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Hund’s Rule and Metallic Ferromagnetism
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We study tight-binding models of itinerant electrons in two different bands,
with effective on-site interactions expressing Coulomb repulsion and Hund’s
rule. We prove that, for sufficiently large on-site exchange anisotropy, all ground
states show metallic ferromagnetism: They exhibit a macroscopic magnetiza-
tion, a macroscopic fraction of the electrons is spatially delocalized, and there
is no energy gap for kinetic excitations.
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1. INTRODUCTION

Ferromagnetism is known to originate from strongly correlated states of
quantum mechanical electrons with a very large total spin but small total
energy. Microscopic mechanisms giving rise to a coexistence of metallic
behavior with ferromagnetic ordering at sufficiently low temperatures have
been proposed, but are not well understood, mathematically, yet. Ferro-
magnetism in conjunction with a positive electric conductivity (metallic
behavior) is a collective phenomenon arising from a competition of spatial
motion (hopping) of quantum mechanical charged particles with half-inte-
ger spin obeying Pauli’s exclusion principle, i.e., of electrons, in a periodic
background with Coulomb repulsion between pairs of such particles. A
mathematically precise description of this phenomenon is difficult because
there are two kinds of gapless excitations: electron–hole pairs very close to
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the Fermi surface, and spin waves in ferromagnetically ordered spin con-
figurations. In a perturbative analysis of states of very low total energy,
there are therefore two sources of infrared divergences, or of “small energy
denominators”, namely electron–hole excitations with an energy arbitrarily
close to the groundstate energy, and spin waves, or magnons, of very long
wave length.

In this paper, we study some tight-binding models of metallic com-
pounds with two bands partly filled with electrons. In a ground state, the
low-lying band is at most half-filled, due to strong on-site Coulomb repul-
sion between pairs of electrons in a spin-singlet state, while the higher-
lying band is assumed to be weakly filled, so that a Fermi surface is
expected. It is assumed that an electron from the low-lying band and an
electron from the higher-lying band occupying the same site of the under-
lying lattice obey Hund’s rule, i.e., their interaction energy is minimized
if they form a spin-triplet state. A two-electron spin-triplet state is sym-
metric under exchange of the two spins. The Pauli principle then requires
the microscopic orbital wave function of the two electrons to be anti-
symmetric under exchange of their positions, which makes the Coulomb
repulsion between the two electrons small. (Concretely, an antisymmetric
microscopic wave function for two electrons moving in the field of an ion
may be constructed as a Slater determinant of, e.g., two different d-shell
orbitals.) It may be of interest to remark that a mathematically rigorous
derivation of Hund’s rule in atomic physics from first principles has not
been found, yet. That it is assumed to hold in our models must there-
fore be considered to be a reasonable, but heuristic ansatz. In order to
eliminate small energy denominators due to spin waves of very long wave-
length, we choose the couplings between the spins of an electron from the
lower band and of an electron from the higher band occupying the same
site to be anisotropic. Hund’s rule cannot be invoked to justify this feature.
Our results can be expected to hold for isotropic spin–spin couplings, in
accordance with Hund’s rule, too; but we have not been able to rigorously
prove this.

The models studied in this paper are arguably the simplest physically
relevant models in which metallic ferromagnetism can be exhibited.

The feature that magnetic ordering emerges from a cooperation
between electron hopping and local, on-site electron–electron interactions
appears to be inherent in several tight-binding models and has been stud-
ied intensely. Antiferromagnetic ordering, for example, can be seen to
emerge in the half-filled (single-band) Hubbard model in second-order
perturbation theory in t/U , where t measures the strength of hopping
and U the strength of on-site Coulomb repulsion. This was discovered
by Anderson;(1) (for a more precise analysis, see also ref. 6). A model
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simpler than the Hubbard model is the Falicov–Kimball model. There
are many rigorous results about the Falicov–Kimball model starting with
refs. 4 and 11. A fairly systematic perturbative analysis can be found in
ref. 5, and references given there. These and many further results show
how long-range correlations in ground states or low-temperature equilib-
rium states can arise from a cooperation between electron hopping and
on-site interactions. Unfortunately, the perturbative methods in refs. 4, 5
and 11 can only be applied to the analysis of insulators, i.e., of states
where electrons are essentially localized, because, in such situations, there
are no small energy denominators or infrared divergences. The analysis
of long-range correlations in metals calls for different, non-perturbative
methods.

One approach towards understanding simple examples of itinerant
ferromagnetism is based on studying the Hubbard model on very special
lattices that give rise to a macroscopic degeneracy of the ground state
energy of the Hubbard Hamiltonian (i.e., to a “flat band”, or to a nearly
flat band; see refs. 12 and 13. A Hartree–Fock study of the Hubbard
model also provides useful insights.(2,3) More recently, there has been some
interest in studying manganites described by models with several bands.
Numerical studies indicate that there is ferromagnetic ordering at suffi-
ciently low temperatures (see, e.g., refs. 9, 10 and 14), and references given
there. The models studied in this paper are similar to models used to
describe manganites. They have ground states involving macroscopically
large domains of essentially free electrons but with aligned spins. Electrons
are discouraged to leave such a domain, because, in neighboring domains,
the direction of their spin violates Hund’s rule, and this would result in a
state of comparatively large energy. At the technical level, our analysis is
very much based on ref. 7 (see also refs. 8 and 15). The methods devel-
oped in these references enable us to prove lower bounds on the ground
state energy which, when combined with rather simple variational upper
bounds, lead to the conclusion that the boundaries between domains of
electrons of opposite spin have a total length growing much less rapidly
than the total number of sites in the system, and this enables us to exhibit
ferromagnetic ordering in the ground states. The fact that there are only
two preferred spin orientations, ↑ and ↓, is, of course, due to the anisot-
ropy in the on-site spin–spin coupling for two electrons in different bands
occupying the same site. (The analysis of isotropic models would be con-
siderably more difficult.) Within large domains of a fixed preferred spin
orientation, electrons are completely delocalized, so that the ground state
energy is not separated from the energies of excited states by a uniformly
positive energy gap.



976 Fröhlich and Ueltschi

2. SETTING, MODELS, AND SUMMARY OF MAIN RESULTS

We consider a lattice model with electrons in two different bands, indexed
by a =1,2. We let c

†
aσ (x) and caσ (x) denote the creation and annihilation

operators for an electron of band a and spin σ =↑,↓, at site x ∈Z
d . The

state space of the system in a finite domain �⊂Z
d is the Hilbert space

H� =F� ⊗F�, (2.1)

where F� is the usual Fock space for electrons,

F� =
⊕

N �0

P−
[
�2(�)⊗C

2
]⊗N

. (2.2)

Here P− is the projector onto antisymmetric functions. The energy of elec-
trons is partly kinetic and partly due to interactions among themselves.
The kinetic energy is represented by standard hopping terms. Interactions
are of two different kinds. First, Coulomb interactions are approximated
by on-site operators of the Hubbard type. Second, a pair interaction
involving the spins of electrons of different bands reminds of the Hund
rule for the filling of atomic eigenstates. Precisely, we define the “2-band
Hund–Hubbard Hamiltonian” as

HHH
� = −

∑

a=1,2

ta
∑

σ=↑,↓

∑

x,y∈�
|x−y|=1

c
†
aσ (x)caσ (y)+

∑

a=1,2

Ua

∑

x∈�

na↑(x)na↓(x)

+U12

∑

x∈�

n1(x) n2(x)−J
∑

x∈�

S1(x) ·S2(x). (2.3)

The parameters ta control the kinetic energy of electrons of each band and
they are related to the effective mass of electrons. We suppose that t1 >t2
and refer to electrons of band 1 as “light” (they move fast) and electrons
of band 2 as “heavy” (they move slowly). The parameters U1,U2,U12 are
positive and represent the Coulomb interaction energy between two parti-
cles of band 1, two particles of band 2, and one particle of each band,
respectively. The number operators are defined by naσ (x) = c

†
aσ (x)caσ (x)

and na(x) = na↑(x) + na↓(x). Finally, J > 0 measures the strength of the
coupling between the spins; spin operators are given by

S
(j)
a (x)=

∑

σ,σ ′
τ

(j)

σσ ′c
†
aσ (x)caσ ′(x), (2.4)
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where τ (j), j =1,2,3, are the Pauli matrices 1
2

(
0 1
1 0

)
, 1

2

(
0 −i
i 0

)
, 1

2

(
1 0
0 −1

)
. We

will consider a simpler model with anisotropic spin interactions (the third
components of the spins interact more strongly) and with the property
that one of the two bands is nearly flat. The Hamiltonian of this model
is introduced in Eq. (2.9), below. The following discussion applies to gen-
eral Hund–Hubbard models, isotropic and anisotropic ones.

We note that neither the hopping terms alone nor the Hund couplings
alone give rise to global magnetization. Without on-site interactions the
ground state favored by the hopping terms is not magnetic; the kinetic energy
is minimized by a state where half the electrons have spin ↑, and half the elec-
trons have spin ↓. As for the Hund couplings, they are local (on-site) and do
not yield the long-range correlations that are present in a ferromagnetic state.
Ferromagnetism in this model results from a cooperation of the two terms.

This model was numerically studied in ref. 9 for t1 = t2. Ferromagnetic
phases were identified at low temperatures and for some intervals of elec-
tronic densities. The present model with t1 <t2 actually behaves more like
the two-band Hubbard model with Kondo spins of ref. 10; heavy electrons
here play a rôle similar to that of Kondo spins. Ferromagnetic phases were
also numerically observed for this model.

In this paper, we study a phase with spontaneous magnetization. The
total spin operator in a domain �⊂Z

d is denoted M� and is given by

M� =
∑

x∈�

[
S1(x)+S2(x)

]
. (2.5)

The norm of M� is

‖M�‖=
( 3∑

i=1

(M
(i)
� )2

)1/2
, (2.6)

with M
(i)
� the ith component of M�. We expect that the system displays exten-

sive magnetization. That is, in a domain � the expectation of ‖M�‖ in the
ground state should be proportional to |�|. We are not able to prove this, but
we can prove that the system is magnetized at least on a “mesoscopic” scale. To
be precise, we consider the following definition of the magnetization per site:
Given a state ϒ ∈H� and a subdomain �′ ⊂�, we define

m�,�′ = 1
|�|

∑

x:�′+x⊂�

1
|�′|

(
ϒ,‖M�′+x‖ϒ

);

m
(3)

�,�′ = 1
|�|

∑

x:�′+x⊂�

1
|�′|

∣∣(ϒ,M
(3)

�′+x
ϒ)

∣∣. (2.7)
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Note that we consider the expectation value of the norm of M�′ in the
state ϒ , averaged over all translates of �′ such that �′ +x remains in �.
The number of terms in the sum is |�|, up to a negligible boundary cor-
rection. We clearly have that m�,�′ � m

(3)

�,�′ . We will prove that, for the
anisotropic model introduced in Eq. (2.9), below, the third component of
the ground state magnetization per site, m

(3)

�,�′ , satisfies

lim
�′↗Zd

lim
�↗Zd

m
(3)

�,�′ >0.

The limits are over boxes of increasing size, and electron densities are kept
constant.

Perturbation methods shed some light onto the structure of the
phases of this model. The situation is similar to the one in the Hubbard
model at half-filling and with strong on-site repulsion, which behaves like
the antiferromagnetic Heisenberg model. Perturbative methods along the
lines of refs. 5 and 6 can be used for many rational densities. However,
such methods can be applied only when electrons are localized, and this
is not the case in a conducting metal. Here we focus our attention on
regimes where there does not exist an energy gap separating excitations
from the ground state energy, and where some electrons have delocalized
wave functions.

The Hamiltonian Eq. (2.3) is symmetric with respect to spin rotations,
and this makes the study difficult. We simplify the model by replacing the
term S1(x) ·S2(x) by S

(3)

1 (x) ·S(3)

2 (x). Furthermore, we let t2 → 0. We can
fix the energy scale by choosing t1 =1. We then obtain the following sim-
plified Hamiltonian (“2-band Ising-Hubbard model”)

H IH
� = −

∑

σ

∑

x,y∈�
|x−y|=1

c
†
1σ

(x)c1σ (y)+
∑

a=1,2

Ua

∑

x∈�

na↑(x)na↓(x)

+U12

∑

x∈�

n1(x)n2(x)

−J

4

∑

x∈�

[n1↑(x)−n1↓(x)] · [n2↑(x)−n2↓(x)]. (2.8)

Let ρ1, ρ2 denote the densities of light and heavy particles, respec-
tively. We prove the following statement in Section 4. Our proof works in
dimension larger or equal to 2 (Eq. (3.19) holds for d � 2 only). We do
not have results for the one-dimensional models.
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Theorem 2.1. Let d � 2. For arbitrary 0 < ρ1 < ρ2 � 1, there exists
J0 <∞ such that, for J

4 −U12 >J0, all ground states ϒ of H IH
� satisfy

lim
�′↗Zd

lim
�↗Zd

m
(3)

�,�′ = ρ1 +ρ2

2
.

This theorem suggests that the ground state displays “saturated ferromag-
netism”, as it has maximum total spin. Notice that for large enough J it
holds independently of U1,U2 �0.

The proof of Theorem 2.1 reduces to the study of the ground state
energy for fixed configurations of heavy electrons, since the latter do not
have kinetic energy. To a configuration of heavy electrons we can assign
domains of ↑ and ↓ spins. A light electron of spin ↑, say, is in a state that is
essentially localized on the domain where heavy electrons also have spin ↑.
Hund interactions suppress other configurations. In the limit J → ∞, the
ground state energy is purely kinetic and it is minimal in a configuration
of heavy electrons with large domains of identical spins. This allows us to
show that the size of the boundary of these domains is less than |�|1− 1

d ,
meaning that spins are locally aligned. See Section 4 for details.

The constant J0 in Theorem 2.1 depends on ρ1, and there are good
reasons for it. There is no ferromagnetism for ρ1 = 0 or ρ1 = ρ2 = 1. The
former case results in independent spins at each site. The latter case can be
treated with perturbation methods. Non-empty sites are typically occupied
by two particles of spin ↑, or by two particles of spin ↓. An effective inter-
action of strength 2

U1+ J
2

stabilizes antiferromagnetic chessboard phases in

the ground state and at low temperatures. This interaction can be obtained
using the method described in ref. 6. The case ρ1 =ρ2 <1 is more subtle.

We can improve the result of Theorem 2.1 and consider a model that
interpolates between Eqs. (2.3) and (2.8). We refer to the following Ham-
iltonian as “the asymmetric 2-band Hund–Hubbard model”:

H aHH
� = −

∑

a=1,2

ta
∑

σ=↑,↓

∑

x,y∈�
|x−y|=1

c
†
aσ (x)caσ (y)

+
∑

a=1,2

Ua

∑

x∈�

na↑(x)na↓(x)

+U12

∑

x∈�

n1(x) n2(x)−J
∑

x∈�

S
(3)

1 (x)S
(3)

2 (x) (2.9)

−J⊥ ∑

x∈�

(
S

(1)

1 (x)S
(1)

2 (x)+S
(2)

1 (x)S
(2)

2 (x)
)
.
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Let us again fix the energy scale by setting t1 =1.

Theorem 2.2. Let d �2. For arbitrary 0<ρ1 <ρ2 �1, there are con-
stants J0 < ∞ and c > 0 (both depend on the densities) such that if J

4 −
U12 >J0 and t2, J

⊥ <c, all ground states ϒ of H aHH
� satisfy

lim
�′↗Zd

lim
�↗Zd

m�,�′ = ρ1 +ρ2

2
.

This theorem again holds uniformly in U1,U2 �0.
Our paper is organized as follows. We discuss the properties of the

ground state of a simple model in Section 3. The results for the sim-
ple model are then used in Section 4 where Theorem 2.1 is proved.
Finally, it is shown in Section 5 that the claims for the Ising–Hub-
bard Hamiltonian Eq. (2.8) can be extended to certain perturbations, that
include the asymmetric Hund–Hubbard model (2.9). This proves Theorem
2.2.

3. INTERACTING ELECTRONS IN A MAGNETIC POTENTIAL

We introduce in this section a Hubbard model of electrons in an external
potential that involves the third components of the spins. We do not insist
on the physical relevance of this model. The sole motivation for this sec-
tion stems from applications to Hund–Hubbard systems. We will use Prop-
ositions 3.1–3.3 in Sections 4 and 5 in order to prove Theorems 2.1 and
2.2 — these theorems being physically motivated.

The results below extend the bounds for the ground state energy of
spinless electrons in binary potentials proposed in ref. 7. We work in the
Fock space F� of spin 1

2 electrons in �. Let V be a “magnetic potential”,
that is, V is a collection of non-negative numbers V

↑
x ,V

↓
x indexed by sites

x ∈Z
d . The Hamiltonian is

H�(V ) = −
∑

x,y∈�
|x−y|=1

∑

σ=↑,↓
c†
σ (x)cσ (y)+U

∑

x∈�

n↑(x)n↓(x)

+
∑

x∈�

∑

σ=↑,↓
V σ

x nσ (x). (3.1)

Here, c
†
σ (x) and cσ (x) are creation and annihilation operators of fermions

of spin σ at x, and nσ (x) = c
†
σ (x)cσ (x). We suppose that a gap V0 sepa-

rates the minimum value from other values of the potential. Introducing

Aσ ={x ∈� :V σ
x =0}, A=A↑ ∪A↓ (3.2)
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(the sites where the potential is zero for some spin), we define

V0 = min
σ=↑,↓

inf
x /∈Aσ

V σ
x . (3.3)

We assume that V0 is strictly positive.
In order to understand the bounds on the ground state energy given

below, it is useful to consider the situation where V0 →∞. Assuming that
A↑ ∩A↓ =∅, the domain � is partitioned into A↑, A↓, and �\A. Electrons
of spin σ are described by wave functions with support in Aσ , the energy
being infinite otherwise. Electrons do not interact and their ground state
energy is purely kinetic. It mainly consists of a bulk term that depends
on the electronic density inside Aσ and that is proportional to the vol-
ume |Aσ |. The effect of the boundary of Aσ is to increase the ground
state energy by a term proportional to the size of the boundary. The
ground state energy of non-interacting spinless electrons in arbitrary finite
domains was studied in ref. 7; upper and lower bounds were established
that confirm the discussion above. As V0 decreases from infinity to a finite
value, electrons delocalize somewhat, but the situation does not change in
any essential way.

Estimates for the ground state energy involve the energy density of
free spinless electrons in the limit of infinite volume. As is well-known, the
energy per site e(ρ) for a density 0<ρ <1 of electrons is given by

e(ρ)= 1
(2π)d

∫

εk<εF(ρ)

εk dk, εk =−2
d∑

i=1

cos ki, (3.4)

where εF(ρ) is the Fermi energy, defined by the equation

ρ = 1
(2π)d

∫

εk<εF(ρ)

dk. (3.5)

Notice that e(ρ)< 0 for 0 <ρ < 1. We need to define the boundary B(A)

of a set A⊂Z
d ; it is convenient to define it as the number of bonds that

connect A with its complement,

B(A)=#{(x, y):x ∈A,y /∈A, |x −y|=1}. (3.6)

We first give a bound for fixed densities of electrons of each spin.
In the absence of interactions (U = 0) the following proposition merely
rephrases similar results in ref. 7. We define E�(V ;N↑,N↓) as the ground
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state energy of H�(V ) when the number of spin ↑ (spin ↓) electrons is N↑
(N↓, respectively). We introduce a notation for electronic densities inside
A↑ and A↓; for σ =↑,↓, we let ρσ = Nσ

|Aσ | . We have the following bounds
for the ground state energy.

Proposition 3.1. Let V be a magnetic potential and N↑, N↓ be
numbers with the properties that:

• A↑ ∩A↓ =∅.

• V0 >2d(
√

d +1).

• N↑ � |A↑|, N↓ � |A↓|.

Then there exists α(ρ)>0 (independent of V0), for 0<ρ <
|A|
|�| , such that

∑

σ=↑,↓

[
e(ρσ )|Aσ |− e(ρσ )

2d
B(Aσ )

]
�E�(V ;N↑,N↓)

�
∑

σ=↑,↓

[
e(ρσ )|Aσ |+ (

α(ρσ )−γ (V0)
)
B(Aσ )

]

with

γ (V0)= 4d
V0−2d

+ 16d3

(V0−2d)2−4d3 .

The inequalities in this proposition hold uniformly in U . The proof
of Proposition 3.1 is based on results in ref. 7, where the sum, S�,N , of
the N lowest eigenvalues of the discrete Laplacian txy =−δ|x−y|,1, x, y ∈�

is estimated, with � a finite set of lattice points of arbitrary shape. Two
of the results in ref. 7 are relevant for our analysis:

• We have upper and lower bounds,

e(ρ)|�|− e(ρ)
2d

B(�)�S�,N � e(ρ)|�|+a(ρ)B(�), (3.7)

where ρ = N
|�| , and a(ρ) is strictly positive for any 0 < ρ < 1. Recall

that e(ρ) is negative, so that all boundary terms in the above equation
are positive. (The notation in ref. 7 is slightly different, the Hamilto-
nian being shifted by 2d and the boundary is defined differently.)

• If SU
�,N denotes the sum of the N lowest eigenvalues of the operator

−δ|x−y|,1 + Uχ
�c(x), where χ

�c is the characteristic function of the
complement, �c, of the set �, and if U is positive, we have
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S�,N �SU
�,N �S�,N −γ (U)B(�), (3.8)

for some γ (U)→0 as U →∞.

The upper bound for E�(V ;N↑,N↓) does not depend on V0. Increas-
ing the values of the potential actually incresases the energy, so it is
enough to prove the statement in the limit V0 →∞. Electrons with differ-
ent spins are independent, and the upper bound follows from the one in
Eq. (3.7).

Let us turn to the lower bound. The operator that represents interactions
between electrons is positive; we get a lower bound for the ground state energy
by taking U →0. For V0 =∞ we are in the situation of ref. 7. For finite V0 we
use Eq. (3.8) with minor modifications. Namely, starting with Eqs. (4.3)–(4.5)
of ref. 7 but introducing our measure B(�) of the boundary, the upper bound
in Eq. (4.8) can be replaced by 4d

V0−2d
B(�). It is useful to modify the bound for

the number of sites at distance n from the domain � (recall that we are using
the �1 distance here). It is not hard to check that

#{x: dist (x,�)=1}�B(�);
#{x: dist (x,�)=n}�d ·#{x: dist (x,�)=n−1} if n�2. (3.9)

We therefore have that #{x: dist (x,�) = n} � dn−1B(�). This allows to
bound N − Tr ρ̃ in Eq. (4.11) by 4d2

(V0−2d)2−4d3 B(�), leading to the present
definition of γ (V0). The bound given here is better for large V0 than the
one in ref. 7.

The considerations above show that Proposition 3.1 is a mild exten-
sion of ref. 7. The following proposition needs, however, a more detailed
proof.

Proposition 3.2. Under the same hypotheses as in Proposition 3.1,
we have that, for all normalized ground states ϒ of H�(V ),

∑

σ=↑,↓

∑

x /∈Aσ

(ϒ,nσ (x)ϒ)� 3
V0−4d

[B(A↑)+B(A↓)].

Proof. Let Mσ be the number of electrons of spin σ that are outside
of Aσ , and PM↑M↓ be the projector onto the subspace spanned by states
with exactly Mσ particles outside Aσ , σ =↑,↓. A state ϒ can be decom-
posed as

ϒ =
N↑∑

M↑=0

N↓∑

M↓=0

cM↑M↓ϒM↑M↓ , (3.10)
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with cM↑M↓ =‖PM↑M↓ϒ‖�0,
∑

c2
M↑M↓ =1, and ϒM↑M↓ =c−1

M↑M↓PM↑M↓ϒ is
normalized. The goal is to estimate

∑

σ=↑,↓

∑

x /∈Aσ

(ϒ,nσ (x)ϒ)=
∑

M↑,M↓

c2
M↑M↓(M↑ +M↓). (3.11)

The strategy is to obtain a lower bound for E�(V ;N↑,N↓) that involves
the expression above. Comparison with the upper bound of Proposition
3.1 will prove the claim.

The ground state energy is increasing in U so that we can again set
U = 0 when discussing a lower bound. The Hamiltonian H�(V ) can be
split into

H�(V )=
∑

σ=↑,↓

(
Hσ

Aσ
(V )+Hσ

�\Aσ
(V )

)

−
∑

σ=↑,↓

∑

x∈Aσ ,y /∈Aσ

|x−y|=1

[
c†
σ (x)cσ (y)+ c†

σ (y)cσ (x)
]
. (3.12)

Hamiltonians Hσ· (V ) consist in kinetic terms for particles of spin σ in the
corresponding domains, and of the potentials given by V σ . They leave the
subspace with fixed M↑ and M↓ invariant. The norm of the last operator
is smaller than 2B(A↑)+2B(A↓). Therefore

(ϒ,H�(V )ϒ) �
∑

M↑,M↓

c2
M↑M↓

∑

σ

(ϒM↑M↓ , [Hσ
Aσ

(V )+Hσ
�\Aσ

(V )]ϒM↑M↓)

−2B(A↑)−2B(A↓). (3.13)

Inserting the lower bound for the sum of the lowest eigenvalues of the
discrete Laplacian in a finite domain, neglecting the positive boundary
correction term, we get the lower bound

(ϒM↑M↓ ,Hσ
Aσ

(V )ϒM↑M↓)� e
(

Nσ −Mσ

|Aσ |
)

|Aσ |� e(ρσ )|Aσ |− εF(ρσ )Mσ .

(3.14)

The second inequality holds because e(ρ +η)�e(ρ)+ηεF(ρ) (indeed, e(ρ)

is convex and its derivative is εF(ρ)).
The Hamiltonian Hσ

�\Aσ
(V ) is the second-quantized version of a

one-body Hamiltonian, whose eigenvalues are bigger than V0 − 2d. Since
εF(ρ)�2d, we have
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(ϒ,H�(V )ϒ) �
∑

σ=↑,↓
e(ρσ )|Aσ |+ (V0 −4d)

×
∑

M↑,M↓

c2
M↑M↓(M↑ +M↓)−2B(A↑)−2B(A↓).

(3.15)

The right side must be less than the upper bound for E�(V ;N↑,N↓)

stated in Proposition 3.1. Using − e(ρ)
2d

�1, we get Proposition 3.2.

We turn to the situation where the total number of electrons is spec-
ified, but not their spins. Let E�(V ;N) be the ground state energy of
H�(V ) with N electrons. In the proof of the following proposition we have
to assume that the dimension of the system is at least 2.

Proposition 3.3. We suppose d � 2. Let V be a magnetic potential
and N be a number, that satisfy

• A↑ ∩A↓ =∅.

• V0 >2d(
√

d +1).

• N � |A|.

Let ρ = N
|A| <1; then there exists ᾱ(ρ)>0 such that

e(ρ)|A|− e(ρ)
2d

[B(A↑)+B(A↓)] � E�(V ;N)

� e(ρ)|A|+ (
ᾱ(ρ)−γ (V0)

)
[B(A↑)+B(A↓)].

Proof. The upper bound follows from the upper bound of Propo-
sition 3.1 that holds for all U . We can set U = 0 for the lower bound.
Because electrons of different spins do not interact, the ground state
energy is given by a sum of lowest eigenvalues of the corresponding one-
body Hamiltonians for particles of given spin. Let N↑ be the number of
spin ↑ electrons in the ground state. Taking into account multiplicities,
there are |A↑| available eigenvalues in (−2d,2d) for spin ↑ electrons, and
|A↓| eigenvalues for spin ↓ electrons. Other eigenvalues are larger than
V0 −2d. Since N � |A|, we must have 0�N↑ � |A↑| and 0�N −N↑ � |A↓|.

Let us introduce ρ = N
|A| , ρ′ = N↑

|A| , and η = |A↑|
|A| . We have ρ↑ = ρ′

η
and

ρ↓ = ρ−ρ′
1−η

. Using the lower bound of Proposition 3.1, we obtain

E�(V ;N) �
{
ηe(

ρ′
η
)+ (1−η)e(

ρ−ρ′
1−η

)
}|A|+ [

α(
ρ′
η
)−γ (V0)

]
B(A↑)

+[
α(

ρ−ρ′
1−η

)−γ (V0)
]
B(A↓). (3.16)
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This bound does not hold for all ρ′, but it holds when ρ′ corresponds
to a ground state. We get a lower bound by minimizing over ρ′. A diffi-
culty arises, namely that the coefficient of B(A↑) or of B(A↓) could be
negative. The term in braces reaches its minimum for ρ′

η
= ρ−ρ′

1−η
= ρ. Let

ε be such that the minimizer for the whole right side be ρ′
η

= ρ − ε
η

(and
ρ−ρ′
1−η

=ρ + ε
1−η

). The fractions ε
η

and ε
1−η

are small, because α and γ are
small. Hence ε is small, too. Let f (ε) denote the term in braces,

f (ε)=ηe(ρ − ε
η
)+ (1−η)e(ρ + ε

1−η
). (3.17)

The second derivative is

f ′′(ε)= 1
η
ε′

F(ρ − ε
η
)+ 1

1−η
ε′

F(ρ + ε
1−η

). (3.18)

One easily verifies that ε′
F(ρ)� c, with c strictly positive when d �2. This

implies that

f (ε)� e(ρ)+ c
2η(1−η)

ε2. (3.19)

Then

E�(V ;N) � e(ρ)|A|+ cε2

η(1−η)
|A|+ [

α(ρ − ε
η
)−γ (V0)

]
B(A↑)

+[
α(ρ + ε

1−η
)−γ (V0)

]
B(A↓). (3.20)

The right side should be e(ρ)|A|+ ᾱ[B(A↑)+B(A↓)]. We must show that
the brackets are strictly positive, depending on ρ and V0, but uniformly in
η. Four situations need to be carefully investigated: (1) if ρ is small and
ε
η

>0 is of the order of ρ; (2) if ρ is small and ε
1−η

<0 is of the order of
ρ; (3) if ρ is close to 1 and ε

η
<0 is of the order of 1−ρ; and (4) if ρ is

close to 1 and ε
1−η

>0 is of the order of ρ. These four cases are similar, so
it is enough to consider case (1). The factor in front of B(A↓) is bounded
away from 0 because ρ + ε

1−η
is bounded away from 0 and 1 (uniformly in

η), so that α(ρ + ε
1−η

)>0 (uniformly in η). We can assume that ε
η
>

ρ
2 (the

bound is uniform in η otherwise), and we consider the factor in front of
B(A↑). We take advantage of the second term in |A|, observing that

cε2

η(1−η)
|A|> c

1−η
(
ρ
2 )2η|A|. (3.21)

Now η|A|= |A↑|� 1
2d

B(A↑), and we see that the factor in front of B(A↑)

is uniformly bounded away from zero as η→0.
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4. THE ISING APPROXIMATION

In this section we prove Theorem 2.1. Heavy electrons are static and they
can be treated classically. Their state is represented by a classical spin con-
figuration s� ∈ {0,↑,↓,2}�, and the model (2.8) corresponds to a Ham-
iltonian, H�(s�), acting on F�. The expression for H�(s�) is given by
Eq. (2.8), with the understanding that the operators c

†
1σ

(x), c1σ (x) act on
F� (instead of F� ⊗F�), and the operators n2σ (x) are replaced by num-
bers as follows:

n2↑(x) �→
{

1 if sx =↑
0 if sx =↓,

n2↓(x) �→
{

0 ifsx =↑
1 if sx =↓ .

Thus H�(s�) is a Hubbard Hamiltonian with an external potential (or
“field”) given by s�. It is convenient to add a constant J

4 − U12 to the
energy so that the potential is non-negative. For given s� we define the
potential V ↑ by

V ↑
x =






0 if sx =↑
J
2 if sx =↓
J
4 −U12 if sx =0
J
4 +U12 if sx =2.

(4.1)

Next, we define V ↓ in the same way, by flipping the spins. With N1 =
ρ1|�|, the Hamiltonian for the Ising–Hubbard model can be expressed
using the Hamiltonian H�(V ) defined in Eq. (3.1), namely

H�(s�)+ ( J
4 −U12)N1 =H�(V )+U2

∑

x∈�

δsx,2. (4.2)

The strategy of our proof of Theorem 2.1 is as follows:

• A state where all electrons have spin ↑ gives us an upper bound
for the ground state energy (Eq. (4.3)).

• We derive a lower bound for the ground state energy that involves
“classical excitations” of s� — regions where heavy particles do not have
parallel spins. See Proposition 4.1.
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• By combining the upper and lower bounds for the ground state
energy, we find that any ground state configuration necessarily has only
few excitations (see Eq. (4.5)). This suffices to prove Theorem 2.1.

Let E(s�;ρ1) denote the ground state energy of Eq. (4.2), and let N2
be the number of heavy electrons in s�. A candidate for the ground state
is a purely ferromagnetic state, where all particles have spin ↑. Heavy elec-
trons occupy a domain A↑ with |A↑|=N2, and they are described by the
configuration sx =↑ for all x ∈A↑. Light electrons also have spin ↑; elec-
trons of identical spins do not interact, so that the ground state is given
by the ρ1|�| lowest eigenstates of the hopping matrix in �. By the upper
bound in Proposition 3.1, we have that

min
s�

E(s�;ρ1)� e(
ρ1
ρ2

)N2 +4dN
1− 1

d

2 . (4.3)

The ratio ρ1
ρ2

= N1
N2

represents the effective density of light electrons when
they all reside in A↑. The second term on the right side is an upper bound
for the boundary contribution to the energy of an optimal domain with
N2 sites.

Next, we turn to a lower bound. It is useful to introduce

ξ(ρ)=ρεF(ρ)− e(ρ). (4.4)

Notice that 0�ξ(ρ)�2d, and ξ ′(ρ)=ρε′
F(ρ)>0 so that ξ(ρ) is increasing.

Recall the definition (3.2) for sets A↑ and A↓ that are determined by the
potential (4.1). Notice that A is the set of sites occupied by exactly one
heavy particle, and that A↑ ∩A↓ =∅.

Proposition 4.1. For 0 < ρ1 < ρ2 � 1, there exist J0 < ∞ and α̃ > 0
(both independent of �) such that if J

4 −U12 >J0, we have that

E(s�;ρ1)� e(
ρ1
ρ2

)N2 + [
ξ(

ρ1
ρ2

)+ 1
2U2

]
(N2 −|A|)+ α̃

[
B(A↑)+B(A↓)

]
,

for arbitrary s�.

Remark. A similar bound can be proven when 0<ρ1 <2−ρ2 �1.
One main consequence of Proposition 4.1 can be obtained by com-

bining it with the upper bound Eq. (4.3). We get

{
|A|�N2(1− const ·N−1/d

2 )

B(A↑)+B(A↓)� const ·N1− 1
d

2

(4.5)
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for constants that are uniform in the size of the system. These inequalities
imply Theorem 2.1, as is shown below.

Proof of Proposition 4.1. We observe that
∑

x δsx,2 = 1
2 (N2 − |A|)

yielding the term involving U2. To alleviate our notation we suppose now
that U2 =0. Let ζ >0 be a small number; we first consider configurations
such that N1

|A| �1− ζ . Proposition 3.3 gives

E(s�;ρ1)� e
(

N1
|A|

)
|A|+ (

ᾱ(
N1
|A| )−γ (J

4 −U12)
)
[B(A↑)+B(A↓)]. (4.6)

The function νe(
ρ
ν
) is convex in ν, and its derivative with respect to ν is

equal to −ξ(
ρ
ν
). Therefore

e
(

N1
|A|

)
|A|= e(

ρ1
ρ2

N2
|A| )

|A|
N2

N2 � e(
ρ1
ρ2

)N2 + ξ(
ρ1
ρ2

)(N2 −|A|). (4.7)

Since N1
|A| <1−ζ the function ᾱ

(
N1
|A|

)
is uniformly bounded away from

zero, and we obtain a strictly positive α̃, provided J
4 −U12 is large enough

(see Proposition 3.1).
We now consider configurations such that 1 − ζ <

N1
|A| � 1. Equation

(4.6) is still valid but ᾱ
(

N1
|A|

)
may be very small and we ignore it; it is pos-

itive. Convexity of e(ρ) yields

e
(

N1
|A|

)
� e(1)+

(
N1
|A| −1

)
εF(1)� −2dζ. (4.8)

We have used that e(1)=0 and εF(1)=2d. Because B(A↑)+B(A↓)�2d|A|,
we obtain from Eq. (4.6)

E(s�;ρ1)� −2d
[
ζ +γ (J

4 −U12)+ α̃
]|A|+ α̃

[
B(A↑)+B(A↓)

]
. (4.9)

In order to complete the proof of Proposition 4.1, we need to check that

−2d
[
ζ +γ (J

4 −U12)+ α̃
]|A|� e(

ρ1
ρ2

)N2 + ξ(
ρ1
ρ2

)(N2 −|A|). (4.10)

We have that N2 −|A|=N2[1− ρ1
ρ2

|A|
N1

]=N2[1− ρ1
ρ2

+O(ζ)]. As |A|�N2 and
because the term in brackets can be arbitrary small (depending on ρ1, ρ2),
it is enough to check that

0>e(
ρ1
ρ2

)+ ξ(
ρ1
ρ2

)(1− ρ1
ρ2

). (4.11)
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Using the definition (4.4) of ξ , the condition can be reduced to ξ(ρ) −
εF(ρ) > 0 for 0 < ρ < 1. This is easy to verify, as this function is strictly
decreasing and ξ(1)− εF(1)=0.

Finally, the case where N1 > |A| is easy because we can use Propo-
sition 4.1 for the lowest |A| eigenvalues, and remaining eigenvalues are
larger than J

4 −U12 −2d �0.

Proof of Theorem 2.1. We have established inequalities (4.5) that
show that ground state configurations of heavy electrons consist of large
domains with one particle of spin ↑ at each site, large domains with
one particle of spin ↓, or domains void of particles. Boundaries of these
domains are “sparse”. Recall that definition (2.7) of the magnetization
m�,�′ involves an average over translates of �′. It is enough to restrict
to boxes that are fully in A↑ or in A↓. Indeed, few boxes are intersecting
their boundaries, and there are virtually no electrons outside of A.

It is clear that m
(3)

�,�′ � ρ1+ρ2
2 for all states with densities ρ1 and ρ2

of light and heavy electrons, so that it suffices to establish the converse
inequality. The definition of m

(3)

�,�′ involves a sum over translates of �′
that are inside �. All terms are positive, so we get a lower bound by
restricting the sum to translates that are contained in either A↑ or A↓:

∑

x:�′+x⊂�

∣∣(ϒ,M
(3)

�′+x
ϒ)

∣∣�
∑

x:�′+x⊂A↑

(ϒ,M
(3)

�′+x
ϒ)−

∑

x:�′+x⊂A↓

(ϒ,M
(3)

�′+x
ϒ).

(4.12)

Let us recall the definition of M
(3)

�′ :

M
(3)

�′ =
∑

x∈�′
M(3)(x), (4.13)

with

M(3)(x)= 1
2

∑

a=1,2

(
na↑(x)−na↓(x)

)
. (4.14)

Since ‖M(3)(x)‖�1, we have from Eq. (4.12)
∑

x:�′+x⊂�

(ϒ, |M(3)

�′+x
|ϒ) �

∑

x∈A↑

(ϒ,M(3)(x)ϒ)

−
∑

x∈A↓

(ϒ,M(3)(x)ϒ)−|�′|[B(A↑)+B(A↓)].

(4.15)
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Let N1↑ =∑
x∈�(ϒ,n1↑(x)ϒ); then

∑

x∈A↑

(ϒ,M(3)(x)ϒ)= 1
2 |A↑|+ 1

2N1↑ −
∑

x /∈A↑

(ϒ,n1↑(x)ϒ). (4.16)

The latter term is less than 3
J
4 −U12−4d

B(A↑) by Proposition 3.2. The same

argument applies to spin ↓ electrons. Using inequalities (4.5), we see that
m�,�′ is larger than 1

2ρ2 + 1
2ρ1, up to a term of order |�|−1/d (it depends

on �′). This term vanishes in the limit �↗Z
d .

5. THE ASYMMETRIC HUND–HUBBARD MODEL

We now turn to the proof of Theorem 2.2. The asymmetric Hund–Hub-
bard model (2.9) can be expressed as a perturbation of the Ising–Hubbard
model (2.8). Namely, with t1 =1,

H aHH
� = H IH

� − t2
∑

σ=↑,↓

∑

x,y∈�
|x−y|=1

c
†
2σ

(x)c2σ (y)

−J⊥ ∑

x∈�

[
S

(1)

1 (x)S
(1)

2 (x)+S
(2)

1 (x)S
(2)

2 (x)
]
. (5.1)

In the previous section we showed that any ground state configuration of
the Ising–Hubbard model satisfies inequalities Eq. (4.5). Heavy electrons
are now quantum particles and a classical configuration cannot be an ei-
genstate. We can extend Eq. (4.5) by expanding the ground state in the
basis of configurations of heavy particles, and show that Eq. (4.5) holds in
average. Namely, we denote by �(s�)∈F� the normalized state of heavy
electrons in the configuration s�. Clearly, (�(s�)) is a basis of F�. Any
state ϒ ∈F� ⊗F� has a unique decomposition as

ϒ =
∑

s�

c(s�)�(s�)⊗�(s�), (5.2)

where c(s�) � 0 satisfies
∑

s�
c2(s�) = 1, and �(s�) is some normalized

state that represents the light particles. Notice the asymmetry in notation:
�(s�) is indexed by s�, but the configuration of spins of light particles
may be very different from the configuration s�, in general. In particular,
�(s�) describes a state with N1 particles, while �(s�) has N2 particles. Let
X(s�) denote the number of “excitations” of s�; namely,

X(s�)= (N2 −|A|)+B(A↑)+B(A↓). (5.3)
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The extension of Eq. (4.5) is as follows.

Proposition 5.1. Let d �2, and 0<ρ1 <ρ2 �1. There are constants
J0 <∞ and γ >0 such that if J

4 −U12 >J0 and t2, J
⊥ <γ , and if c(s�) are

the coefficients defined in Eq. (5.2) for a ground state of H aHH
� , we have

∑

s�

c2(s�)X(s�)� const ·N1− 1
d

2 ,

for a constant that is independent of �.

Proof. We again define V by Eq. (4.1) and H�(V ) by Eq. (4.2). U2
plays no rôle here, just as in Section 4; so we set it to 0 from now on.
By the variational principle we find an upper bound for the ground state
energy by considering a state where all electrons have spin ↑. Heavy elec-
trons are packed together and light ones are in appropriate delocalized
wave functions with support on A↑. Neither the t2 term nor the J⊥ term
contributes to the energy of this state, and Eq. (4.3) therefore continues to
be an upper bound for the ground state energy.

The goal is now to find a lower bound with the same bulk term as in
the equation above, plus a correction that involves the average of X(s�).
For ϒ expanded as in (5.2), we have

(ϒ,H aHH
� ϒ) + ( J

4 −U12)N1 =
∑

s�

c2(s�)
(
�(s�),H�(V )�(s�)

)

− t2
∑

s�,s′
�

∑

σ=↑,↓

∑

x,y∈�
|x−y|=1

c(s�)c(s′
�)

(
�(s�),�(s′

�)
)

×
(
�(s�), c

†
2σ

(x)c2σ (y)�(s′
�)

)

− J⊥ ∑

s�,s′
�

∑

x∈�

c(s�)c(s′
�)

(
�(s�)⊗�(s�),

[
S

(1)

1 (x)S
(1)

2 (x)+S
(2)

1 (x)S
(2)

2 (x)
]
�(s′

�)⊗�(s′
�)

)
.

(5.4)

The first term involves the same H�(V ) that appears in Eq. (4.2); this
gives us the right bulk contribution. The other two terms are actually irrel-
evant and it is enough to find estimates.

We observe that the second term on the right side of Eq. (5.4) is less
than
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t2
∑

s�,s′
�

′c(s�)c(s′
�)� t2

( ∑

s�,s′
�

′c2(s�)
)1/2( ∑

s�,s′
�

′c2(s′
�)

)1/2 = t2
∑

s�,s′
�

′c2(s�).

(5.5)

Primed sums are over configurations that are identical except for a heavy
electron moved to a neighboring site. Given s�, there are less than
2d(N2 − |A|) + B(A↑) + B(A↓) such configurations s′

� (recall that 1
2 (N2 −

|A|) is the number of sites that are occupied by two heavy electrons). It
follows that Eq. (5.5) is smaller than 2dt2

∑
s�

c2(s�)X(s�) (and it is larger
than the negative of this expression).

The third term of the right side of Eq. (5.4) can be treated in the
same spirit. It is necessary to cast the perpendicular Hund interactions in
a form that shows that their contribution is no more than the boundary
between domains of identical spins. We therefore introduce standard oper-
ators S

(+)
a (x), S

(−)
a (x), by

S
(+)
a (x)=S

(1)
a (x)+ iS(2)

a (x),

S
(−)
a (x)=S

(1)
a (x)− iS(2)

a (x). (5.6)

Perpendicular spin interactions become

S
(1)

1 (x)S
(1)

2 (x)+S
(2)

1 (x)S
(2)

2 (x)= 1
2

[
S

(+)

1 (x)S
(−)

2 (x)+S
(−)

1 (x)S
(+)

2 (x)
]
.

(5.7)

Let x ∈A, and sx
� be the configuration obtained from s� by flipping

the spin at x. The third term of Eq. (5.4) is equal to

− 1
2J⊥ ∑

s�

∑

x∈A

c(s�)c(sx
�)

(
�(s�), S

(#)

1 (x)�(sx
�)

)
, (5.8)

with #=“+” if sx =↓, and #=“−” if sx =↑. Since S
(+)

1 (x)= c
†
1↑(x)c1↓(x),

the Schwarz inequality yields the bound
∣∣∣
(
�(s�), S

(+)

1 (x)�(sx
�)

)∣∣∣�
(
�(s�), n1↑(x)�(s�)

)1/2(
�(sx

�), n1↓(x)�(sx
�)

)1/2
.

(5.9)

A similar inequality holds when S
(+)

1 (x) is replaced with S
(−)

1 (x); one
should simply interchange n1↑(x) and n1↓(x) on the right side. Then echo-
ing Eq. (5.5), the absolute value of Eq. (5.8) is found to be smaller than
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J⊥
2

[∑

s�

∑

x∈A

c2(s�)
(
�(s�), n1,−sx (x)�(s�)

)]1/2

·
[∑

s�

∑

x∈A

c2(sx
�)

(
�(sx

�), n1,sx (x)�(sx
�)

)]1/2

= J⊥
2

∑

s�

∑

x∈A

c2(s�)
(
�(s�), n1,−sx (x)�(s�)

)
. (5.10)

This expression is reminiscent of the expression in Proposition 3.2. How-
ever, �(s�) is not a ground state for light electrons in the magnetic poten-
tial given by s� and therefore the proposition does not directly apply.

We can nevertheless recycle the ideas underlying the proof of Propo-
sition 3.2.

Let N = (N↑,N↓,M↑,M↓) be four positive integers such that N↑ +
N↓ =N1, and Mσ �Nσ . Nσ is the number of light electrons of spin σ , and
Mσ is the number of light electrons of spin σ that are not localized on
the favorable sites Aσ . We can expand �(s�) according to N , in a fash-
ion that is reminiscent of Eq. (3.10),

c(s�)�(s�)=
∑

N
cN (s�)�N (s�) (5.11)

where coefficients are positive and states are normalized. With this nota-
tion we observe that Eq. (5.10) is bounded above by the following expres-
sion similar to Eq. (3.11)

J⊥
2

∑

s�

∑

N
c2
N (s�)(M↑ +M↓). (5.12)

The Hamiltonian H�(V ) can be split as in Eq. (3.12) and we obtain the
lower bound Eq. (3.13) with c(s�)�(s�) in lieu of ϒ , and cN (s�)�N (s�)

in lieu of cM↑M↓ϒM↑M↓ . We then get Eqs. (3.14) and (3.15). Explicitly, the
lower bound for Eq. (5.4) is

e(
ρ1
ρ2

)N2 +
∑

s�

∑

N
c2
N (s�)

×
{
( J

4 −U12 −4d − J⊥
2 )(M↑ +M↓)−2B(A↑)−2B(A↓)−2dt2X(s�)

}
.

The bulk term e(
ρ1
ρ2

)N2 above comes from Eq. (3.15), minimizing over
N↑ and N↓. This expression is less than the upper bound Eq. (4.3); this
implies that
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∑

s�

∑

N
c2
N (s�)(M↑ +M↓)� 4d +2+2dt2

J
4 −U12 −4d − J⊥

2

∑

s�

c2(s�)X(s�).

(5.13)

(We used that N
1− 1

d

2 �X(s�).) Notice that the factor on the right side is
small. This estimate is necessary to bound Eq. (5.12).

Using Proposition 4.1 for the first term in Eq. (5.4), we then conclude that

∑

s�

c2(s�)
(
�(s�),H�(V )�(s�)

)
� e(

ρ1
ρ2

)N2 + α̃
∑

s�

c2(s�)X(s�).

(5.14)

(We assume here that α̃ is smaller than ξ(
ρ1
ρ2

)+ 1
2U2.) Again invoking the

upper bound Eq. (4.3), we obtain

e(
ρ1
ρ2

)N2 +4dN
1− 1

d

2 � e(
ρ1
ρ2

)N2+
[
α̃ −2dt2 − J⊥

2
4d +2+2dt2

J
4 −U12 −4d − J⊥

2

]

×
∑

s�

c2(s�)X(s�). (5.15)

The quantity in brackets is strictly positive when J
4 −U12 is large enough,

and this proves Proposition 5.1.

Proof of Theorem 2.2. The proof is similar to that of Theorem
2.1, except that we use Proposition 5.1 instead of the inequalities Eq. (4.5).
All equations until Eq. (4.14) hold without change. Eqs. (4.15) and (4.16)
need to be modified because the Aσ ’s are not fixed here. These equations
hold when averaged over s� with weights c2(s�). We obtain

∑

x,�′+x⊂�

(ϒ, |M(3)

�′+x
|ϒ)�

∑

s�

∑

N
c2
N (s�)

∑

σ

[
1
2 |Aσ |+ 1

2 Nσ − 1
2 Mσ −|�′|B(Aσ )

]

� 1
2 (N1 +N2)−2|�′|

∑

s�

c2(s�)X(s�). (5.16)

We have used Eq. (5.13) in order to estimate the contribution of M↑ and
M↓. After division by |�|, the last term vanishes in the thermodynamic
limit by Proposition 5.1.
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