Step 2.

Step 2. Arc retract
Let be (i, jmax) the longest arc in the topology Gρ outgoing from node i.
Set Aρ′ := Aρ \ {(i, jmax)}, Gρ′ := (V ,Aρ′) (see Sect. 4.2.3).
If rel(Gρ′) ≥ α, update ρ := ρ′. Otherwise set i := i + 1.
If i < n repeat Step 2. Otherwise go to Step 3.
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Step 3. Update and exit
If c(Gρ) < c∗, update Gρ∗ := Gρ , c∗ := c(Gρ) and reset Nexp := 0. Otherwise set
Nexp := Nexp + 1.
If Nexp == MAXEXP, set Gρ := Gρ∗ and Nexp := 0.
Stop, if Niter == MAXITER. Otherwise go to Step 4.

Step 4. Arc elimination
Delete a random longest arc (i, jmax) ∈ Aρ (as described in Sect. 4.2.4).
Set Aρ′ := Aρ \ {(i, j)}, Gρ′ := (V ,Aρ′) and ρ := ρ′.
If rel(Gρ) ≥ α, repeat Step 4. Otherwise Gρ is infeasible: set Niter := Niter + 1 and
go to Step 1.

5 Computational results

All the algorithms described in this paper have been encoded in ANSI C. Ilog
Cplex 12.2 (http://www.ilog.com/products/cplex) has been used in the exact algo-
rithm IRCG (see Barta et al. 2011), in order to obtain optimal solutions for a compar-
ison with our heuristic upper bounds.

All the tests reported in this section have been carried out on a computer equipped
with an Intel Core i7 2.67 GHz processor and 3 GB of memory.

5.1 Description of the test problems

The computational tests have been carried out on a new benchmark problem set of
random Euclidean instances with a size between 10 and 100 nodes. A multicast prob-
lem can be characterized by the following parameters:

• n: number of nodes in the network;
• |R|: number of destination nodes, i.e. devices that have to receive the messages

originated at the source node s;
• α: reliability level required for the multicast structure;
• qmin: minimum value of the probabilities associated with the devices: qi ≥ qmin

∀i ∈ V \{s ∪ R};
• qmax: maximum value of the probabilities associated with devices: qi ≤ qmax

∀i ∈ V \{s ∪ R};
The coordinates of the nodes are chosen at random on a 100×100 square grid. Power
pij required to send from node i to node j is obtained according to the relation
pij = (dij )

γ , where dij is the Euclidean distance between nodes i and j and the
coefficient γ —which models path loss in the signal propagation model—is set to 2.

5.2 Detailed results

For each problem considered, ten random instances have been generated. Table
reftabhe1 and Table 3 report the results obtained by running algorithm ADDPATH on
them with a maximum number of 2000, respectively 3000 iterations. Table 4 shows
the results obtained on the same instances with a modified version of the algorithm,

http://www.ilog.com/products/cplex
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Table 2 Performance of the algorithm ADDPATH, 2000 Iterations

n |R| α Gap (%) Iterations #BASIS Seconds

Avg StDev Avg StDev Avg Avg StDev

10 3 0.9 0.00 0.00 22 53 15876 0.22 0.06

15 5 0.9 0.00 0.00 83 93 25115 1.44 0.68

20 10 0.9 0.12 0.39 481 518 37632 3.03 2.01

25 20 0.9 5.72 4.75 823 474 64648 1.21 0.41

30 20 0.9 – – 918 676 62120 4.14 3.88

35 20 0.9 – – 715 659 68770 43.17 43.10

40 20 0.9 – – 1073 605 72758 198.33 135.82

50 30 0.9 – – 1481 437 98682 267.32 183.04

100 80 0.9 – – 1173 618 216007 469.01 346.60

Table 3 Performance of the algorithm ADDPATH, 3000 Iterations

n |R| α Gap (%) Iterations #BASIS Seconds

Avg StDev Avg StDev Avg Avg StDev

10 3 0.9 0.00 0.00 22 53 22786 0.24 0.08

15 5 0.9 0.00 0.00 77 94 37737 2.28 1.31

20 10 0.9 0.11 0.36 548 582 56365 5.11 3.43

25 20 0.9 5.37 4.62 1120 929 97685 1.76 0.59

30 20 0.9 – – 1143 719 93129 6.64 6.89

35 20 0.9 – – 920 645 103806 70.71 65.97

40 20 0.9 – – 1190 669 108803 297.58 202.18

50 30 0.9 – – 1748 721 147171 404.88 276.20

100 80 0.9 – – 2354 630 323363 699.97 519.57

which performs 3 runs of 1000 iterations and restarts each time from a new random
initial solution. Table 5 and Table 6 highlight the behaviour of the algorithm when the
number of destination nodes |R|, respectively the reliability threshold α are varied.
Finally, Table 7 compares the running times of the heuristic algorithm ADDPATH
and of the exact algorithm IRCG.

The tables are organized as follows. The first three columns are devoted to the
problem parameters n, |R| and α (see Sect. 5.1). We remark that in our tests the
parameters qmin and qmax are fixed to the values 0.85 and 0.95, respectively. In the
following columns averages and standard deviations of four crucial indicators are
reported. The first indicator is the percentage gap between the heuristic upper bound
and the optimal solution, where the optimal solution has been computed with the
exact algorithm IRCG described in Barta et al. (2011). As already mentioned, the
exact algorithm is not able to solve in reasonable times instances with more than 25
nodes and the lower bounds generated are also very weak. For this reason we reported
only the gaps for n ≤ 25.
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Table 4 Performance of the multistart variant, 3 × 1000 Iterations

n |R| α Gap (%) Iterations #BASIS Seconds

Avg StDev Avg StDev Avg Avg StDev

10 3 0.9 0.00 0.00 22 53 22774 0.21 0.09

15 5 0.9 0.00 0.00 75 94 37753 2.37 1.40

20 10 0.9 0.55 1.35 365 380 56447 5.16 3.66

25 20 0.9 5.35 4.95 1027 729 97523 1.76 0.55

30 20 0.9 – – 1339 960 93522 6.62 7.09

35 20 0.9 – – 1134 761 103806 69.91 69.12

40 20 0.9 – – 964 496 108792 299.78 194.10

50 30 0.9 – – 1512 896 148047 408.88 276.80

100 80 0.9 – – 1759 1089 324076 691.72 497.98

Table 5 Performance of ADDPATH, number of destinations |R| varied (2000 iterations)

n |R| α Gap (%) Iterations #BASIS Seconds

Avg StDev Avg StDev Avg Avg StDev

20 5 0.9 – – 182 160 28974 22.88 16.28

20 10 0.9 0.12 0.39 481 518 37632 3.03 2.01

20 12 0.9 0.73 1.18 1025 808 38451 1.04 0.54

20 15 0.9 3.29 3.11 1059 567 50060 0.60 0.08

20 17 0.9 4.05 3.69 784 538 56946 0.65 0.10

The indicator Iterations corresponds to the number of iterations needed to obtain
the best upper bound, the indicator #BASIS indicates the total number of calls of the
procedure BASIS for the calculation of the reliability during the execution of the
heuristic algorithm ADDPATH and, finally, the columns Seconds report the averages
and the standard deviations of the CPU-times required by the algorithm.

Tables 2 and 3 confirm that the proposed heuristic generates good quality solu-
tions. In fact the average gap observed never exceeds 6% and it tends to decrease
when the maximum number of iterations is increased. However, comparing the gaps
of Table 2 and Table 3, it can be remarked that the improvement of the gaps is moder-
ate (or in some cases inexistent). This phenomenon can be explained by the fact that
usually the substantial improvements of the upper bounds occur in an early phase
of the heuristic search procedure. Furthermore each run of the algorithm ADDPATH
generates a new sequence of solutions. Therefore in some cases a run over 2000 iter-
ations might give a better result than a run over 3000 iterations. Also the high values
of the indicator Iterations confirm that the upper bounds might improve if the running
time is increased.

In the column #BASIS it is worth to observe that the growth of the number of runs
of the procedure BASIS is roughly proportional to the size of the problem. This result
is achieved by avoiding systematically any unnecessary reliability calculation and it
allows a substantial speed up of the whole algorithm.
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Table 6 Performance of ADDPATH, reliability threshold α varied (2000 iterations)

n |R| α Gap (%) Iterations #BASIS Seconds

Avg StDev Avg StDev Avg Avg StDev

20 10 0.70 1.37 2.13 468 482 34841 3.12 1.49

20 10 0.80 0.99 2.22 859 689 35231 3.24 1.85

20 10 0.85 0.00 0.00 376 446 35718 3.43 1.87

20 10 0.90 0.12 0.39 481 518 37632 3.03 2.01

20 10 0.92 0.00 0.00 241 302 38866 3.41 2.21

Table 7 CPU-times, Exact
algorithm IRCG, ADDPATH
(2000 Iterations)

n |R| α IRCG ADDPATH

Avg StDev Avg StDev

10 3 0.9 0.34 0.31 0.22 0.06

15 5 0.9 49.53 66.77 1.44 0.68

20 10 0.8 107.48 122.29 3.24 1.85

20 10 0.9 136.40 155.45 3.03 2.01

20 10 0.92 137.70 202.81 3.41 2.21

25 20 0.9 174.44 149.32 1.21 0.41

The reported running times show that the algorithm is very fast for problems with
up to 30 nodes and that it requires in average less than 15 minutes to solve problems
with up to 100 nodes. Comparing the running times reported in Table 2 and in Table 3,
it is clear that in average they are proportional to the allowed number of iterations. As
shown in Table 5, it is interesting to remark that the running times mainly depend on
the difference n − |R|, because the total number of node configurations is 2n−|R|−1.
For this reason problems with few destination nodes tend to be more difficult for both,
the heuristic algorithm ADDPATH and the exact algorithm IRCG. For instance, the
missing entry of the gap in Table 5 means that the exact algorithm could not provide
the optimal values of this problem.

The results of Table 6 suggest that the performance of the heuristic algorithm
ADDPATH is not directly affected by the required reliability level α. This can be ex-
plained by the fact that usually the adopted path insertion strategy is able to quickly
generate a feasible solution. On the other hand the running times of the exact algo-
rithm IRCG clearly depend on the reliability threshold α: high values of α require
the solution of many integer programs, which is extremely time consuming. This ef-
fect can be observed in Table 7 when comparing the running times of the 3 problems
with the size n = 20. In addition Table 7 clearly shows that the heuristic algorithm
ADDPATH is much faster than the exact algorithm IRCG based on integer programs.
The results reported in Table 4 show that in average the multistart strategy does not
produce a relevant improvement in the quality of the solutions. However, on critical
instances a multistart approach might be convenient, because each new run of the
algorithm can generate a different sequence of solutions.
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6 Concluding remarks

A heuristic approach to the probabilistic minimum power multicast problem has been
presented in this paper. The algorithm proposed is based on an iterative path insertion
and arc elimination procedure, as well as on a fast method for the reliability calcu-
lation that exploits some theoretical properties of the model. Experimental results
confirm that the heuristic algorithm presented can handle medium to large instances
of the PMPM problem providing good quality solutions.
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