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Abstract Fourier transform near-infrared spectroscopy
(FT-NIR) was evaluated to quantitatively determine 24 dif-
ferent measurands in honey. The reference values of 421
honey samples of different botanical origins were deter-
mined by classical physical and chemical methods. Partial
least squares regression was used to develop the calibration
models for the measurands studied. These calibrations were
then validated using independent samples and proved satisfy-
ing accuracies for the determination of water (standard error
of prediction: 0.3 g/100 g), glucose (1.3 g/100 g), fructose
(1.6 g/100 g), sucrose (0.4 g/100 g), total monosaccharide
content (2.6 g/100 g) as well as fructose/glucose ratio (0.09)
and glucose/water ratio (0.12). The prediction accuracy for
hydroxymethylfurfural, proline, pH-value, electrical con-
ductivity, free acidity and the minor sugars maltose, turanose,
nigerose, erlose, trehalose, isomaltose, kojibiose, melezi-
tose, raffinose, gentiobiose, melibiose, maltotriose was poor
and unreliable. The results demonstrate that near-infrared
spectrometry is a valuable, rapid and non-destructive tool
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Introduction

For the general quality control of honey according to the
current standards of the Codex Alimentarius [1] and of the
EU [2], several physical and chemical measurands have to be
determined, which mostly include water content, enzyme ac-
tivities of invertase and α-amylase, hydroxymethylfurfural
(HMF), electrical conductivity, and sugar composition. At
present, a specific analytical method has to be applied for
each measurand of interest. Moreover, the methods com-
monly used to determine the chemical composition and the
physical properties of honey are laborious and expensive,
thus limiting the number of honey samples analysed. To fur-
ther improve honey quality control, it is necessary to develop
rapid, simple and accurate methods for the routine quality
assessment of honey.

Due to the increased computing performance in the
last decades, infrared spectrometry has become a well-
established technique for quantitative analysis of food. In-
frared spectroscopy has been applied to different fields of
honey analysis. The determination of botanical or geograph-
ical origin, quality control and detection of adulteration has
been discussed in several papers dealing with infrared spec-
troscopy of honey as it presents a rapid and non-destructive
approach [3–6].

Near-infrared (NIR) spectrometry has been successfully
applied both in transmission and transflectance mode to the

Springer



416 Eur Food Res Technol (2007) 225:415–423

quantitative analysis of honey. Transmittance spectroscopy
was found to yield sharper peaks and better resolution than
reflectance spectroscopy and the calibration performance
was found to be 30–70% better. The shortest optical path
length tested (1 mm) was found to produce the least sat-
urated spectra in the region between 1300 and 2500 nm
thus yielding the lowest standard errors of cross-validation
(SECV) for all components studied [7].

Accurate predictions were obtained for fructose, glu-
cose, sucrose, maltose, water and ash content as well as
for the fructose/glucose and glucose/water ratios in honey
samples from different crops [7–13]. Furthermore, non-
compositional characteristics of honey such as electrical con-
ductivity, colour and polarimetric properties (direct polari-
sation, polarisation after inversion, specific rotation in dry
matter and polarisation due to non-monosaccharides) have
also been successfully calibrated [10, 14]. However, near-
infrared spectroscopic techniques have not been considered
as adequate for the analysis of minor honey components such
as HMF, free and lactone acidity as well as pH-value [7, 10].
In a calibration limited to avocado honey, it was however
possible to quantify low concentrations of perseitol (polyol
of d-mannoheptulose) [15].

Some authors claim that the isotope ratio between carbon
12C and 13C, used for the detection of cane sugar adulteration
can be determined by NIR. Unfortunately, the calibration was
restricted to two types of honey and was not validated with
adulterated samples [8, 11].

The aim of the present work was to investigate NIR spec-
troscopy in transflection mode as a rapid analytical tool for
the simultaneous quantitative determination of 24 different
measurands, used in quality control of honey, based on a
large calibration set with as much natural variability as can
be expected in practice.

Materials and methods

Honey samples

A total of 421 honey samples were used to establish the
global calibration. Three hundred and fifty-two honey sam-
ples from Switzerland collected from seven different crops
between 1997 and 2004, including unifloral, i.e. Castanea sp.
(n = 27), Robinia sp. (n = 19), Tilia spp. (n = 13), Brassica
spp. (n = 25), Taraxacum spp. (n = 20), Rhododendron sp.
(n = 14), alpine polyfloral (n = 44) and polyfloral (n = 138)
as well as honeydew honeys (n = 52) were analysed. Uni-
floral honeys from Robinia sp. (n = 4), Tilia spp. (n = 7),
Taraxacum spp. (n = 4) and polyfloral honeys (n = 15) of
German provenience were included.

In addition, polyfloral honey samples from Argentina
(n = 3), Chile (n = 5), China (n = 1), Cuba (n = 2), France

(n = 6), Greece (n = 1), Hungary (n = 1), Italy (n = 4), Mex-
ico (n = 13), Slovakia (n = 1), Slovenia (n = 1) and Uruguay
(n = 1) were included as well. These samples were used
to evaluate the calibrations established with samples from
Switzerland and Germany.

In order to be able to measure the water content in bakers
honey, the calibration range of water content higher than
19 g/100 g was extended up to 24.6 g/100 g by adding water
to 17 different polyfloral honey samples.

All samples were stored at 4 ◦C before analysis. They
were liquefied in a heating cabinet at 50 ◦C for 9 h and then
allowed to cool to room temperature before analysis.

Reference methods

The reference methods used for the quantitative determina-
tion of water, electrical conductivity, HMF, pH-value, pro-
line, free acidity as well as various sugars (i.e. fructose,
glucose, sucrose, turanose, nigerose, maltose, kojibiose, tre-
halose, isomaltose, erlose, melezitose and raffinose) were
carried out according to the Harmonized Methods of the Eu-
ropean Honey Commission [16]. Pollen analysis was carried
out according to von der Ohe et al. [17] and the botani-
cal origin of the honey samples was determined according
to Persano-Oddo and Piro [18]. The range of the reference
values of the honey samples analysed is indicated in Table 1.

Near-infrared spectrometry

NIR spectra were recorded using a Büchi NIRLab N-200
spectrometer operated with the NIRLabWare 3.0 software
and equipped with a MSC 100 measuring cell with a rotating
sample holder (Büchi Labortechnik AG, Flawil, Switzerland)
to level out effects of sample inhomogeneity. The measure-
ments were performed at room temperature without temper-
ature control. About 10 g of liquefied honey was poured into
a clean glass Petri dish and covered with an aluminium plate
so defining a 0.75 mm layer of honey between the bottom of
the Petri dish and its surface and acting as reflection material.
Sixty-four scans with a resolution of 8 cm−1 were recorded
in transflection mode for each spectrum in the wavenumber
range between 4000 and 10,000 cm−1; Fig. 1 shows a typical
FT-NIR spectrum of honey. Three replicates of each sample
were averaged to obtain a mean spectrum.

Data analysis

The primary interest was to study a ‘global’ calibration
of all honey types considered and to evaluate its perfor-
mance characteristics with respect to the application in
practice where details on the samples are rarely known
and are mostly not of interest in quantitative analysis of
honey. For the chemometric evaluation, the GRAMS/32
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Table 1 Reference data ranges
of the honey samples Measurand Unit na Mean Minimum Maximum

Water g/100 g 382 16.3 13.4 24.6
Fructose g/100 g 394 37.8 26.4 49.8
Glucose g/100 g 392 30.1 18.5 40.0
Sucrose g/100 g 387 0.5 0.0 6.7
Turanose g/100 g 391 2.2 0.0 5.5
Nigerose g/100 g 386 2.1 0.0 5.3
Maltose g/100 g 392 1.6 0.0 4.9
Kojibiose g/100 g 242 1.0 0.0 2.1
Trehalose g/100 g 387 0.6 0.0 4.6
Isomaltose g/100 g 377 0.7 0.0 3.4
Erlose g/100 g 392 0.6 0.0 4.1
Melezitose g/100 g 392 0.6 0.0 5.3
Raffinose g/100 g 397 0.2 0.0 2.2
Gentiobiose g/100 g 385 0.1 0.0 1.1
Melibiose g/100 g 392 0.0 0.0 1.3
Maltotriose g/100 g 392 0.0 0.0 1.9
Monosaccharides sum g/100 g 393 67.9 44.9 78.2
Fructose/glucose ratio 391 1.28 0.89 2.11
Glucose/water ratio 374 1.90 1.09 2.60
Free acidity meq/kg 376 17 5 44
HMF mg/kg 388 10 0 112
Proline mg/kg 370 476 158 1189
Electrical conductivity mS/cm 378 0.605 0.100 1.699
pH-value 376 4.4 3.5 6.1

aNumber of samples in
cross-validation.

AI Version 6.00 (Galactic Industries Corp., Salem NH,
USA) software was used for quantitative analysis by par-
tial least squares (PLS) regression: The calibration mod-
els were developed using the PLSplus/IQ add-on in the
range between 4200 and 10,000 cm−1 except for water,
fructose, turanose, nigerose, kojibiose and isomaltose (see
Table 2). Information on the interpretation of PLS loading
vectors of various measurands can be found in the paper by
Qiu et al. [7].

The optimised models were obtained by the “leave one
out” cross-validation technique based on the minimum
predicted residual sum of squares (PRESS). The predictive
quality of the models was evaluated by calculating the
standard error of cross-validation (SECV) and the standard
error of prediction (SEP) in the validation step with
independent samples.
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Fig. 1 Typical FT-NIR
spectrum of a honey sample
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Calibration and validation

PLS cross-validations were performed to test different cal-
ibration models for the prediction of the various measur-
ands. After elimination of spectral and concentration out-
liers (judged on the basis of Mahalanobis distance >3) the
models were set up with all averaged spectra. For validation
(i.e. prediction of samples not included in the calibration)
the spectra were split into two data sets. The criterion was to
have a statistically sufficient number of validation samples
while keeping as many as possible within the calibration set.
The samples were arranged according to the numerical value
of the measurand under consideration. About every tenth
sample was selected for validation. This procedure produced
random samples of 30–40 honey samples, which were repre-
sentative for the distribution of the measurand’s values and
large enough for statistical validation of the respective PLS-
model. The calibration was set up with the remaining spectra
not included in the validation set. Validation SEP, coefficients
of determination (R2) between predicted and reference val-
ues and prediction bias were calculated (Table 2).

Results and discussion

Repeatability limits

The repeatability standard deviations (sr) and limits (rIR) of
the NIR measurements were calculated based on 11 subse-
quent analyses of different aliquots of the same polyfloral
honey sample (see Table 2; repeatability). For comparison
the range of repeatability limits (rRef) from results of inter-
laboratory studies with the reference methods are listed as
far as they are available (Table 2) [16].

Prediction of the measurands

The resulting standard errors from PLS cross-validation
(SECV) and coefficients of determination (R2) are given in
Table 2. For the measurands studied, the coefficients of de-
termination in calibration were between 0.009 (maltotriose)
and 0.960 (water content) and in validation between 0.078
(HMF) and 0.970 (water content).

Water content

The water content of honey is the most important measurand
for the assessment of ripeness and shelf life, as a honey with
a water content higher than 18 g/100 g may be spoiled by
fermentation. The NIR method developed allows an accurate
determination of this component. The repeatability limit rIR

of 0.108 g/100 g is equal to the lowest rRef of 0.110 g/100 g
of the refractometric reference method [16]. Moreover, the

SEP and the R2 in validation are with 0.3 g/100 g and 0.970,
respectively, the best values of the calibrations performed
(Table 2, Fig. 2). The SEP is in the same range between
0.16 and 0.41 g/100 g as shown by a number of authors
[7–13].

Sugars

As honey is a complex mixture of various sugars, it is partic-
ularly difficult to quantify all sugar types present at low con-
centrations by infrared spectroscopy. For the R2 of the main
sugars fructose respectively glucose, sufficiently high coeffi-
cients of determination of 0.810 and 0.884 and low standard
errors both in cross-validation (SECV) and validation (SEP)
of 1.6 and 1.3 g/100 g, respectively were obtained, indicating
that they can be determined by near-infrared spectroscopy
with a satisfying accuracy (Table 2, Fig. 2). The prediction
accuracy of fructose and glucose concentrations found in this
study is comparable to the findings of previous authors [7, 9,
12, 13, 15].

The sucrose content in honey is defined by maximum lim-
its described in Codex Alimentarius [1] and EU [2] standards.
Moreover, it is useful for the determination of the botanical
origin [18]. The prediction accuracy (SEP: 0.36 g/100 g; R2:
0.725) is in the same range as found by Qiu et al. [7] and Ha
et al. [12] allowing a rough estimation of the sucrose content.

The fructose/glucose ratio and the glucose/water ratio are
useful for the identification of the botanical origin of honey
[18, 19]. The prediction of the former with a SEP of 0.09 and
a R2 of 0.820 was accurate but slightly inferior to the findings
of previous studies (SEP: 0.042–0.06) [8, 11, 13]. However,
those calibrations were mainly established with acacia honey
or based on very few samples. The glucose/water ratio could
be predicted with an SEP of 0.12, which is higher than the
one found by Pierard et al. (SEP: 0.047) [13] thus allowing
only a rough estimation.

These two measurands are used for the assessment of
crystallisation tendency of honey. Honeys with a fruc-
tose/glucose ratio higher than 1.3 will crystallize slowly or
remain liquid. Honeys with a glucose/water ratio of 1.7 or
lower will not crystallize. Honeys with a ratio between 1.7
and 2.0 will crystallize slowly within 1 year and honeys
with a glucose/water ratio of 2.1 or greater will crystallize
fast [20–22]. However, the crystallisation tendency of honey
depends also on the amount of seed crystals, heat treatment
and storage conditions [23].

The total monosaccharide content (sum of fructose and
glucose) is useful for the discrimination of some unifloral
honeys and between honeys of nectar and honeydew
origin [18, 24, 25]. The monosaccharide content could be
determined with a satisfying accuracy (SEP: 2.6 g/100 g; R2:
0.768). The squared standard error of prediction of the total
monosaccharide content corresponds to the squared sum of
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Fig. 2 Calibration plots (predicted values in cross-validation)
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the SEP of the individual sugars. Our finding corresponds
to that found for acacia honey (SEP: 1.760; R2: 0.772) by
Cho et al. [8] and by mid-infrared spectrometry (SEP: 2.1;
R2: 0.816) [3].

Minor sugars may contribute to the authentication of some
unifloral honeys [26–30] and to the detection of adulteration
[31–34]. The analysis of the disaccharides maltose, isoma-
ltose, kojibiose, turanose, trehalose and nigerose present
in small amounts as well as the trisaccharides erlose and
melezitose show a SEP between 0.3 and 0.8 g/100 g and
an R2 between 0.149 and 0.664. Concerning gentiobiose,
melibiose and maltotriose no calibration at all could be es-
tablished. This means that near-infrared spectroscopy does
not allow an accurate prediction of these minor sugars (Fig.
2, melezitose). This is caused by the low concentration of
these components, by the insufficient separation of these
sugars by HPLC and the non-specific absorption bands in
NIR.

In a calibration with fewer samples a sufficiently accurate
prediction of maltose (SEP: 0.28 g/100 g; R2: 0.93) was
obtained by Qiu et al. [7].

In the present model, the large number of samples con-
sidered and their diverse botanical origins are assumed to
increase the spectral variability resulting in lower prediction
accuracy. It may be improved when individual calibrations
would be set up for different types of unifloral honeys.
An example may be the good estimation of disaccharides,
trisaccharides and perseitol in avocado honey where the
calibration was restricted to this type of unifloral honey
[15]. In the analytical practice, however, this approach is
not useful as the type of honey is rarely known or even
completely unimportant.

The relatively long optical path of 1.5 mm resulting in very
high absorbances, (low signal to noise ratio in the important
spectral ranges) may explain the lower prediction accuracies
found in the present study [7, 9].

Free acidity

The organic acid content of honey is characterized by its
free acidity. This measurand is useful for the evaluation
of honey fermentation. A maximum of 50 meq/kg is de-
fined by the current quality standards [1, 2]. Furthermore,
it is useful for the authentication of unifloral honeys and
particularly allows differentiating nectar from honeydew
honeys [35, 36]. The reference method using equivalence
point titration is not very accurate because of lactone hy-
drolysis induced during titration. Free acidity in honey
can be predicted by NIR with a moderate accuracy (SEP:
4 meq/kg; R2: 0.737) (Table 2, Fig. 2, free acidity). Our re-
sults confirm the findings of Qiu et al. (SEP: 4.39 meq/kg;
R2: 0.49) [7].

Hydroxymethylfurfural (HMF)

Fresh honey contains only traces of HMF, which is an im-
portant criterion for the evaluation of storage time and heat
damage. Most of the honey samples analysed were fresh
as the median of the HMF content was 5 mg/kg. In order
to extend the calibration range to some severely heat dam-
aged samples with a HMF content of up to 112 mg/kg were
also analysed. For the calibration range studied the predic-
tive power was found to be very low and unreliable (SEP:
13 mg/kg; R2: 0.078). NIR spectroscopy is therefore not ad-
equate for the determination of the HMF content in honey
[10]. More promising findings (SEP: 1.72 and 3.32 mg/kg) of
other authors are restricted to calibrations on the very light
coloured acacia honey where the increase of HMF would
probably positively correlate with a darkening of the colour
during processing [8, 11].

Proline

The proline content in honey is related to the degree of nec-
tar processing by the bees. It is therefore often used as an
indicator of honey adulteration [37]. The coefficient of deter-
mination is rather low (R2: 0.650). The repeatability limit of
the proline determination (rIR = 111 mg/kg) is considerably
higher than the lowest value of the photometric reference
method (rRef = 6.6 mg/kg). The determination of proline by
NIR is therefore not possible (SEP of 125 mg/kg).

Electrical conductivity and pH-value

Electrical conductivity and pH-value reflect the mineral con-
tent, and the hydroniumion activity of honey. The electri-
cal conductivity is used to distinguish between floral and
honeydew honeys according to the current standards [1, 2].
Moreover, it is also the most important physico-chemical cri-
terion for the authentication of unifloral honeys [38–40]. The
pH-value can be used for the discrimination between floral
and honeydew honey [36], for the authentication of unifloral
honeys [19] and for the differentiation of several honeydew
honeys [41].

The non-infrared active characteristics of honey such as
electrical conductivity and pH-value are not accurate in val-
idation, SEP’s being 0.14 mS/cm and 0.3, and R2 of 0.870
and 0.657, respectively (Table 2, Fig. 2, free acidity and
electrical conductivity). These results partly confirm those
obtained by Cozzolino and Corbella (electrical conductiv-
ity SEP: 0.010 mS/cm, R2 0.88; pH-value SEP: 0.21, R2:
0.70) [10]. The repeatability limits of determination by NIR
(rIR 0.274 mS/cm and 0.3) are distinctly different of the
reference methods that are 0.002–0.020 mS/cm respectively
0.11–0.24, indicating the basic difficulty of NIR spectrom-
etry applied to the determination of properties not directly
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related to the gross composition of individual samples even
if the correlation between IR absorption and reference val-
ues is not lower than for the abundant components. This
difficulty arises from the physical principle of the NIR ab-
sorption as a very weak interaction between radiation and
matter as well as the fact that conductivity and pH-value
are properties induced by very small quantities of matter.
The (weak) correlations observed between reference values
and absorption in some spectral regions are examples of sta-
tistical ‘nonsense correlations’. Near-infrared spectroscopy
therefore allows only a rough estimation of the electrical con-
ductivity and pH-value in honey. These two measurands are
highly correlated (r = 0.792; correlation matrix not shown).
This is explained by the fact that the various organic acids in
honey are at least partially dissociated and therefore act as
electrolytes and proton donors.

Validation of a calibration established on the basis
of samples from Switzerland and Germany with
samples from other countries

A new calibration was set up using all samples except those
collected outside Switzerland and Germany. The model was
validated with the remaining 37 samples including polyfloral
honeys from Argentina, Chile, China, Cuba, France, Greece,
Hungary Italy, Mexico, Slovakia, Slovenia and Uruguay. For
the measurands studied, all SEP values decreased consider-
ably thus indicating that for maximum accuracy a calibration
has to be set up with samples representing all honey types
and geographical origins of interest (Table 3).

Conclusions

The calibration models developed proved satisfying accura-
cies for the determination of the content of water, glucose,
fructose, sucrose, total monosaccharides, as well as the fruc-

tose/glucose and glucose/water ratios. The prediction accu-
racies for minor compounds such as HMF and proline, free
acidity and the sugars maltose, turanose, nigerose, erlose,
trehalose, isomaltose, kojibiose, melezitose, raffinose, gen-
tiobiose, melibiose and maltotriose, as well as non-infrared
active measurands such as pH-value and electrical conduc-
tivity were low and unreliable.

NIR showed for most measurands a better repeatability
than mid-infrared spectroscopy (MIR) but only about half
the accuracy [3] partially due to less specific absorption
bands in the near-infrared region. These differences may
also be due to the very high number of samples increasing
the variability within the sample set of the NIR calibration
(various geographical and botanical origins). For more accu-
rate predictions separate calibration models could be set up
for different types of unifloral honeys or at least for the main
types honeydew and floral honeys. However, the botanical
origin of honey is rarely known by the time when quantitative
measurements are performed.

As several of the above-mentioned measurands can be
determined simultaneously with a satisfying accuracy, the
technique is useful as a screening tool for the evaluation of the
botanical origin of honey in combination with pollen analysis
or may even allow a determination of some types of unifloral
honeys by spectroscopic means alone [42]. At least a reliable
differentiation between floral and honeydew honeys can be
assumed as an accurate prediction of polarimetric properties
can be performed [14].

The determination of measurands such as sucrose and
fructose/glucose ratio is valuable for assessing adulteration
by sucrose and to predict honey crystallisation tendency.
However, near-infrared spectrometry does not allow a quan-
titative determination of HMF and enzyme activities, two
criteria particularly important for honey trade, i.e. for the
evaluation of storage and heat damage.

The main advantage of NIR combined with multivariate
calibration algorithms such as PLS is to simultaneously gain

Table 3 Validation statistics of the prediction of measurands of honey samples collected outside Switzerland and Germany based on a calibration
established using only Swiss and German samples

Validation with samples from outside Switzerland and Germany
Measurand Unit Samples in calibration Samples in Validation Number of factors SEP R2 Prediction bias

Water g/100 g 350 37 6 1.1 0.277 0.25
Fructose g/100 g 357 37 6 1.7 0.716 − 0.23
Glucose g/100 g 356 36 9 1.5 0.838 − 0.04
Sucrose g/100 g 352 37 14 1.1 0.071 1.74
Melezitose g/100 g 200 37 13 0.8 0.316 0.30
Fructose/glucose ratio 355 36 9 0.1 0.775 − 0.01
Glucose/water ratio 337 37 9 0.1 0.620 − 0.01
Free acidity meq/kg 339 37 16 7 0.376 13.86
Proline mg/kg 333 37 17 192 0.349 223
Electrical conductivity mS/cm 343 36 14 0.29 0.575 − 0.04
pH-value 340 37 14 0.4 0.330 − 0.62
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quantitative information on several measurands used for
quality control of honey within a short time and a single mea-
surement. Once the calibrations are established NIR spec-
troscopy allows a rapid analysis of the water, glucose, fruc-
tose, sucrose, total monosaccharide content, fructose/glucose
ratio and glucose/water ratio in honey at low cost.
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