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organic compounds, was used as a case study. The decision- 
making process for the choice of the most adequate GasPS 
may be divided into two "decision levels" (Fig. 1). Based on 
their compliance with clean air legislation and their technical 
feasibility (first decision level), four GasPSs were chosen for 
in-depth evaluation: a biofilter, an activated carbon filter (AC), 
a catalytic incinerator (CatOx), and a thermoreactor (Thermo). 
The second decision level evaluates the alternatives with re- 
spect to their economic and ecological performance. Economic 
evaluation was based on the Net Present Value (NPV) of the 
costs during construction, operation and disposal of the 
GasPSs. Ecological performance of GasPSs was evaluated us- 
ing life-cycle assessment methodology (LCA). Life-cycle im- 
pact assessment was performed using the methods Eco-Indi- 
cator 95 and Swiss Ecopoints. 

With respect to LCA and to ecological evaluation in gen- 
eral, three major innovations were made in this study: the 
addition of a quantitative uncertainty analysis, a new classi- 
fication for toxic substances, and the definition of eco-effi- 
ciency indicators. 

In t roduct ion  

Over the last few years, the chemical industry has begun to 
implement the ideas of sustainable development by applying 
the concept of integrated product and process development 
(II'PD). Even if this concept is fully implemented, however, 
end-of-pipe technologies will remain necessary for reducing 
the remaining environmental impacts. Therefore, given the 
socio-political, technical, ecological and economic contexts that 
have motivated IPPD, there is a critical need for the integrated 
evaluation of these end-of-pipe technologies. 

In this thesis, an extensive study was carried out to develop 
an integrated evaluation methodology for gas purification 
systems (GasPSs). The purification of an industrial waste 
gas stream, consisting of a mix of twenty different volatile 

Fig. 1: Overall decision-making process for an adequate GasPS in the 
chemical industry, structured on two decision levels (first level: techni- 
cal and socio-political evaluation; second level: ecological and eco- 
nomic evaluation). 
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1 Quantitat ive Uncerta inty Analysis 

Decision making in real life must occur under uncertainty. 
After an LCA was performed on the four GasPS alterna- 
tives, detailed uncertainty and imprecision analyses of the 
results were performed using Monte Carlo simulations with 
Latin Hypercube sampling. In a first step, nine different 
quantifiable uncertainties in Eco-Indicator 95 were identi- 
fied (others were found for Swiss Ecopoints): 

(1) Measurement of site-specific process data (dl) , 

(2) age of the foreground data (temporal variation, d2) , 

(3) choice of background data modules (d3) , 

(4) emission measurements (d4) , 

(5) averaging background data over space and time (ds) , 

(6) non-consideration (ignorance) of emissions (d6) , 

(7) determination of classification factors (wl) , 

(8) determination of the normalisation factors (w2) , and 

(9) determination of the reduction factors (83). 

Uncertainties were quantified based on the analysis of the 
actual foreground and background data, literature, and ex- 
pert judgement. The distribution of the uncertainty was 
modelled either with the normal or log-normal distribution. 
Fig. 2 summarises the results from the uncertainty quantifi- 
cation as well as the uncertainty propagation throughout 
the LCA aggregation. 
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Fig. 2: Uncertainty propagation tree for calculating the ecological bur- 
den of gas purification systems throughout the LCA steps using the 
modified Eco-lndicator 95 (STD: Standard deviation of the correspond- 
ing normal distribution; CV: coefficient of variation). 

Based on the uncertainty analysis, the following findings were 
possible for the LCA results: 

(1) Distribution of the overall effect score, 

(2) evaluation of the significance of the different effects scores 
on the level of impact categories and overall score, 

(3) significance of the relative ranking of various GasPSs 
alternatives, 

(4) identification of major contributions to the overall un- 
certainty range, and 

(5) analysis of the influence of data correlation on the un- 
certainty range. 

2 Classification of Toxic Substances 

Neither Eco-Indicator 95 nor Swiss Ecopoints account for 
the toxicity of volatile organic compounds found in indus- 
trial waste gas streams, such as the one in this case study. 
Thus, a new toxicity classification method had to be devel- 
oped in the thesis and integrated into both methods. The 
classification method was developed based on fate-and-ex- 
posure modelling similar to the EU-risk assessment of chemi- 
cals. The volatile organic compounds were classified on the 
basis of a "critical discharge flow" into a unit world. The 
critical discharge flow is the discharge flow leading to an 
impairment of either humans or ecosystems and is related 
to an adequate reference substance. Finally, the strengths 
and weaknesses of the proposed classification method and 
the fate-and-exposure modelling were reviewed with respect 
to the following issues: (1) quality of toxicological data, (2) 
complexity of the applied unit world model, (3) impacts of 
degradation products, (4) sensitivity of toxicity classifica- 
tion to uncertainties of input variables, (5) time to steady- 
state for fugacity models, and (6) the choice of appropriate 
reference substances. 

3 Definition of Eco-Eff iciency Indicators 

For an integrated evaluation of end-of-pipe GasPS technolo- 
gies, four appropriate performance indicators have been de- 
fined in the thesis. The eco-efficiency indicators complement 
one another and describe the system's performance adequately. 
The performance indicators assist the decision-making proc- 
ess in choosing adequate GasPSs. Net Ecological Benefit 
(NEBN) measures if, and how much of, an overall ecological 
benefit is reached. It is a measure of effectiveness. Ecological 
Yield Efficiency (IgEYE) measures how the invested ecologi- 
cal costs compare to the particular ecological benefits achieved. 
It is a measure of efficiency. Economic costs are measured 
using NPV. Finally, Ecological-Economic Efficiency (EEE) pro- 
vides the ratio of NEB N to NPV. 

Fig. 3 shows the indicators NEB N and lgEYE for the four 
investigated GasPSes. The indicators allow a ranking and 
prioritising of the various GasPSes. Due to the comprehen- 
sive uncertainty analysis, the significance of the ranking can 
be determined. For instance, the probability that NEB N of 
the activated carbon filter (AC) is higher than for the cata- 
lytic incinerator (CatOx) is 68.9%. 
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Based on these indicators, various optimisation approaches 
and their potentials could be identified for the investigated 
GasPSes. In addition, the ability of the GasPSes to adapt to 
changes in the pollutant load or waste gas volume was dis- 
cussed. Finally, the clean air legislation was analysed with re- 
spect to their effectiveness and efficiency. A simplified LCA 
for the evaluation of GasPSes was proposed in the thesis. 

Fig. 3: Ranking and significance diagrams of the investigated GasPSes 
(NEB N [Pts./m 3 gas] and IgEYE [-] as median; modified Eco-lndicator 
95).The middle column shows the ranking with the corresponding in- 
dicator value. The significance is indicated for each comparison as the 
probability of the actual ranking (P(X>0) in %). 

4 Summary 
The defined performance indicators and the adapted evalua- 
tion methods allow an integrated evaluation of gas purifica- 
tion systems with respect to their effectiveness and efficiency. 
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