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Abstract Synthetic biology has recently provided functional single-cell oscillators.
With a few exceptions, however, synchronization across a population has not been
achieved yet. In particular, designing a cell coupling mechanism to achieve au-
tonomous synchronization is not straightforward since there are usually several dif-
ferent design alternatives. Here, we propose a method to mathematically predict
autonomous synchronization properties, and to identify the network structure with
the best performance, thus increasing the feasibility for a successful implementation
in vivo.

Our method relies on the reduction of ODE-based models for synthetic oscilla-
tors to a phase description, and the subsequent analysis of the phase model either in
the spatially homogeneous or heterogeneous case. This analysis identifies three ma-
jor factors determining if and when autonomous synchronization can be achieved,
namely cell density, cell to cell variability, and structural design decisions. More-
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over, when considering a spatially heterogeneous medium, we observe phase waves.
These waves may hinder synchronization substantially, and their suppression should
be considered in the design process.

In contrast to previous work, we analyze the synchronization process of mod-
els of experimentally validated synthetic oscillators in mammalian cells. Alternative
designs for cell-to-cell communication via a quorum sensing mechanism differ in
few mechanistic details, but these differences have important implications for au-
tonomous synchronization. Our analysis suggests that not only the periodical tran-
scription of the protein producing the signaling molecule, but also of the receptor
protein is necessary to achieve good performance.

Keywords Synchronization · Synthetic oscillators · Kuramoto analysis · Spatial
waves

1 Introduction

Biomolecular clocks can be found in many types of cells. In multicellular organisms,
oscillators residing in individual cells often synchronize their signals with those of
neighboring cells. This requires some communication mechanism between the cells,
upon which they are able to produce a common oscillatory signal, to which each cell
subsequently synchronizes.

In the last decade several synthetic oscillators were constructed that mimic proper-
ties of natural oscillatory networks (Elowitz and Leibler 2000; Atkinson et al. 2003;
Fung et al. 2008; Stricker et al. 2008; Tigges et al. 2009). These synthetic oscilla-
tors have helped broadening our understanding of the intrinsic dynamics of natural
oscillators, due to their relative “simplicity.”

In principle, it is possible to synchronize synthetic single-cell oscillators, and a
synthetic oscillator with the ability of autonomous synchronization was recently en-
gineered in Escherichia coli (Danino et al. 2010). By using a microfluidic device, the
authors showed the dependencies between the synchronization process and changing
flow conditions. However, the rational design of systems that allow synchronization
of entire cell populations remains a challenge, as much as prediction mechanism as-
sessing the synchronization properties of alternative designs.

Previous theoretical works in the field often focused on abstract or simplified os-
cillator models, for instance, to compare attractive, repulsive, and stochastic cou-
pling of populations of relaxation oscillators, smooth oscillators, and stochastic os-
cillators (Zhou et al. 2008). These studies typically rely on numerical simulations,
such as the analysis of the transition of a multicellular clock of coupled repres-
silators to synchrony that identified a minimal cell density as a requirement for
synchronization (Garcia-Ojalvo et al. 2004; Misra and Mitra 2008). Similar meth-
ods, combining theory and experimentation, were applied to populations of cou-
pled chemical oscillators (Taylor et al. 2009). However, few analytic approaches
to the synchronization problem exist. Model simplification and classical dynamic
systems analysis of nullclines or bifurcations were used as alternative approaches
to study synchronization in genetic relaxation oscillators (McMillen et al. 2002;
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Kuznetsov et al. 2004) and in simplified circadian clock models (Gonze et al. 2005;
Locke et al. 2008), but these methods are limited to low-dimensional systems. Other
previous works employed the Lur’e system approach to derive sufficient conditions
for robust synchronization of coupled repressilators under stochastic perturbations
(Li et al. 2007). Contraction theory was applied by Russo and di Bernardo (2009) to
develop a method for the construction of synthetic biological clocks, and to apply it
to a system of coupled repressilators (see also Wang and Slotine 2005). Lastly, multi-
stability, clustering and noise-induced suppression of synthetic biological relaxation
oscillators have been analyzed by Koseska et al. (2007a, 2007b).

Even though these studies provide valuable information about populations of syn-
chronizing biomolecular oscillators, such as the effects of noise (e.g. Li et al. 2007;
Zhou et al. 2008) or cell density (e.g. Zhou et al. 2008; Garcia-Ojalvo et al. 2004),
a quantitative approach allowing for the comparison of synchronization performances
of different network structures of synthetic oscillators is still missing. Thus, the de-
sign process has to rely on vast numbers of simulations that do not reveal underlying
reasons for good or bad performance, and their interplay (e.g. Misra and Mitra 2008;
Zhou et al. 2008). Furthermore, cell-to-cell variability leading to a distribution of
eigenfrequencies of the oscillators is often solely addressed by the addition of white
noise (e.g. Russo and di Bernardo 2009; Zhou et al. 2008), the cell environment
is assumed to be well mixed (e.g. McMillen et al. 2002; Kuznetsov et al. 2004),
and only requirements for full synchronization are derived (e.g. Li et al. 2007;
Russo and di Bernardo 2009). In cases where partial synchronization is sufficient,
these requirements might be too conservative.

In this article we develop a method that enables us (a) to analyze the properties of
different possible network structures of synchronizing oscillators, (b) to determine the
synchronization performance and, hence, (c) to systematically find the best network
structure that may be implemented in vivo. Analysis of a generalized model enables
us to deduce the major factors determining if a population of oscillators synchronizes,
and to optimize the network structure and the parameter values one is able to modify.
In addition, we analyze how spatial effects influence the synchronization. We explain
the emergence of spatial phase waves whose suppression might be a crucial design
requirement for naturally evolved as well as for engineered systems.

Our method is exemplified by analyzing and comparing three models of the mam-
malian oscillator recently developed by Tigges et al. (2009). The previously published
model is extended differently by parts of the quorum sensing mechanism of Vibrio
fisheri. We adapt this signaling mechanism to exchange phase-related information
between the cells.

This article is organized as follows. In Sect. 2 we introduce a generalized normal
form for chemically coupled synthetic oscillators and derive a formula quantifying
the synchronization performance of a network in the normal form. We exemplify our
results in Sect. 3 by calculating the synchronization performance of three competing
network structures of coupled mammalian oscillators. In Sect. 4 we show that when
the extracellular medium is not well mixed, spatial phase waves can occur, which
may hinder synchronization significantly. Finally, in Sect. 5 we illustrate these phase
waves with the help of spatial simulations of the population of coupled mammalian
oscillators.
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2 Synchronization Performance

Most synchronizing networks of synthetic oscillators have structural similarities.
Commonly the network in cell i, where i = 1, . . . ,N , consists of a set of intracel-
lular species xi (e.g. mRNAs and proteins) that form the core oscillator. If the core
oscillator was implemented alone, each cell would exhibit regular oscillations, but it
would not synchronize to other cells. To allow the cells to synchronize, the network is
extended by a signaling molecule si . This signaling molecule can diffuse through the
cellular membrane and it is used to transfer information about the current phase of the
oscillator in cell i to surrounding cells. Inside the cell, si can react with one or more
of the intracellular species xi , driving the phase of the oscillator towards synchrony
with the other cells.

In the following we propose a standard form to which many of the recently
published models (McMillen et al. 2002; Garcia-Ojalvo et al. 2004; Kuznetsov
et al. 2004; Li et al. 2007; Zhou et al. 2008; Russo and di Bernardo 2009) of au-
tonomously synchronizing cellular oscillators can be generalized. We show that all
models compatible with this standard form and fulfilling some additional require-
ments can be reduced to their respective phase description. The phase description
was primarily developed by Winfree (1967) and Kuramoto et al. (Kuramoto 1984;
Kuramoto and Nishikawa 1987; Strogatz 2000). It is a simplified representation of
the model by only one state per oscillator, the phase φ, which represents the current
position of the oscillator on its limit cycle.

2.1 Background: Phase Description

Kuramoto (1984) introduced a general system of N � 1 mutually coupled oscillators
that is mathematically described by

d

dt
Xi = Fi (Xi ) −

N∑

j=1

Vi,j (Xi ,Xj ), i = 1, . . . ,N, (1)

where Xi is the state vector of the ith oscillator, Fi its autonomous dynamics, and
Vi,j a function describing the coupling between the ith and the j th oscillator. Each
oscillator is assumed to have similar dynamics

Fi (Xi ) = F(Xi ) + �Fi (Xi ), with �Fi (Xi ) small, (2)

and the coupling between the oscillators has to be weak (meaning Vi,j is small).
Furthermore, it is required that a hypothetical uncoupled oscillator with nominal dy-
namics

d

dt
X = F(X), (3)

to which we shall refer as the nominal oscillator, has to have a stable and robust limit
cycle C with an associated period length T . In this context robust means that the
states of the real oscillators (1) stay in a small vicinity of this limit cycle. Every state
X0 ∈ C on the orbit C is associated with a distinct scalar variable, namely its phase φ.
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The mapping of the phase φ ∈ [0, T ) to its associated state X ∈ C , X0 : [0, T ) → C is
defined such that the phase φ0 of the nominal oscillator linearly increases with time:

∂φ0

∂t
= 1. (4)

The mapping X0(φ) can be obtained by simulating the nominal oscillator (3) for one
period length T , starting at an arbitrary time t0 after it has reached the limit cycle C ,
and setting φ := t − t0.

To also associate a phase with every state of the non-nominal oscillators (1), the
phase reduction method of Kuramoto (1984) is based on perturbation theory, where
�Fi and Vi,j are interpreted as small perturbations to the nominal dynamics F. The
phase φi of an oscillator (1) can then be approximated by

d

dt
φi = 1 + Z(φi)

(
�Fi

(
X0(φi)

) −
N∑

j=1

Vi,j

(
X0(φi),X0(φj )

)
)

, (5)

with Z(φ) = gradX φ|X=X0(φ) being the phase-dependent sensitivity.
Due to weak coupling, the effect of the small perturbations on the phase φi of the

ith oscillator can be averaged over one period T . This results in

d

dt
φi = 1 + �ωi −

N∑

j=1

Γi,j (φi − φj ), i = 1, . . . ,N, (6)

with Γi,j the coupling function and ω = 1 + �ωi the eigenfrequency of the ith oscil-
lator:

Γi,j (�φi,j ) = 1

T

∫ T

0
Z(τ + �φi,j )Vi,j

(
X0(τ + �φi,j ),X0(τ )

)
dτ, (7a)

�ωi = 1

T

∫ T

0
Z(τ )�Fi

(
X0(τ )

)
dτ. (7b)

The values of Γi,j (�φi,j ), �φi,j = φi − φj , may be interpreted as follows: if
Γi,j (�φi,j ) > 0 the frequency of the ith oscillator decreases due to its coupling to
the j th oscillator, and if Γi,j (�φi,j ) < 0 the frequency increases. One can expect
an attractive coupling of the oscillators if Γi,j increases around the origin, and a re-
pulsive coupling if Γi,j decreases. In general, the larger the absolute minimal and
maximal values of Γi,j , the higher the chance that a population of coupled oscillators
synchronizes, and the better the synchronization results. Moreover, to achieve good
robustness properties, it is additionally favorable that Γi,j should be approximately
(point-) symmetric for phase differences larger than zero in absolute value.

Even though all systems of coupled oscillators of the form of (1) satisfying the
conditions mentioned above can be reduced to their phase description (6), this de-
scription is too complex to be analyzed analytically. Kuramoto (1984) thus concen-
trated on a special case of (6), where the coupling function has the following form:

Γi,j (φi − φj ) = 1

N
κ sin

(
φi − φj

T

)
, (8)
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with κ ∈ R+ being the coupling strength. Furthermore, the distribution Π(ω) of the
eigenfrequencies is assumed to be symmetric and known, with Πmax denoting its
maximum.

The order parameter 
 is introduced as a measure for the synchronicity of a pop-
ulation of oscillators, defined as


(t) = 1

N

∣∣∣∣∣

N∑

i=1

exp
(
iφi(t)

)
∣∣∣∣∣, with i2 = −1. (9)

For a uniformly synchronized population, the order parameter 
 is one, whereas for
a completely desynchronized population, it is zero. By calculating the bifurcation
point when the unsynchronized steady state of a population of oscillators (
 = 0)
becomes instable, Kuramoto (1984) was able to conclude that the following equation
has to be satisfied for a population of oscillators to synchronize:

π

2
Πmaxκ > 1. (10)

2.2 Generalized Standard Form

We analyze ordinary differential equation (ODE) models of chemically coupled syn-
thetic oscillators in the following standard form:

(
d
dt

xi

d
dt

si

)
=

(
f(xi , θi) + g1(xi , si , θi)

g2(xi , si , θi) − kDsisi − η(si − se)

)
, i = 1, . . . ,N, (11a)

d

dt
se = Vcell

Vsuspension

N∑

i=1

η(si − se) − kDsese, (11b)

with Vcell and Vsuspension the volume of a single cell and the total suspension vol-
ume, si and xi the concentrations of the signaling molecule and the other molecular
species inside the ith cell, se the concentration of the signaling molecule in the ex-
tracellular space, η the diffusion rate constant of the signaling molecule through the
cell membrane, and kDsi and kDse the degradation rate constants of the signaling
molecule inside the cell and in the extracellular space, respectively. The dynamics
of the species xi and their interactions with the signaling molecule si are described
by the functions f, g1 and g2. We assume that each oscillator has a different set of
parameters θi , which are distributed around a nominal set of parameters θ0 with an
associated set of probability density functions p(θ;σ), where σ denotes parameters
describing the shape of p. First, we assume that the extracellular space is well mixed,
so that the extracellular signaling molecule se has no spatial dependencies.

The standard form (11) can be interpreted as follows: The dynamics f alone rep-
resent the dynamics of the core oscillator, when it is not coupled to other oscillators.
Often a small network solely containing the dynamics f of the core oscillator is al-
ready implemented in vivo and the idea is to modify it in such a way that the oscil-
lators can synchronize. This is done by extending the network to the form of (11) by
adding a small signaling molecule to enable cell–cell communication.
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The dynamics g1 and g2 then represent the state-dependent production rates of
the signaling molecule si , and its reactions with the species xi of the core oscilla-
tor, respectively. The signaling molecule can diffuse between the intracellular and
extracellular space. The net flux of signaling molecules through the membrane of the
ith cell is thus proportional to the difference in the intra- and extracellular signaling
molecule concentrations, as represented by the terms η(si − se) in (11a) and (11b).
The degradation rate constant kDse in the extracellular space can be different from the
intracellular one (kDsi ). A non-zero flow velocity of the extracellular medium as well
as active degradation of se (e.g. due to quorum quenching, see Waters and Bassler
2005) make it possible to alter the value of kDse and thus to potentially fine-tune
synchronization performance in the experimental setup.

In the following, we will speak of S = (f,g1, g2)
T as the network structure, of ρ =

N
Vcell

Vsuspension
as the cell density, and of σ = (σ1, σ2, . . .)

T as the cell-to-cell variability.
As was mentioned above, the core oscillator is already constructed in vivo in many

setups, and often there are logical choices for the signaling molecule si . The question
is then: how can one choose the coupling terms g1 and g2 to achieve best synchro-
nization performance?

2.3 Requirements

To transform a model in the standard form (11) to its phase representation, and to
analyze this representation with the methods developed by Kuramoto (1984) (see
Sect. 2.1), several requirements have to be fulfilled. Many of these requirements are
directly related to those of the method of phase description, but reformulated in terms
of our standard form. We are only interested in determining whether a population of
cells that is initially desynchronized will synchronize, as opposed to describing the
entire synchronization process. Therefore, we can relax some of the requirements.
This is especially important due to the high degree of nonlinearity inherent in most
molecular oscillators, which might lead to significantly different oscillatory behaviors
dependent on the degree of synchronization.

For a nearly completely desynchronized population of cells (
 � 1), the external
signaling molecule se will only slightly oscillate around its steady-state value for a
large enough amount of cells (N � 1). The focus on the onset of synchronization al-
lows us to essentially ignore that the shapes of the limit cycles Ci as well as the period
lengths Ti of the oscillators may vary when the order parameter increases. Thus, we
can linearize the limit cycles around the steady-state value of se . As in Sect. 2.1, these
limit cycles Ci have to be robust and similar to each other, a property which can many
times only be validated numerically (see Supplementary Information). Furthermore,
the coupling between the oscillators has to be weak during the onset of synchroniza-
tion and the distribution of the eigenfrequencies of the oscillators should be unimodal
and approximately symmetric.

To be able to transform our general form to its phase representation, it is required
that at the onset of synchronization, namely when se oscillates slightly, the power of
the higher harmonics of se should be small compared to the power of the first har-
monic. Higher harmonics of the oscillations of the intracellular signaling molecule
concentrations si are likely to cancel each other out when mixing in the extracellular
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space after diffusing through the cell membrane (11b), as shown in the Supplemen-
tary Information.

2.4 Transformation into the Phase Representation

The first step of the transformation of the standard form (11) to its phase represen-
tation is based on the elimination of se in the generalized model (11). For some net-
works it is appropriate to assume a quasi steady state (QSSA) in the dynamics of se.
However, this assumption might break down for low cell densities ρ, or if the period
length Ti of the oscillators or the degradation rate constant kDse of the extracellular
signaling molecule se are too small. In these cases, se will oscillate with a lower am-
plitude in the exact solution than obtained by the QSSA, and it will have a nonzero
phase delay ϕ1 �= 0. The cell density-dependent phase delay can result in a network
structure with optimal performance for certain intervals of the cell density ρ only.
To account for this effect, we take advantage of the linearity of (11b) and use an ap-
proach based on a frequency domain analysis (for the complete derivation refer to the
Supplementary Information). With this approach the generalized model (11) can be
approximated by

(
d
dt

xi

d
dt

si

)
=

(
f(xi , θi) + g1(xi , si , θi)

g2(xi , si , θi) − k̂Dsi(si) + A1(ρ)η
N

∑N
j=1(sj (t − �t1(ρ)) − s)

)
, (12)

with

k̂Dsi(si) = (kDsi + η)si − ηA0(ρ)s, (13a)

A0(ρ) = ηρ

kDse + ηρ
, (13b)

A1(ρ) = ηρ√
4π2

T 2 + (kDse + ηρ)2
, (13c)

ϕ1(ρ) = arctan
2π

T (kDse + ηρ)
, (13d)

�t1(ρ) = T

2π
ϕ1(ρ) = T

2π
arctan

2π

T (kDse + ηρ)
, (13e)

with s the mean concentration of si . The value of k̂Dsi represents the effective degra-
dation rate of si , caused by the physical degradation and by the net transport of si
through the cell membrane for constant se . An example of how the values of A0(ρ),
A1(ρ) and �t1(ρ) change for increasing or decreasing cell densities ρ can be found
in Fig. 1. It is worth noting that a QSSA would result in A1 = A0 and �t1, ϕ1 = 0 ∀ρ.

The nominal oscillator corresponding to (11) has nominal parameter values θ0 and
it is part of an infinitely large population of completely desynchronized oscillators
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Fig. 1 Dependence of A0 (black dashed, top), A1 (blue solid, top) and �t1 (blue solid, bottom) on the cell
density ρ for oscillations with a period length of T = 20 h, a degradation rate constant of the extracellular
signaling molecule se of kDse = 0.005 min−1, and a diffusion rate constant of η = 2 min−1 (see (13))

(N → ∞):
(

d
dt

x
d
dt

s

)

︸ ︷︷ ︸
=: d

dt
X

=
(

f(x, θ) + g1(x, s, θ)

g2(x, s, θ) − k̂Dsi(s)

)

︸ ︷︷ ︸
=:F(X)

. (14)

From the definition of k̂Dsi (13a) it follows that not only the parameters A1 and
ϕ1 (13) but also the dynamics of the nominal oscillator (14) might change with cell
density. For certain network designs this can substantially change the dynamics of the
nominal oscillator, which might eventually lead to the cancellation of—synchronized
or unsynchronized—oscillations at certain cell densities. In general this effect is not
desirable, but it can be reduced by a corresponding change in network design (see
Sect. 3).

Following the approach used in Brown et al. (2004), the phase sensitivity Zs(t) is
approximated numerically by using finite differences. It is obtained by perturbing s

(14) by a small value �s at time t ∈ [0, T ), and the phase difference, as compared to
an unperturbed oscillator, is determined after the perturbed oscillator has returned to
its orbit C . The shape of Zs(t) can be approximated by solving the following implicit
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equation for a sufficiently high number of times tj ∈ [0, T ):

Zs(tj )F
(
X0(Tend)

) = Xpert,tj (Tend) − X0(Tend)

�s
, (15)

with X0 = (x0, s0)
T the overall dynamics of the unperturbed oscillator, Xpert,tj =

(xpert, spert)
T the overall dynamics of the oscillator perturbed at time tj , and �s the

size of the perturbation.
We are now able to calculate the coupling function Γ (see (7a)):

Γ (�φi,j + �t1) = −A1η

N

1

T

∫ T

0
Zs(τ + �φi,j + �t1)

(
s(τ ) − s

)
dτ. (16)

By approximating Γ with a sine we obtain the two parameters representing the im-
pact of the oscillator’s structure S on the synchronization performance, the coupling
strength K1(S) and the coupling timing λ(S):

Γ (�φi,j + �t1) ≈ A1η

N

(
K0 + K1 sin

(
2π

T
�φi,j + λ + ϕ1

))
. (17)

The value of K0 should only deviate slightly from zero (‖ηA1K0‖ � 1). If this is not
the case it is likely that the value of s (see (12)) was not chosen correctly and should
be adjusted.

Thus, our standard form (11) has the phase representation

d

dt
φi = 1 + �ωi − ηA1(ρ)K1(S)

N

N∑

j=1

sin

(
2π

T
(φi − φj ) + λ(S) + ϕ1(ρ)

)
. (18)

As in Sect. 2.1, the distribution Π(ω,σ) of the eigenfrequencies and its maxi-
mum value Πmax(σ ) have to be known. In our setup they are fully determined by the
probability density functions p(θ, σ ) of the distributions of the parameter values θi .
For most models it is impossible (or too time-consuming) to calculate the distribution
Π(ω,σ) of the eigenfrequencies of the oscillators directly from the distributions of
the parameter values ((2) and (7b)). One then may use a Monte Carlo experiment and
the relation

ωi = 1 + T − Ti

Ti

(19)

for approximating the shape and the maximum of Π(ω,σ). Alternatively, if the core
oscillator is already implemented in vivo, Π(ω,σ) can be obtained by measuring the
eigenfrequencies directly.

By using the results of Kuramoto (1984) on the requirements for the onset of
synchronization of a network in its phase representation ((10), with κ = A1ηK1) we
propose a measure for the synchronization performance in the following section (for
a more detailed derivation, please refer to the Supplementary Information).
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2.5 Synchronization Performance

For the generalized model of autonomously synchronizing oscillators (11) fulfilling
the requirements described in Sect. 2.3 we can expect the onset of synchronization if
the synchronization performance Σp is greater than one:

Σp := π

2
Πmax(σ )ηA1(ρ)K1(S) cos

(
λ(S) + ϕ1(ρ)

)
> 1. (20)

The synchronization performance is a measure of the distance of a network from its
bifurcation point, which lies at Σp = 1. In general, the higher the value of the syn-
chronization performance Σp , the better the expected synchronization outcomes and
the higher the robustness (Kuramoto 1984). Thus, if one can choose between several
possible network alternatives, the one with the highest synchronization performance
Σp is the most promising candidate to show good synchronization properties.

Three parameters—the cell density ρ, the network structure S , and the cell-to-
cell variability σ—determine whether a population of chemically coupled cells (11)
will synchronize. All of them have a multiplicative effect on the synchronization
performance. Parameters ρ and S have an additional joint relevance: the sum of λ(S)

and ϕ1(ρ) can be thought of as the coupling timing which determines if the oscillators
are coupled attractively (−π

2 < λ + ϕ1 < π
2 ) or repulsively (‖λ + ϕ1‖ > π

2 ). Since
good synchronization performance can only be expected if the coupling timing is
close to zero, the range of cell densities at which the synthetic oscillators operate
should be defined prior to the search for the best network structure, as mentioned
above.

The value of the synchronization performance might be biased for high values of
‖λ+ϕ1‖ (see Supplementary Information). However, since only networks with small
coupling timings can be expected to show good synchronization results, network de-
signs with high coupling timings are normally discarded.

The possibility to identify the influence of the cell-to-cell variability σ , the cell
density ρ and the network structure S on the synchronization performance and to
predict if a given network of oscillators will synchronize are the main benefits of uti-
lizing our method. We can thus identify the network structure with the best expected
synchronization properties, but also systematically optimize a network structure for
synchronization. For most networks, the cell-to-cell variability σ is hard to influence,
while the cell density ρ is determined by cell culture properties and the intended
application of the synthetic network. Thus, in the engineering process one should
choose a network structure which maximizes K1 and minimizes the absolute value
of λ + ϕ1.

3 Example: Synchronization Performances of Three Different Networks of
Mammalian Oscillators

3.1 Biological and Mathematical Setup

We consider three different network structures (S1, S2, and S3) of autonomously syn-
chronizing synthetic mammalian oscillators. The networks consist of a core oscillator
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Fig. 2 Scheme of the structure of the oscillator models (S1, S2 and S3) allowing autonomous synchro-
nization of a population of oscillators through the autoinducer (red circle). The autoinducer is produced by
LuxI, detected by LuxR, and can freely diffuse through the cell membrane. Solid black arrows: Transcrip-
tion and translation. Dotted black and red arrows: Transcriptional activation. Dotted black “bar shaped”
arrow: The antisense mRNA binds to the tTA mRNA. In the complex, the tTA mRNA is translationally
inhibited. Dash-dotted black arrows: Production of the autoinducer, diffusion of the autoinducer through
the cell membrane and dimerization of the autoinducer with the LuxR receptor protein. The transcriptional
activation represented by the red arrows is only present in the respective models indicated by the numbers
above the arrows

that is based on the existing synthetic oscillator of Tigges et al. (2009) in a combi-
nation with a communication module that incorporates parts of the quorum sensing
mechanism of Vibrio fisheri (Goryachev et al. 2006).

The core oscillator (see Fig. 2) consists of two proteins, the tetracycline-dependent
transactivator (tTA) and the pristinamycin-dependent transactivator (PIT), their re-
spective mRNAs, and a tTA antisense mRNA. An antisense mRNA is a non-coding
mRNA which has a complementary nucleotide sequence to its respective sense
mRNA. The tTA antisense mRNA can bind to the tTA sense mRNA and thus de-
activate its translation. Both the transcription of tTA mRNA and PIT mRNA is driven
by the tTA protein, while the transcription of the tTA antisense mRNA is driven by the
PIT protein. Furthermore, a reporter fluorescence protein is included in the network.
Its gene has the same promoter as the tTA gene and is thus transcribed approximately
at the same rate. Overall, thus, the core oscillator incorporates two feedback loops:
a positive feedback via tTA and a time-delayed negative feedback through tTA and
PIT. For more details on the core oscillator please refer to Tigges et al. (2009).

We extended the core oscillator to enable cell-to-cell communication through the
production of an entraining extracellular signal. This is achieved by an additional
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feedback loop utilizing the quorum sensing mechanism of the marine bacterium Vib-
rio fisheri, consisting of two genes encoding the sender protein LuxI and the receptor
protein LuxR. It has been shown that LuxR type proteins from bacteria can be engi-
neered to also function as signal-dependent transcription factors in mammalian cells
(Shiner et al. 2004). In all three models the transcription rate of the LuxI gene depends
on the phase of the core oscillator through the PIT transcriptional activator. Since the
LuxI protein synthesizes the autoinducer (3OC6HSL, a small signaling molecule),
the concentration of the autoinducer will oscillate with the same frequency as the
core oscillator, but with a phase shift depending on the dynamics of the transcription,
translation and degradation of LuxI, and on the production and degradation rate of
the autoinducer. Moreover, LuxR and the autoinducer form a complex that can be
used as a transcriptional activator for additional genes.

A sensitivity analysis of the core oscillator revealed that its frequency is most sen-
sitive to changes in the concentration of the antisense mRNA. This can be interpreted
as follows: tTA activates its own transcription and it is bistable for certain concen-
trations of the antisense mRNA. When the antisense mRNA produced by the core
oscillator is interpreted as the input and tTA as the output of the bistable subnetwork,
its characteristic curve is a hysteresis. By adding antisense mRNA, the characteris-
tic curve is shifted to the left and, by removing it, back to the right. By shifting the
thresholds of the hysteresis at the right time, the oscillations can either be delayed
or accelerated, which explains the high sensitivity of the frequency to perturbations
in the antisense mRNA. Hence, in all three models we combined the gene of the an-
tisense mRNA with a promoter activated by the receptor-autoinducer complex (see
Fig. 2).

The difference in the three models arises from different activation mechanisms of
LuxR transcription. In model S3 the LuxR gene is constitutively transcribed, whereas
in models S1 and S2 the molecular species tTA and PIT are used as transcriptional
activators, respectively. This results in either no oscillations in the concentrations of
LuxR (S3) or in oscillations with different phase shifts compared to the core oscillator
(S1 and S2).

It is known that variations in the plasmid copy numbers are the major source for
differences in the parameter sets of oscillating cells (see Tigges et al. 2009). Thus,
in all three models, every oscillator has distinct plasmid copy numbers, while we
assume that all the other parameters have the same values in every cell. In order to
minimize the effect of the uncertainty in the copy numbers, we combine the genes of
the core oscillator on plasmid PA and the genes of the communication mechanism on
plasmid PB . The complete mathematical description of the dynamics of the models
S1–S3 can be found in the Supplementary Information.

3.2 Synchronization Performance of the Three Network Alternatives

All three network alternatives (see Supplementary Information) are in the form
of (11), with si and se the intra- and extra-cellular autoinducer concentrations, and
xi the state vector of cell i containing all the other species. The requirements for the
application of our method (see Sect. 2.3) are validated in the Supplementary Infor-
mation. We can thus approximate the respective synchronization performances Σp,1,
Σp,2 and Σp,3 of S1, S2 and S3 by using (20).
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Fig. 3 The coupling functions Γ (�φi,j + ϕ1(ρ)) for the different models S1 (blue solid), S2 (red
dash-dotted), and S3 (green dotted). Curves: Approximations of the synchronization forces by sines.
Crosses: Data points calculated numerically, as described in Sect. 2.4

The dynamics of each oscillator are approximately T -periodic, with T ≈ 20 h.
In the following the cell density is set to ρ = 1/150, which will fix the density-
dependent variables (see Sect. 2.4) to A0 = 0.7278, A1 = 0.6999 and �t1 = 0.669 h.

Figure 3 shows the respective shapes of the coupling function Γ (see (16)) ob-
tained as described in Sect. 2.4. We approximate Γ for the different models with sine
functions (see (17)) to obtain the values for K1 and λ describing the influence of
the network structure on the synchronization performance. For model S1 we obtain
the values K1(S1) = 0.015 min and λ(S1) + ϕ1(ρ) = −0.24, for model S2 the val-
ues K1(S2) = 0.016 min and λ(S2) + ϕ1(ρ) = −0.41, and for model S3 the values
K1(S3) = 0.014 min and λ(S3) + ϕ1(ρ) = −0.79. For each model the value of K0 is
negligible.

Note that the value of the coupling strength K1 is very similar for all three models,
whereas the coupling timing λ + ϕ1(ρ) of model S3 is substantially higher than the
ones of S1 and S2, decreasing the synchronization performance of S3 significantly
(see (20)).

Lastly, we obtained the distribution ΠS1,2,3(ω,σ ) of the eigenfrequencies ω and
their maximums Πmax,S1,2,3(σ ) by Monte Carlo experiments with 5000 samples. The
parameters with the largest fluctuations between different cells (and therefore the
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Fig. 4 Synchronization performances Σp,i (σ ), i = 1, . . . ,3, of the models S1 (blue solid), S2 (red
dash-dotted) and S3 (green dotted) for different values of the standard deviation σ of the plasmid copy
numbers. The curves are power-law fits to the data (markers). Above the black line one can expect the
onset of synchronization as determined by (20)

determining factors for the distribution of the eigenfrequencies ω) are the copy num-
bers of the plasmids PA and PB (Tigges et al. 2009). Because no sufficient models for
plasmid infection exist, we assume the numbers of plasmids per cell to be uncorre-
lated and normally distributed around their nominal values with standard deviation σ .
Experimental data for σ is not available, and by consequence most of the results in
this article are obtained for various standard deviations. For zero standard deviation
Πmax(σ ) is infinitely large and it monotonically decays for increasing values of stan-
dard deviation ( d

dσ
Πmax(σ ) ≤ 0).

We are now able to calculate the synchronization performance of all three models
for different values of σ by applying (20) (see Fig. 4). Our theory predicts that the
network S1 will synchronize if the standard deviation σ of the plasmid copy numbers
is smaller than approximately 18%. For network S2 we predict synchronization for
σ < 11% and for S3 for σ < 3%. However, note that for S3 the value of the coupling
timing λ + ϕ1 is relatively high. Thus, the value of the synchronization performance
might be biased (see Sect. 2.5).

Network S1 thus shows the best synchronization performance, whereas net-
work S3 is least suitable for autonomous synchronization. Besides the high value of
λ(S3) + ϕ1(ρ), yet another effect decreases synchronization performance: In an un-
synchronized population of cells where the extracellular autoinducer concentration
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shows only small deviations from the mean value, the eigenfrequencies of S3 have a
higher dependency on the mean extracellular autoinducer concentrations, than those
of models S1 and S2. For all three models cells stop oscillating if the extracellular
autoinducer concentration is too high. However, for model S3 this point is reached al-
ready at a concentration of approximately 50 nM, in contrast to approximately 75 nM
for the other two models. The reason for this is the constitutive transcription of LuxR:
if the mean autoinducer concentration has a high average value, a high amount of the
antisense mRNA is transcribed constitutively in network S3 and the oscillators are
likely to have a longer period, or even to stop oscillating altogether. On the other
hand, even if the mean concentration of the autoinducer is relatively high in mod-
els S1 and S2, the oscillations are not interrupted, since the receptor protein LuxR
is only transcribed if the oscillator is not blocked. An oscillating receptor protein
concentration can thus increase robustness of the network, and lead to more homoge-
neous eigenfrequencies of the oscillators. We expect this result to be also applicable
to other networks of synchronizing oscillators.

A larger absolute value of the coupling timing λ(S) + ϕ1(ρ) results in increased
(λ(S)+ϕ1(ρ) < 0) or decreased (λ(S)+ϕ1(ρ) > 0) frequencies of the oscillators of
the mean field at the onset of synchronization. Our simulations (data not shown) in-
deed suggest that the frequency of the mean field of model S3 increases significantly
after synchronization, compared to the mean value of the eigenfrequencies of the os-
cillators. However, the frequency of the mean field of the other two models decreases
during synchronization, suggesting that other effects not considered in our approx-
imations might have some impact. Since our analysis concentrates on the onset of
synchronization and it is not able to describe the complete synchronization process,
a theoretical explanation for this effect is not provided.

3.3 Simulation Results

To validate the results obtained in the previous sections we ran several simulations of
the models S1, S2 and S3. A plot showing the evolution of the reporter fluorescent
protein concentration over time for model S1 can be found in the Supplementary
Information.

To make the simulation data comparable to the theoretical results obtained in the
previous section, we estimated the phase φi of an oscillator from the simulation data.
We used the analytic signal concept (Rosenblum et al. 2001), assuming an approxi-
mately sinusoidal evolution of the concentration of the reporter protein Ga,i :

A(t) exp
(
iφi(t)

) = Ga,i(t) + H
(
Ga,i(t)

)
, (21)

with H being the Hilbert transform, Ga,i the concentration of the active fluorescent
protein in the ith cell, and i2 = −1 the imaginary unit.

Solving (21) for φi , i = 1, . . . ,N , yields the distribution of φi for different times.
A typical example for the temporal evolution of the distribution of phases of model
S1 initialized with a non-synchronized population of 1000 oscillators is shown in
Fig. 5. After about 20 oscillation periods the cells can be considered synchronized.

Contrary to the theory (Kuramoto 1984), the order parameter 
 calculated numer-
ically with the help of (21) and (9) does not reach a steady state in our simulations.
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Fig. 5 Synchronization process of model S1. The simulation is based on a population of 1000 oscillators
with Gaussian distributed plasmid copy numbers with a standard deviation of 15% of their nominal values.
The plot shows the distribution of the phases φi ∈ (−π,π ], i = 1, . . . ,N , of the oscillators at different
times during the simulation. The oscillators were initialized to have approximately uniformly distributed
phases and synchronize rapidly after the simulation started. For convenience, we shifted the distributions
of the phases so that their maxima are at zero for every timestep

Instead, it shows regular small amplitude oscillations around some mean value with
the same period length T as the nominal oscillator (see Supplementary Information).
These oscillations have several reasons: The “strength” with which a single oscillator
is forced towards synchrony does not only depend on the difference in phase com-
pared to the other oscillators, but also on the phase itself. This effect cannot be seen
in the theory since the “strength” is averaged over one period (7). However, the ma-
jor influence is probably the reconstruction of the phase of an oscillator (21) that is
biased if the oscillations are not exactly sinusoidal. In the following we will thus take
the mean value of 
 after the decay of the initial conditions as an approximation for
its steady-state value.

We analyzed how the (averaged) steady-state value of the order parameter 


changes for different standard deviations σ of the plasmid copy numbers. For small
standard deviations, the order parameter reaches a value close to one after the decay
of the initial conditions (see Fig. 6). For high standard deviations, the order parame-
ter decreases until it reaches an approximate steady value. The theory suggests that
this steady value is zero (Kuramoto 1984). However, this is only true for an infinite
number of oscillators. For a finite number of oscillators there are almost always a few
oscillators that are synchronized by chance, and these ‘perturbations’ away from a
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Fig. 6 The order parameter 
(σ) as a function of the standard deviation σ of the plasmid copy num-
bers for the three network designs. For each standard deviation σ we run long-time simulations with a
population of 2000 oscillators each. Since the order parameter is not constant after the decay of the initial
conditions (see text), we display its mean value. Gray lines show the interpolations for order parameters
of 1√

2

completely non-synchronized state decay only slowly, so that the mean value of the
order parameter never reaches zero.

We then approximated the evolution of the steady-state value of the order para-
meter by splines of the type 
(σ) ≈ max(σ0, 1 − aσ k), and calculated the critical
standard deviations σC where the order parameter decreases below 1√

2
. We obtained

a σC value of approximately 0.18 for model S1, 0.14 for model S2, and 0.05 for
model S3. The values are in good agreement with the theoretical results obtained in
Sect. 3.2, which predicted values of around 0.18 for S1, 0.11 for S2 and 0.03 for S3
(see Fig. 4). This illustrates that we can use the theory developed in the previous sec-
tions to distinguish between different network structures in order to find the structure
with the best synchronization properties, as well as to predict the synchronization
performance without the need for time-consuming simulations.

To explore the robustness of the network structure S1, as well as to further test
the predictive power of the synchronization performance on the synchronization out-
come, we performed a parameter space exploration (see Supplementary Information).
We perturbed the parameters for which the model showed the highest sensitivity by
varying them between 50 and 200% of their original value. For each perturbed para-
meter set we calculated the order parameter from simulations with 2000 cells as well
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as the synchronization performance with the help of (20). The model shows good ro-
bustness properties, and for parameter values associated with a high synchronization
performance we observe a high order parameter after synchronization and vice versa.

The tendency of the order parameter to increase for standard deviations σ slightly
higher than the critical one predicted theoretically in Sect. 3.2 was already described
before. In Daniels (2005), the authors analyzed the dependency of the onset of syn-
chronization on the number of oscillators by several simulations with different pop-
ulation sizes. They observed that the onset of synchronization seems to be smoothed
for small numbers of oscillators. In Sect. 3.2 we calculated σC for the limit of an
infinite number of oscillators, whereas in the simulations the number of oscillators is
limited. One may interpret Fig. 6 as a numerical approximation of a bifurcation di-
agram, and the critical standard deviation σC as an approximation of the bifurcation
point. Only the stable solutions of the supercritical pitchfork bifurcation are depicted
and, because the order parameter 
 has to be positive, the negative branch after the
bifurcation disappears. Already near the bifurcation point the stability of the unsyn-
chronized state decreases (the real part of at least one eigenvalue approaches zero).
Hence, perturbations away from the unsynchronized state tend to be larger and to de-
crease more slowly, an effect that is generally more pronounced for lower numbers of
oscillators. If the perturbations are large enough, the assumption that each oscillator is
only slightly perturbed from its limit cycle due to the coupling (see Sect. 2.3) breaks
down, which can result in a different value for the coupling strength K1. Thus, due
to a limited population size N , the bifurcation might appear to happen earlier. It may
thus be reasonable to consider the critical standard deviation σC as a lower bound for
the value above which synchronization is not achieved.

4 Spatial Phase Waves

In Sects. 2 and 3 we assumed the signaling molecule se in the extracellular space
to be well mixed, which is often a viable assumption in small systems, or for biore-
actors that are artificially mixed. Nevertheless, if this assumption does not hold, we
have to refer to a spatial model with extracellular signaling molecule concentrations
depending on the spatial position z. Such a spatial model takes diffusion and convec-
tion processes into account and it considers the production of the signaling molecule
inside the single cells and its subsequent transport through the cell membrane.

In this section we show that phase waves can occur in a generalized spatial model,
as was recently observed experimentally by Danino et al. (2010). Under certain condi-
tions, such phase waves can significantly decrease the synchronization performance.
Hence, they should be already considered in the design of synthetic multicellular
oscillatory networks.

We assume that the cells are embedded in a two-dimensional biofilm, with the
concentration of se being nearly constant in the third dimension given the relative
thinness of the biofilm. Moreover, we assume the cells to be substantially smaller
than the two other dimensions, and the concentration of the signaling molecule se to
be nearly constant around each cell. As a simplification, we approximate the shape
of the cells by spheres with radius rcell. For many networks it is necessary to add an
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extracellular bulk flow either to “wash out” signaling molecules with a naturally high
half-life, or to provide the cells with necessary nutrients.

As in Sect. 2, the dynamics inside each cell are described by a set of ODEs
(see (11a)). However, in the extracellular space, we describe the signaling mole-
cule concentration se by following the approach in Müller et al. (2006) using a two-
dimensional advection–diffusion–reaction equation:

∂

∂t
se(t, z) = D∇2se(t, z) − kDsese(t, z) − �u(z) · ∇se(t, z)

+ Vcell

Vcylinder

N∑

i=1

δ(zi − z)η
(
si(t) − se(t, z)

)
, (22)

with z = (z1, z2)
T ∈ G the spatial variable, G ⊂ R

2, D the diffusion coefficient, �u =
(u1, u2)

T the velocity of the bulk flow, zi = (zi1, zi2)
T ∈ G the position of the ith cell,

and ∇ the Nabla operator. The constant Vcylinder denotes the volume of a cylinder with
the same radius rcell as the cells and the height of the biofilm. The function δ(�z) is
defined as follows:

δ(�z) =
{

1 if ‖�z‖ < rcell,

0 otherwise.
(23)

Similarly to Sect. 2.3, we require that the states (xi , si)
T of the oscillators move

on a stable limit cycle C and that perturbations from this limit cycles due to spatial
variations in se are small.

In this section we assume that differences in the eigenfrequencies of the oscillators
due to cell-to-cell variability, and due to different mean values of the extracellular sig-
naling molecule play only a minor role for the occurrence of waves in a synchronized
population of cells. Our simulations confirmed this assumption (see Sect. 5), except
for the oscillators at the boundaries of the biofilm. Thus, only different eigenfrequen-
cies of the oscillators at the boundaries are considered in our analysis.

To the best of our knowledge, there is no adequate analytic method to study a par-
tial differential equation coupled to systems of ordinary differential equations, such
as (22). Nevertheless, it is possible to get a deeper understanding of the dynamics
of (22) by analyzing a simplified model. As a first simplification we assume to have
many identical cells (N � 1) equally distributed on a large rectangular plate, while
each cell is assumed to be at an equal distance away from its neighboring cells. In
what follows, we will analyze the long term behavior of the population only. There-
fore the effect of initial conditions is only casually discussed, and we assume the cells
to be locally synchronized so that oscillators near to each other have similar phases.

With these assumptions, we can coarse-grain (22) by changing the model to have
a continuous cell density ρ = const. This approximation is only feasible if the spatial
and temporal dynamics are slow compared to the diffusion, such that the signaling
molecule has a spatially and temporally differentiable concentration. Additionally,
effects depending on the discrete nature of the cells should not significantly alter the
coarse dynamics of the population.
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By introducing an extended state vector X = (x, si , se)
T that incorporates the dy-

namics inside a cell as well as the dynamics of the signaling molecule in the extra-
cellular space, we obtain the spatial model

∂X
∂t

=

⎛

⎜⎜⎝

∂x
∂t

∂si
∂t

∂se
∂t

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

f(x) + g1(x, si)

g2(x, si) − kDsisi

−(kDse + kwash)se

⎞

⎟⎟⎠ +
⎛

⎝
0
1

−ρ

⎞

⎠η(se − si)

︸ ︷︷ ︸
=:F(X)

+
⎛

⎝
0
0
1

⎞

⎠(
D∇2se − (�u · ∇ − kwash)se

)
︸ ︷︷ ︸

=:P(se)

, (24)

with kwash the change in the apparent degradation constant of se due to the “washing
out” effect of the extracellular flow, defined as the mean value of �u · ∇ ln se . Note that
the two terms including kwash sum up to zero; they are only introduced to achieve an
approximately zero mean value of P(se). Each element of the extended state vector
X depends on the spatial position z even though it is not explicitly stated.

In almost the same manner as explained in Sect. 2.1, the term P(se) can be seen
as a small perturbation from the nominal dynamics F of the model, and the sys-
tem can be transformed to its respective phase representation. By replacing the term
containing �Fi and Vi,j in (5) by P(se) and subsequent averaging, we obtain a two-
dimensional partial differential equation (PDE) for the phase (see Kuramoto 1984):

∂φ

∂t
= 1 + αD∇2φ + βD(∇φ)2 − α�u(z) · ∇φ + γ̄ , (25)

with the spatial coupling quantified by the parameters

α =
∫ T

0
Zse(φ)

∂se

∂φ
dφ, (26a)

β =
∫ T

0
Zse(φ)

∂2se

∂φ2
dφ, (26b)

γ̄ = kwash

∫ T

0
Zse(φ)se(φ)dφ, (26c)

with the phase sensitivity Zse(φ) = gradse
φ|X=X0(φ) to perturbations in the extracel-

lular signaling molecule concentration se.
Note that, as in Sect. 2.1, the perturbations of the oscillators away from C have to

be small. Thus the value of the right-hand side of (25) has to be close to one. This
requirement can be fulfilled either by a homogeneous spatial shape of the phase, by
values of α, β , and γ̄ that are not too large (which implies weak coupling), or by a
combination of both.

In what follows, (25) is analyzed for a non-zero flow velocity without spatial de-
pendence (�u = const). The flow enters the plate at its southern boundary and has zero
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velocity in the z1-direction: �u = (0, u2)
T . At the southern boundary the incoming

flow has a relatively low mean signaling molecule concentration. In most networks
this will either increase or decrease the eigenfrequencies of the oscillators near the
boundary. We assumed the flow velocity ‖�u‖ to be high enough, such that the sig-
naling molecule in the extracellular space is mainly transported by advection. Thus
the frequency of each cell is largely influenced by those of the cells to the south of
it, rather than by cells in any other direction. Because no cells lie to the south of the
boundary cells, it is unlikely that these cells will synchronize to a frequency signif-
icantly different from their own eigenfrequencies. We can thus expect the angular
frequency at the southern boundary to be nearly constant (ωinflow = const), which
is confirmed by our simulation results (see Sect. 5). This can be mathematically de-
scribed by a Dirichlet condition for the southern boundary:

ϕsouth(z, t, φ, �u) = φ(z) − ωinflow(�u)t − ϕ̂south(z1, �u) = 0. (27)

However, the spatial dependency ϕ̂south(z1, �u) in (27) cannot be determined without
additional information.

For most networks it is not possible to pose adequate conditions for the three
other boundaries. However, since the signaling molecule is mainly transported by
advection, we expect that the other boundary conditions have only a weak effect on
the oscillations of the cells far away from those boundaries.

In the Supplementary Information we show that, for a sufficiently large plate, the
solution of (25) can be approximated for cells away from any border by

φ(t, z) ≈ �κiz + ωinflow(�u)t + φ0,i , (28)

with �κi ∈ R
2 the wave vector, ωinflow the angular frequency at the inflow, and φ0,i the

phase at t = 0 which is determined by the initial conditions. The wave vector �κi has
to satisfy the following condition:

ωinflow(�u) = −α�κi · �u + βD‖�κi‖2 + (1 + γ̄ ). (29)

If the eigenfrequency of the oscillators at the inflow is different from the mean eigen-
frequency of the oscillators, due to different mean extracellular signaling molecule
concentrations, it follows that �κi �= �0. We then obtain a phase φ linearly increas-
ing/decreasing with the spatial position z, and linearly increasing with the time t .
Such phases correspond to waves of the concentrations of the oscillators’ species, to
which we will refer as phase waves.

Both, phase waves in and contrary to the direction of the flow, are possible (29).
However, in our simulations we only observed waves in the direction of the flow
(�κi · �u < 0). In this case, the size of the wave vector is approximately proportional
to ‖1 − ωinflow‖ and inversely proportional to ‖�u‖. To reduce the negative effect of
waves in a small experimental setup, it might thus be favorable to chose a network
structure that reduces the dependency of the eigenfrequencies of the oscillators on
the mean extracellular autoinducer concentration (cf. Sect. 3.2), and to include an
extracellular flow, even if it is not necessary to “wash out” the extracellular signaling
molecule.
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It is biologically interesting to interpret the solution to the partial differential equa-
tion: From (28) we conclude that the cells at the southern inflow boundary act as pace-
makers for the whole population of oscillators. Our simulations (see Sect. 5) suggest
that once the pacemaker cells have synchronized, one can expect all cells to rapidly
synchronize. However, if the southern boundary is large, it is possible that several
local clusters of pacemaker cells evolve, containing cells synchronized to each other
but not to cells of other clusters. Due to the assumptions made in our derivation, this
effect cannot be described by the coarse-grained model (24). However, we anticipate
a large time span until two or more clusters synchronize, since their communication
is solely based on the diffusion normal to the flow.

In order to quickly obtain homogeneous oscillations, it is desirable to minimize the
number of pacemaker cells to decrease the possibility of different evolving clusters.
A broadening flow with spatially inhomogeneous velocity �u = �u(z) leads to fewer
pacemaker cells. Hence, the cells at the center of the southern boundary influence the
majority of the other cells, while the cells at the edges of the southern boundary can
only influence a few cells. Thus, we expect better synchronization properties of the
whole population for a broadening flow.

In general it is not possible to find analytic closed solutions of (25) for spatial inho-
mogeneous flow velocities �u(z). Even though we do not provide an analytical proof,
we expect that the wavelength in this case has a dependence on the flow velocity �u(z)
similar to waves in media with a spatially homogeneous flow. Hence, if the flow is
broadening and the flow velocity is high enough, we expect rapid synchronization
and phase waves to evolve only in the direction of the flow, with a wavelength that
can be larger than the dimensions of the plate. Thus, an apparently homogeneously
synchronized population of spatially distributed oscillators can be achieved.

5 Example: Phase Waves in a Population of Synchronizing Mammalian
Oscillators

In this section we will propose an experimental setup to achieve synchronization of
a spatially distributed population of mammalian oscillator cells (see Sect. 3), and
we will use numerical simulations to predict the synchronization process. The dy-
namics of the intracellular species xi and si are modeled according to Sect. 3.1
and the dynamics of the autoinducer follow an advection–diffusion–reaction equa-
tion (cf. (22)). The cells reside on a rectangular plate (see Fig. 7) where a flow of
extracellular medium without autoinducers is entering with a constant flow veloc-
ity at the center of the left boundary; it leaves the plate and flows into a basin at
the top and the bottom of the right boundary. The rest of the boundary is mod-
eled as an impermeable wall, and the cells are assumed to be uniformly distrib-
uted on a small rectangular area placed in the middle-right side of the plate. To
calculate the spatial and temporal diffusion process, we discretized (22) on a two-
dimensional (ngrid × mgrid) rectangular grid (Sewell 2005). The spatial derivatives
are approximated by central differences and the time derivative is approximated
by utilizing an explicit forward Euler scheme. The boundary conditions are set



Synchronization of Synthetic Oscillators 2701

Fig. 7 We propose as an experimental setup a rectangular plate where the cells are uniformly distributed
in the area surrounded by the red dotted line. The plate is assumed to be outlined by an impermeable wall
(black solid lines). A broadening flow is entering the plate at an opening on the left side and leaving it
through two openings on the right side

as follows: At the walls, the flux normal to the boundary is zero. The autoin-
ducer concentrations at locations where the flow enters or leaves the plate are as-
sumed to be zero. We obtained the flow velocity uji = (u1,j i , u2,j i )

T of the ex-
tracellular medium by solving the Navier–Stokes equations for incompressible vis-
cous two-dimensional flow (see e.g. Acheson 1990) with the Semi-Implicit Method
for Pressure-Linked Equations (SIMPLE, see e.g. Patankar and Spalding 1971;
Ferziger and Peric 1999). For more details on the simulations we refer to the Sup-
plementary Information. The resulting steady-state flow is shown in Fig. 7, where it
should be noticed that the experimental setup leads to a broadening flow in the area
where the cells are distributed, as suggested in Sect. 4.

Each cell has different plasmid copy numbers, with a standard deviation σ of ap-
proximately 15% of the respective nominal copy number. Furthermore, the initial
conditions were chosen such that the phases of the cells were approximately uni-
formly distributed. From our simulations it can be observed that the cells are basi-
cally synchronized after approximately 13 oscillation periods, when the majority of
the cells oscillate with the same frequency and similar phases (see Fig. 8). A typical
plot of the spatially distributed AHL concentrations in the extracellular space can be
found in Fig. 9, where the onset of waves in the z1-direction can be readily observed
(see also Supplementary Videos). However, the wavelength is larger than the part of
the plate where the cells are placed, so that the cooperative output signal of the pop-
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Fig. 8 Synchronization process of a population of 20,000 spatially distributed cells, with the plasmid copy
numbers normally distributed with a standard deviation of 15% of their nominal values. Large image: The
dark gray lines are the Ga concentrations of 10 representatively chosen oscillators, the red curve is the
mean Ga concentration of all oscillators and the red-dotted lines are its maximal and minimal bounds,
obtained by assuming perfect phase synchronization between the oscillators. Small image: Temporal evo-
lution of the order parameter obtained as described in Sect. 3.3. The order parameter of the whole popula-
tion (red curve) is most of the time lower than the local order parameters calculated only for the leftmost
(purple dotted), central (green dotted) or the rightmost (blue dotted) third of the oscillators, which can be
explained by the dependence of the phase on the spatial position due to the finite wavelength of the phase
waves

ulation is clearly oscillating (green line in Fig. 8) as was anticipated in the previous
section.

When plasmid copy numbers were chosen such that oscillators residing in the
left third of the plate had a different eigenfrequency from that of all other cells, the
frequency of the synchronized bulk oscillations was always close to the one of the
cells facing the flow first, regardless of whether these cells had higher or lower eigen-
frequencies than the rest of the cells. This effect is in agreement with the theoreti-
cal considerations in Sect. 4, which suggested that the cells first facing the flow act
as pacemaker cells and force the other cells to a common frequency, thus enabling
fast synchronization. On the other hand, the rest of the population seems to barely
influence the frequency of the oscillations; it mainly increases the amplitude—the
strength—of the signal. This observation might have interesting consequences for
naturally evolved pacemakers: (a) identical cells may have different roles in syn-
chronization depending on their spatial position, (b) oscillations do not necessarily
become more regular when the amount of cells (but not their density) increases, and
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Fig. 9 Four images within one oscillation period of the extracellular concentration of AHL after synchro-
nization. The onset of phase waves is already noticeable, although the wavelength is longer than the area
of the plate where the cells are distributed (red rectangle)

(c) some cells inside a pacemaker might effectively be the “pacemakers of the pace-
maker.” These are interesting hypotheses, the study of which lies outside of the scope
of this article.

6 Summary and Conclusions

We have developed a method to prescribe synchronization requirements for a popu-
lation of synthetic single-cell oscillators, as well as to estimate their synchronization
performance. The synchronization performance allows the comparison of competing
network structures, and it supports the identification of a setup with the best synchro-
nization properties for later implementation in vivo. We also introduced a normal
form to which many synchronizing oscillatory networks can be generalized. It con-
sists of a set of ordinary differential equations (ODEs) for every oscillator, and an
ODE for an extracellular signaling molecule connecting the phases of the oscillators.
For every oscillator we apply different parameter sets, thus allowing for a distribution
of the oscillators’ eigenfrequencies. To reduce the complexity of a model of several
hundreds or thousands of such oscillators, we then applied the method of phase de-
scription, originally proposed by Kuramoto (1984) and Winfree (1967). This enabled
us to derive requirements for the onset of synchronization as well as to decouple the
impacts of cell density, of diversity of the oscillators, and of the applied coupling
mechanism on the synchronization result.

More specifically, one of the major challenges for synchronizing synthetic oscilla-
tors in living cells is the vast cell-to-cell variability, resulting in a broad distribution of



2704 M. Lang et al.

parameter values of the single oscillators. We have exemplified our method by con-
sidering an extended network based on the synthetic mammalian oscillator of Tigges
et al. (2009). In this case, the determining factors for cell-to-cell variability are differ-
ent plasmid copy numbers in each cell that lead to different eigenfrequencies of the
oscillators. This cell-to-cell variability cannot be adequately modeled as white noise,
and it has to be considered explicitly. This requirement has several implications. First,
perfect phase synchronization is not feasible. Upon frequency synchronization, oscil-
lators with large autonomous period lengths have phases lagging behind the mean
phase, while oscillators with small autonomous periods have phases ahead of the
mean phase of the population of oscillators. Also, if the parameter sets are widely
distributed, there will be oscillators that do not synchronize their frequencies, such
that only partial synchronization can be achieved.

The possibility to optimize a system of synthetic oscillators for autonomous syn-
chronization makes our methodology a valuable design tool for synthetic biology.
However, one has to iteratively shape the influence of the phase difference between
two oscillators on their frequencies in order to achieve a better synchronization. This
can be done by utilizing standard optimization algorithms, or manually if the number
of design decisions is not excessively large. For the synthetic mammalian oscillator
of Tigges et al. (2009) we conclude it to be advantageous to not only have a phase-
dependent production rate of the signaling molecule for communication, but also to
engineer a phase-dependent production of the corresponding receptor protein. This
might also hold true for naturally evolved oscillatory networks (Preitner et al. 2002).

It is important to note that our method is based on a model reduction, which might
bias the results. We only consider one state per oscillator representing the position of
the oscillator on its limit cycle. One requirement for the applicability of our method is
that oscillators with different parameter sets need to have similar limit cycles, which
might not hold true for all oscillators in a network when there is high cell-to-cell vari-
ability. Certain oscillators may have different qualitative dynamics, or even show no
oscillations at all. At the onset of synchronization, the first oscillators to synchronize
are those with similar dynamics and, by consequence, similar eigenfrequencies (Ku-
ramoto 1984). It is a reasonable assumption that these are also the oscillators with
parameter sets close to the nominal ones, such that their limit cycles fulfill the re-
quirements above. Furthermore, due to the nonlinearity of oscillatory networks, it is
not possible to provide an explicit relationship between the synchronization perfor-
mance and, for instance, the steady-state distribution of the phases of the oscillators
after synchronization. However, we argue that one can expect better synchronization
results for an increasing value of the synchronization performance. Both consider-
ations are confirmed by numerical simulations, which are in good agreement with
the theoretical results and suggest a monotone relationship between synchronization
performance and homogeneity of the phases of the oscillators after synchronization.

Finally, in recently published theoretical articles, we observed that the effect of the
spatial distribution of the oscillators was often neglected by assuming the extracellu-
lar signaling molecules to be well mixed. We analyzed the effect of a spatial distrib-
ution of synchronized oscillating cells on a two-dimensional plate and explained the
possibility of emerging phase waves similar to those recently observed experimen-
tally by Danino et al. (2010) in vivo. We proposed an experimental setup with which
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the effect of these waves can be minimized and rapid synchronization can be achieved
by the introduction of a non-homogeneous flow in the extracellular medium. We hope
that our analysis method and results on the effect of cell density, parameter variability,
and the coupling mechanism provide support for experimental biologists to success-
fully design and implement autonomously synchronizing oscillatory systems in vivo
in the near future.
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