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Abstract: A model of interacting quantum particles performing one-dimensional an-
harmonic oscillations around their equilibrium positions which form a lattice Z

d is
considered. For this model, it is proved that the set of tempered Euclidean Gibbs mea-
sures is a singleton provided the particle mass is less than a certain bound m*, which is
independent of the temperature β−1. This settles a problem that was open for a long time
and is an essential improvement of a similar result proved before by the same authors
[5], where the bound m* depended on β in such a way that m*(β) → 0 as β → +∞.
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1. The Model and the Main Result

We consider the following model of a quantum crystal. To each point of the lattice l ∈ Z
d

there is attached a quantum particle of mass m performing polarized (one-dimensional)
oscillations in the crystalline field around the equilibrium position at l and described
by its momentum operator pl and displacement operator ql . The particles interact via a
nearest neighbor ferromagnetic potential. The heuristic Hamiltonian of this model is of
the following form:
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H =
∑

l

[
1

2m
p2
l + U(ql )

]
+ J

4

∑

nn: l,l′
(ql − ql′)

2 , J > 0. (1.1)

Here the sums run through the lattice Z
d and “nn” means that the sum is taken over all

pairs l, l′ satisfying the condition |l − l′| = 1. The potential energy U in the crystalline
field is supposed to be a smooth even function U : R → R, which satisfies a stability
condition of the following type:

U(t) ≥ A+ Bt2, t ∈ R,

with certain A ∈ R and B > 0. Similar models have been studied for many years
as providing quite realistic description of a crystalline substance undergoing structural
phase transitions [19, 34, 38]. They (and their simplified versions) are also used as a base
of models describing strong electron-electron correlations caused by the interaction of
electrons with vibrating ions [21, 35, 36].

If the potentialU has a double well shape, the system may undergo a phase transition
[15, 24] connected with the appearance of macroscopic displacements of particles (see
also [20, 30] where a particular case of U was studied). This phase transition occurs for
d ≥ 3 and large enough values of the inverse temperature β and of the particle mass
m. The large mass limit of this model gives a model of interacting classical particles
moving in the field U (see [4] and Sect. 3 in [6]), which certainly undergoes a phase
transition. Hence one may say that a phase transition occurs if the system is close to its
classical limit.

Starting from the pioneering paper [33] many efforts were made to show that “the
more quantum is the model, the less possible is a phase transition”. The first fully rig-
orous proof of the suppression of the long range order in models of this type was done
in [40]. This effect was also demonstrated in certain exactly solvable models [31, 39].
In [3] (see also [25] for the case of multi-dimensional oscillations) it was shown that
not only the long range order but any critical anomaly is suppressed if the model is
strongly quantum. The latter occurs in particular if the particle mass is small enough.
In the present paper we get the strongest result of this type, which settles the above
problem1. Namely, for a class of potentialsU , we show that the Euclidean Gibbs state of
the model is unique if the particle mass belongs to the interval (0,m*), where the bound
m* depends solely on the parameters of the system Hamiltonian and is independent of
the temperature. This effect may be called a quantum stabilization of the crystal since
the corresponding condition may be written in a form similar to the stability condition
for harmonic oscillators (see below).

Now let us make more precise the model, the methods and the result mentioned
above. The potential U is assumed to be of the form

U(t) = b1t
2 + b2t

4 + · · · + br t
2r , b1 ∈ R, bs ≥ 0, br > 0, r ≥ 2. (1.2)

The momentum pl and displacement ql are defined as unbounded operators on a dense
subset (e.g., on C∞

0 (R)) of the complex Hilbert space Hl = L2(R). For quantum mod-
els with finite dimensional phase spaces Hl , Gibbs states are constructed as positive
normalized functionals on von Neumann algebras of observables (see e.g., [18]). For
the model considered, the usual way of constructing Gibbs states may lead (and leads
in fact, see e.g., the discussion in [6] and [23] Chapter IV, pp. 169, 170) to a number

1 This result was announced in [7].
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of difficulties. In this paper we use the approach, initiated in [2], in which the Gibbs
states are constructed as probability measures with infinite dimensional spin spaces.
This enables us to apply the technique of conditional probabilities (see e.g., [22]) and
to define Euclidean Gibbs states as solutions of the Dobrushin-Lanford-Ruelle (DLR)
equation. A full exposition of the Euclidean approach as applied to the model (1.1) and
an extended related bibliography may be found in the review article [6].

Like for the other models with unbounded spins, the set of all Euclidean Gibbs states
Gβ of our model existing at a given β may contain elements of no physical relevance.
In order to exclude them certain conditions restricting the support of these measures are
imposed. The measures which satisfy such conditions and solve the DLR equation are
called tempered Euclidean Gibbs measures. The set of all such measures will be denoted
by Gt

β . Since the mentioned restrictions may be different, there are different kinds of
tempered Gibbs measures. We are not going to discuss this aspect of the Euclidean
approach and just mention that the restrictions used in this paper to define Gt

β are the
weakest ones. Hence our set Gt

β includes all tempered Gibbs measures considered so
far (for more details see e.g., [12, 13, 28] for the quantum case, and [16, 26, 32] for the
classical case).

One of the possible ways to study Euclidean Gibbs states is the method of cluster
expansions applied in [27] where, for small values of the mass, these expansions were
shown to converge uniformly with respect to β. As a consequence, the existence of a
Gibbs state was proved and its certain properties were described. However, such a con-
vergence does not imply uniqueness because it is impossible to obtain it uniformly with
respect to boundary conditions.

For the model considered in this article, uniqueness of tempered Euclidean Gibbs
measures (with a more restrictive condition on the supporting sets) first was proven
under conditions, which did not involve m [12, 13]. Later, in [5] the uniqueness was
proven for m ∈ (0,m*(β)) with m*(β) tending to zero as β → +∞. In this paper we
remove the β-dependence of the bound m* and prove the following result.

Main Theorem. There exists m* > 0 such that, for all m ∈ (0,m*) and all β > 0,

|Gt
β | = 1.

The paper is organized as follows. In Sect. 2 we describe the main aspects of the
Euclidean approach and give all necessary definitions. In Sect. 3 we give the proof of
the above theorem, which is performed in four steps: (i) it is shown that the unique-
ness holds provided all tempered Euclidean Gibbs measures have coinciding first local
moments, which occurs if for every such a measure, its Duhamel function has an expo-
nential decay; (ii) a uniform bound for all these Duhamel functions is proved; (iii) it is
proved that this bound has an exponential decay if a certain condition is satisfied; (iv)
it is shown that this condition is satisfied if the mass m is less than some m*, which is
independent of β. The corresponding statements are proved in Sect. 4. Consequences of
our result particularly relevant for physics have been published in [8].

2. Euclidean Gibbs States

The heuristic Hamiltonian (1.1) cannot be defined directly as a mathematical object and
is “represented” by local HamiltoniansH�, which are essentially self-adjoint and lower
bounded operators in the complex Hilbert space H� = L2(R|�|) (| · | stands for car-
dinality). They are indexed by finite subsets� ⊂ Z

d . In standard situations it is enough
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to take these subsets as boxes. The local Hamiltonian of the subsystem in such a box �
is of the following form:

H� = −J
2

∑

nn: l,l′∈�
qlql′ +

∑

l∈�
H
(0)
l , J > 0. (2.1)

Here the one-particle Hamiltonian is

H
(0)
l = 1

2m
p2
l + 1

2
q2
l + V (q2

l ), (2.2)

V (t) = (b1 + dJ − 1/2)t + b2t
2 + · · · + br t

r , (2.3)

where bj , j = 1, 2, . . . , r are the same as in (1.2). It defines a local Gibbs state

γβ,�(A) = trace (A exp(−βH�))
trace (exp(−βH�)) , (2.4)

where β is the inverse temperature and the observable A is an element of the C∗-alge-
bra of bounded linear operators on H�. These states may be completely determined
by means of the corresponding Matsubara functions, which for observables A1, . . . , Ak
and 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ β are

�
β,�
A1,...,Ak

(τ1, . . . , τk) = γβ,� {A1 exp[−(τ2 − τ1)H�]

×A2 exp[−(τ3 − τ2)H�]

× . . . Ak exp[(τk − τ1)H�]} . (2.5)

For the remaining values of (τ1, τ2, . . . , τk) ∈ [0, β]k , the Matsubara functions are
defined as follows. Given a tuple (τ1, τ2, . . . , τk), one takes the permutation σ ∈ �k
such that τσ(1) ≤ τσ(2) ≤ · · · ≤ τσ(k) . Then one sets

�
β,�
A1,...,Ak

(τ1, . . . , τk) = �
β,�
Aσ(1),...,Aσ(k)

(τσ(1), . . . , τσ(k)),

where the latter function is defined by (2.5).
In constructing the states (2.4) a special role is played by multiplication operators.

For a bounded continuous function A : R
|�| → C, the corresponding multiplication

operator is defined as follows:

(Aψ)(x) = A(x)ψ(x), ψ ∈ H�.

It is known (see e.g., [6], Prop. 2.1) that, for a given �, the Matsubara functions con-
structed only with these multiplication operators already determine completely the state
γβ,�. The essence of the Euclidean approach lies in the fact that such Matsubara func-
tions may be written as moments of probability measures (see [2] and [6] for a detailed
description). To construct them we start by introducing the basic measure χβ – a sym-
metric Gaussian measure defined on the Banach space of continuous periodic paths

Cβ = {ω ∈ C([0, β]) | ω(0) = ω(β)}. (2.6)
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It is uniquely determined by its covariance
∫

Cβ
ω(τ)ω(τ ′)χβ(dx)

= 1

2
√
m

· exp
(
(β − |τ − τ ′|)/√m) + exp

(|τ − τ ′|/√m)

exp
(
β/

√
m

) − 1
, (2.7)

where τ, τ ′ ∈ [0, β]. A full account of the properties of χβ is given in Sect. 2 of [6].
Given a box �, we set

�β,�={ω� = (ωl)l∈� | ωl ∈ Cβ, l ∈ �}. (2.8)

This set equipped with the supremum norm becomes a Banach space. By Bβ,� we denote
the σ -algebra of its Borel subsets. Furthermore, we introduce the following measure on
�β,�:

χβ,�(dω�) =
⊗

l∈�
χβ(dωl). (2.9)

By means of it, one defines the local Euclidean Gibbs measure

νβ,�(dω�) = 1

Zβ,�
exp

(−Eβ,�(ω�)
)
χβ,�(dω�),

(2.10)

Zβ,� =
∫

�β,�

exp
(−Eβ,�(ω�)

)
χβ,�(dω�),

where

Eβ,�(ω�) = −J
2

∑

nn: l,l′∈�

∫ β

0
ωl(τ )ωl′(τ )dτ

+
∑

l∈�

∫ β

0
V ([ωl(τ )]

2)dτ. (2.11)

The measure νβ,� determines the state γβ,� due to the following representation of the
functions (2.5):

�
β,�
A1,...,An

(τ1, . . . , τn) =
∫

�β,�

A1(ω(τ1)) . . . An(ω(τn))νβ,�(dω�), (2.12)

which holds for all n ∈ N and all bounded multiplication operators A1, . . . , An.
Furthermore, we define

�β = CZ
d

β = {ω = (ωl)l∈Zd | ωl ∈ Cβ}. (2.13)

This set is endowed with the product topology and the corresponding Borel σ -algebra
Bβ . The set of tempered configurations is

�t
β = {ω ∈ �β | ∀δ > 0 :

∑

l∈Zd

e−δ|l|‖ωl‖L2[0,β] < ∞}, (2.14)

where | · | stands for the Euclidean distance.
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Given two configurations ξ, η ∈ � and a box �, by ξ� × η�c we denote the con-
figuration whose components labelled by l ∈ � (resp. l ∈ �c = Z

d \ �) coincide
with the corresponding components of ξ (resp. η). Then, for any finite box �, each
ω� ∈ �β,� can be associated with the element ω = ω� × 0�c of �β , where 0�c
is the zero configuration. This determines an embedding �β,� → �β , thus we have
Bβ,� ⊂ Bβ .

Along with (2.10) we introduce conditional local Gibbs measures. Given ξ ∈ �β ,
we set

Eβ,�(ω�|ξ) = Eβ,�(ω�)− J
∑

nn: l∈�, l′∈�c

∫ β

0
ωl(τ )ξl′(τ )dτ, (2.15)

and

νβ,�(dω�|ξ) = 1

Zβ,�(ξ)
exp

(−Eβ,�(ω�|ξ))χβ,�(dω�),

Zβ,�(ξ) =
∫

�β,�

exp
(−Eβ,�(ω�|ξ))χβ,�(dω�). (2.16)

For every fixed ξ ∈ �β , νβ,� is a probability measure on Bβ,�.
Together with the boundary conditions defined by configurations outside of the box

� we will use also periodic boundary conditions. Let T (�) stand for the torus which
one obtains by identifying the opposite walls of the box �. Then we set

Eβ,�(ω�|p) = −J
2

∑

nn: l,l′∈T (�)

∫ β

0
ωl(τ )ωl′(τ )dτ

(2.17)

+
∑

l∈�

∫ β

0
V ([ω(τ)]2)dτ,

and

νβ,�(dω�|p) = 1

Zβ,�(p)
exp

(−Eβ,�(ω�|p))χβ,�(dω�). (2.18)

In the sequel, by νβ,�(·|b) we will denote the local Euclidean Gibbs measure with the
boundary condition b which is either the one defined by a configuration ξ ∈ �β (includ-
ing the zero configuration) or the periodic boundary condition. In these cases we write
b = ξ or b = p respectively.

Given B ⊂ �β and ω ∈ �β , let

1B(ω) =
{

1 if ω ∈ B;
0 otherwise .

Then for a box � and B ∈ Bβ , we set

πβ,�(B|ξ) =
∫

�β,�

1B(ω� × ξ�c)νβ,�(dω�|ξ). (2.19)
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Definition 2.1. A probability measure µ on�β is said to be a Euclidean Gibbs measure
at temperature β−1 if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equation

∫

�β

πβ,�(B|ω)µ(dω) = µ(B), (2.20)

for all boxes � and all Borel subsets B ⊂ �β .

The set of all Euclidean Gibbs measures existing for given β will be denoted by Gβ .
For the model considered, this set is nonempty [13, 14]. The set of tempered Euclidean
Gibbs measures is

Gt
β

def= {µ ∈ Gβ | µ(�t
β) = 1}. (2.21)

By [9 – 11] (see Theorem 1 of those papers), |Gt
β | �= ∅. Our main theorem states that

this set is a singleton provided m ∈ (0,m*).
Usually, tempered configurations are defined by more restrictive conditions than

(2.14) (see e.g., [12, 13] for the quantum case, and [16, 26, 32] for the classical case).
Therefore, the uniqueness stated above is the strongest result of this type. In fact, as it
will be clear from the proof of our main theorem, for any temperature, one cannot expect
uniqueness for Gibbs measures supported by larger sets than �t

β as in (2.14).

3. The Proof of the Main Theorem

The proof of our main theorem will be carried out in four steps. First, inspired by the pio-
neering paper [26], we use monotonicity arguments and a priori estimates for Euclidean
Gibbs measures [9, 11] to show that the uniqueness may be a consequence of the fact
that the infinite volume limits of the conditional local Gibbs measures coincide for all
possible boundary conditions in the set of tempered configurations. Then we employ a
zero boundary domination estimate to get rid of the boundary conditions, which finally
yields a condition for the uniqueness. As the last step, we show that this condition is
satisfied if the particle mass m belongs to the interval (0,m*), where the bound m*
depends on the parameters of the model only and does not depend on β. These steps
are mainly implemented by Theorems 3.1–3.4 and Corollary 3.3 stated below in this
section, the proofs of which will be given in the subsequent section.

Given a measure µ, for a µ-integrable function f , we write

〈f 〉µ =
∫
f dµ.

We denote by L an increasing sequence of boxes �, which exhausts the lattice Z
d , i.e.,

⋃

L
� = Z

d .

The infinite volume limit taken along such L will be denoted by �
L→ Z

d .

Step 1.

Theorem 3.1. Suppose that, for every l0 ∈ Z
d and τ0 ∈ [0, β], for every sequence L,

such that l0 belongs to each of its elements, and for any two configurations ξ, η ∈ �t
β ,

one has the following convergence:
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〈ωl0(τ0)〉ν�(·|ξ) − 〈ωl0(τ0)〉ν�(·|η) −→ 0, (3.1)

as �
L→ Z

d . Then |Gt
β | = 1.

Given a box �, l, l′ ∈ �, τ, τ ′ ∈ [0, β] and a boundary condition b, we set

K�
ll′(τ, τ

′|b) = 〈ωl(τ )ωl′(τ ′)〉ν�(·|b) − 〈ωl(τ )〉ν�(·|b)〈ωl′(τ ′)〉ν�(·|b). (3.2)

Let also

w�(t)
def= 〈ωl0(τ0)〉νβ,�(·|η+tζ ), ζ = ξ − η, t ∈ [0, 1]. (3.3)

Obviously, this function is differentiable for all t ∈ R, hence

|〈ωl0(τ0)〉ν�(·|ξ) − 〈ωl0(τ0)〉ν�(·|η)| ≤ sup
t∈[0,1]

|w′
�(t)|. (3.4)

By (3.3) and (2.16), (2.15), the derivative w′
�(t) is

w′
�(t) = J

∑

nn: l∈�,l′∈�c

∫ β

0
K�
ll0
(τ, τ0|η + tζ )ζl′(τ )dτ. (3.5)

To estimate it we use the Schwarz inequality, which yields

|w′
�(t)| ≤ J

∑

nn: l∈�,l′∈�c

{∫ β

0

[
K�
ll0
(τ, τ0|η + tζ )

]2
dτ

}1/2

‖ζl′ ‖L2[0,β]. (3.6)

Suppose now that the function

T �ll0(τ0|ξ) def=
{∫ β

0

[
K�
ll0
(τ, τ0|ξ)

]2
dτ

}1/2

, ξ ∈ �t
β, (3.7)

obeys the following estimate:

T �ll0(τ0|ξ) ≤ C exp (−α|l − l0|) , (3.8)

where the parameters C > 0 and α > 0 do not depend on �, τ0 and the boundary
condition ξ . Then having in mind that the sum in (3.6) is taken under the condition
|l − l′| = 1 and that ζ ∈ �t

β , one concludes that the right-hand side of (3.6) tends to

zero as �
L→ Z

d for any sequence of boxes L.

Step 2. To prove (3.8) we first get rid of the boundary condition in (3.7)2. To this end we
consider the model described by the local Hamiltonians H̃� defined by (2.1) but with
the following one-particle Hamiltonian:

H̃
(0)
l = 1

2m
p2
l + 1

2
q2
l + Ṽ (q2

l ), (3.9)

2 Here we apply a technique already used in [5]. Its detailed description may be found in Subsect. 7.2
of [6].
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where

Ṽ (t) = (b1 + dJ − 1/2)t + 2−1b2t
2 + · · · + 21−rbr tr , (3.10)

and the parametersm, b1, . . . , br are the same as in (1.2). Each such a Hamiltonian H̃�
defines local Gibbs measures ν̃β,�(·|b) corresponding to the boundary condition b = p

or b = ξ ∈ �β . Therefore, similarly to (3.2) we may set

K̃�
ll′(τ, τ

′|b) = 〈ωl(τ )ωl′(τ ′)〉ν̃�(·|b) − 〈ωl(τ )〉ν̃�(·|b)〈ωl′(τ ′)〉ν̃�(·|b). (3.11)

Theorem 3.2. For any boxes�,�′ such that�′ ⊃ �, for all l, l′ ∈ � and τ, τ ′ ∈ [0, β],
and for any ξ ∈ �β ,

0 ≤ K�
ll′(τ, τ

′|ξ) ≤ K̃�
ll′(τ, τ

′|0) ≤ K̃�
ll′(τ, τ

′|p); (3.12)

K�
ll′(τ, τ

′|0) ≤ K�′
ll′ (τ, τ

′|0). (3.13)

Corollary 3.3. There exists a constant Cβ > 0, which depends on β only, such that for
all boxes �, for all l, l′ ∈ � and τ, τ ′ ∈ [0, β], and for any ξ ∈ �β ,

0 ≤ K�
ll′(τ, τ

′|ξ) ≤ C2
β. (3.14)

Now by (3.12) and (3.14), one gets for (3.7),

T �ll0(τ0|ξ) ≤ Cβ

√
D�ll0(0), (3.15)

which holds for all τ0 ∈ [0, β] and ξ ∈ �β . Here we employed one of the two Duhamel
functions

D�ll0(b)
def=

∫ β

0
K̃�
ll0
(τ, τ0|b)dτ, b = p, 0. (3.16)

Clearly these functions do not depend on τ0.

Step 3. Set

κ = D
{l}
ll (0) =

∫ β

0

{∫

Cβ
ωl(0)ωl(τ )ν̃β,{l}(dωl)

}
dτ

= 1

Z̃l

∫ β

0

{∫

Cβ
ωl(0)ωl(τ ) exp

(
−

∫ β

0
Ṽ ([ωl(t)]

2)dt

)
χβ(dωl)

}
dτ (3.17)

= 1

Z̃l

∫ β

0
trace

{
ql exp

(
−τH̃ (0)

l

)
ql exp

(
−(β − τ)H̃

(0)
l

)}
dτ, (3.18)

where H̃ (0)
l is defined by (3.9) and

Z̃l =
∫

C
exp

(
−

∫ β

0
Ṽ ([ωl(t)]

2)dt

)
χβ(dωl) = trace exp

(
−βH̃ (0)

l

)
.

Set also

I (q) = 2J
d∑

j=1

(1 − cos(qj )), q ∈ (−π, π ]d . (3.19)
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Theorem 3.4. Let κ, d and J obey the condition

2dJκ < 1. (3.20)

Then for any box �, for any β > 0, l, l0 ∈ �, the following is true:

D�ll0(0) ≤ 1

(2π)d

∫

(−π,π ]d

exp(i(q, l − l0))dq

κ−1 − 2dJ + I (q)
. (3.21)

Clearly, the right-hand side of (3.21) may be estimated by the right-hand side of (3.8)
with proper C and α, hence the estimate (3.8) will hold provided (3.20) holds.

Step 4. By standard arguments, the spectrum of H̃ (0)
l consists of non-degenerated ei-

genvalues εs , s ∈ N, such that εs → +∞ as s → ∞. We denote the corresponding
eigenfunctions by ψs and set

δ(m)
def= inf{εs+1 − εs : s ∈ N}. (3.22)

By means of εs , ψs , s ∈ N, we rewrite (3.18) as follows:

κ = 1

Z̃l

+∞∑

s,s′=1, s �=s′
|Qss′ |2 (εs − εs′)[e−βεs′ − e−βεs ]

(εs − εs′)2
,

where Qss′ stands for the matrix element (qlψs, ψs′)L2(R). Now we may estimate the
denominator by means of (3.22), which yields

κ ≤ 1

[δ(m)]2Z̃l

+∞∑

s,s′=1

|Qss′ |2(εs − εs′)[e
−βεs′ − e−βεs ]

= 1

[δ(m)]2Z̃l
trace

([
ql ,

[
H̃
(0)
l , ql

]]
e−βH̃

(0)
l

)
= 1

m[δ(m)]2 , (3.23)

where [·, ·] stands for commutator. In what follows, the uniqueness condition (3.20) now
may be written as

m[δ(m)]2 > 2dJ. (3.24)

For the harmonic oscillator, the parameter m[δ(m)]2 is nothing else but its rigidity and
(3.24) is the stability condition for the system of such oscillators, interacting via the
nearest neighbor potential. Therefore, the uniqueness condition (3.24) may be consid-
ered as a stability-due-to-quantum-effects condition and its left-hand side may be called
quantum rigidity. As was proved in [3], for the potential (3.10), the parameterm[δ(m)]2

is a continuous function of m and m[δ(m)]2 ∼ Cm−(r−1)/(r+1) as m → 0 for a certain
C > 0. Thus, one may find a positive m*, which depends on d, J and bj , j = 1, . . . , r ,
such that the condition (3.24) will be satisfied for all m ∈ (0,m*). This completes the
proof of our main theorem. �
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Discussion. The quantum rigiditym[δ(m)]2 introduced above may be made large either
by substituting “heavy” particles by “light” ones or by increasing δ(m) at fixedm (recall
that δ(m) also depends on several other parameters). Both effects were observed exper-
imentally (see [1 and 38]) and are known as the isotopic effect (i.e., substitution of
deuterons by protons on hydrogen bounds in the KDP -type ferroelectrics) and as the
stabilization-by-pressure effect p. 188 in [17 and 37] (increasing δ(m) by applying hydro-
static pressure, which makes minima of the wells closer to each other and increases
tunneling).

The main significant feature of the above proof is that it is based on the control of the
first local moments only and does not use Dobrushin’s contractivity technique, which
constitutes the base of the technique used in [5, 12, 13]. This made it possible for us to
reduce the uniqueness condition to (3.20) and then to apply the “quantum” arguments
(Step 4), similar to those used in [3, 5]. In the latter work, being in the framework of
Dobrushin’s technique, we could use such arguments only partially, which resulted in the
β-dependence of the bound m* for the uniqueness interval (0,m*). In [12, 13] Dobru-
shin’s contractivity technique and the logarithmic Sobolev inequality, applied directly
to the Euclidean Gibbs measures, led to a uniqueness condition, which does not contain
the mass m, hence it is valid also in the quasi-classical limit m → +∞, i.e., for the
classical analog of the model considered (see [4] and Sect. 3 in [6]). On the other hand,
the proofs of Theorems 3.1–3.4 and Corollary 3.3 are based on correlation inequalities
and are independent of the value of the particle mass m. Hence these statements hold
true also in the quasi-classical limit m → +∞ and it would make sense to obtain a
bound for κ, independent of the mass m, and to compare this with the results of [12,
13].

Let Ũ be the polynomial (1.2) with the coefficients bj , j = 1, . . . , r replaced by
21−j bj (cf., (3.10)). According to [12, 13] we write it in the form

Ũ (t) = W(t)+ Ũ0(t), t ∈ R, (3.25)

whereW is a bounded and twice differentiable function on R such that Ũ0 = Ũ −W is
strictly convex. Hence there exists b2 > 0 such that, for all t ∈ R,

Ũ ′′
0 (t) ≥ b2. (3.26)

Set also

f (ωl) = 1√
β

∫ β

0
ωl(τ )dτ, (3.27)

which is a Lipschitz-continuous function f : L2[0, β] → R with the Lipschitz con-
stant equal to one. Here l is the same as in (3.17). Then by (3.17), the parameter κ is
nothing else but the variance of f taken with respect to the measure ν̃β,{l}. By means of
the logarithmic Sobolev inequality, this variance may be estimated as follows (see [12],
Eq. (4.17))

κ = Varf ≤ eβδ(W)

2dJ + 1 + b2 ,

where

δ(W)
def= sup

R

W − inf
R

W.
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In what follows, the condition (3.20) may be written

Jeβδ(W)

2dJ + 1 + b2 <
1

2d
, (3.28)

which is a version of the uniqueness condition obtained in [6], Theorem 4.1.

4. The Proof of Theorems 3.1–3.4 and Corollary 3.3

4.1. Theorem 3.1. In the sequel, a local function will mean the function f : �β → R for
which there existn ∈ N, l1, . . . , ln ∈ Z

d , τ1, . . . , τn ∈ [0, β] and a functionϕ : R
n → R,

such that

f (ω) = ϕ(ωl1(τ1), . . . , ωln(τn)), ω ∈ �β. (4.1)

Local polynomials are those local functions for which ϕ are real polynomials. The set
of local polynomials will be denoted by P . In our analysis an important role is played
by the following fact proved in [11].

Proposition 4.1. For the model considered, the set Gt
β is nonempty for all values of β

and m, d, J , a, b2, . . . , br . For any p ∈ P , there exists a constant C(p) such that, for
every µ ∈ Gt

β ,

〈|p|〉µ ≤ C(p). (4.2)

The set of polynomially bounded continuous local functions Fpb consists of the local
functions, for each of which: (a) the function ϕ in (4.1) is continuous; (b) there exists
p ∈ P such that

|f (ω)| ≤ |p(ω)|, ω ∈ �β. (4.3)

Given a box �, Fpb
� will denote the set of all polynomially bounded continuous local

functions such that the corresponding l1, . . . , ln belong to �. Clearly,

Fpb =
⋃

�∈L
Fpb
� ,

for any increasing sequence of boxes L, which exhausts the lattice Z
d .

Given α > 0 and t ∈ R, we set

ϑα(t)
def=

{
t, if |t | ≤ α,

αsgn(t), otherwise, (4.4)

and Qβ to be the set of all rational elements of the interval [0, β].
Let us introduce one more set of local functions on �β . It consists of all functions,

such that there exist n ∈ N, l1, . . . , ln ∈ Z
d , τ1, . . . , τn ∈ Qβ , positive rational numbers

α1, . . . , αn, possibly coinciding, such that

f (ω) = ϑα1(ωl1(τ1)) . . . ϑαn(ωln(τn)). (4.5)

The set of all such functions will be denoted by F .
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Proposition 4.2. For any two probability measures µ1, µ2 on �β , let

〈f 〉µ1 = 〈f 〉µ2 ,

for all f ∈ F . Then µ1 = µ2.

Proof. The set F is countable, closed with respect to multiplication and separates
the points of �β . By standard monotone class arguments it is a measure determining
set. ��

Now we introduce an ordering on �β . We write ξ ≥ ξ ′ if, for every l ∈ Z
d and

τ ∈ [0, β], ξl(τ ) ≥ ξ ′
l (τ ). In the same sense we define the ordering on every �β,�.

A function f ∈ Fpb
� is called increasing if f (ω�) ≥ f (ω′

�) for ω� ≥ ω′
�. A significant

role in the proof of Lemma 3.1 is played by the FKG inequality, which, for the measures
(2.16), was proved in Sect. 6 of [6].

Proposition 4.3 (FKG). For any box �, for every two increasing functions f, g ∈ Fpb
�

and any ξ ∈ �β , the following is true

〈fg〉νβ,�(·|ξ) ≥ 〈f 〉νβ,�(·|ξ)〈g〉νβ,�(·|ξ). (4.6)

Corollary 4.4. For every increasing f ∈ Fpb
� and any ξ, η ∈ �β , ξ ≥ η, implies

〈f 〉νβ,�(·|ξ) ≥ 〈f 〉νβ,�(·|η). (4.7)

Proof of Theorem 3.1. By Proposition 4.2, it is enough to show that the condition (3.1)
implies that, for any two extreme elements µ1, µ2 ∈ Gt

β , the following equality:

〈f 〉µ1 = 〈f 〉µ2 , (4.8)

holds for all f ∈ F . For a box�, let F� denote the subset of F , consisting of functions
depending on ωl with l ∈ � only. By Theorem 7.12, p. 122, [22], the equality (4.8) is a
consequence of the following convergence:

〈f 〉νβ,�(·|ξ) − 〈f 〉νβ,�(·|η) −→ 0, as �
L→ Z

d , (4.9)

which has to hold for every f ∈ F , for any sequence of boxes L such that f ∈ F� for
all � ∈ L, and for any two ξ, η ∈ �t

β .
Obviously, for every f ∈ F , there exists λ > 0 such that the function

φ(ω) = λ

n∑

j=1

ωlj (τj )+ θf (ω), (4.10)

is increasing for both values θ = ±1.
First let us show that (3.1) implies (4.9) for an ordered pair ξ ≥ η of elements of�t

β .
By Corollary 4.4, for such a pair, one has

〈ωlj (τj )〉νβ,�(·|ξ) ≥ 〈ωlj (τj )〉νβ,�(·|η), j = 1, 2, . . . , n,

and

〈φ〉νβ,�(·|ξ) ≥ 〈φ〉νβ,�(·|η),
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which holds for both values θ = ±1. This yields

0 ≤ 〈φ〉νβ,�(·|ξ) − 〈φ〉νβ,�(·|η)

= λ

n∑

j=1

[〈ωlj (τj )〉νβ,�(·|ξ) − 〈ωlj (τj )〉νβ,�(·|η)
]

+θ [〈f 〉νβ,�(·|ξ) − 〈f 〉νβ,�(·|η)
]
, (4.11)

also for both values of θ . Hence

∣∣〈f 〉νβ,�(·|ξ) − 〈f 〉νβ,�(·|η)
∣∣ ≤ λ

n∑

j=1

[〈ωlj (τj )〉νβ,�(·|ξ) − 〈ωlj (τj )〉νβ,�(·|η)
]
,

which yields (4.9) by (3.1). Now let us consider the case of arbitrary ξ, η ∈ �t
β . Define

A�(ξ, η) = λ

n∑

j=1

[〈ωlj (τj )〉νβ,�(·|ξ) − 〈ωlj (τj )〉νβ,�(·|η)
]
,

B�(ξ, η) = 〈f 〉νβ,�(·|ξ) − 〈f 〉νβ,�(·|η),
C�(ξ, η|θ) = 〈φ〉νβ,�(·|ξ) − 〈φ〉νβ,�(·|η) = A�(ξ, η)+ θB�(ξ, η),

and set ξ̄ = max{ξ, η}. Then for both values θ = ±1, C�(ξ̄ , η|θ) ≥ C�(ξ, η|θ), since
C�(ξ, η|θ) is increasing in ξ . This yields

A�(ξ̄ , η)− A�(ξ, η) ≥ θ
[
B�(ξ, η)− B�(ξ̄ , η)

]
, θ = ±1.

By (3.1), the left-hand side of the latter inequality tends to zero as �
L→ Z

d . The same
is true for B�(ξ̄ , η), because ξ̄ ≥ η. Since this holds for both θ = ±1, one has

B�(ξ, η) = 〈f 〉νβ,�(·|ξ) − 〈f 〉νβ,�(·|η) −→ 0. ��

4.2. Theorem 3.2 and Corollary 3.3 . The proof of Theorem 3.2 is based on the GKS
inequalities, which hold for the measures νβ,�(·|b), ν̃β,�(·|b), b = 0, p by Theorem 6.2
in [6]. Here we will use them in the following form.

Proposition 4.5. Let ν denote one of the following measures νβ,�(·|b), ν̃β,�(·|b), b=0,
p. Then, for any l1, l2, . . . , l2n ∈ �, τ1, τ2, . . . , τ2n ∈ [0, β ] (possibly coinciding) and
for any positive integer p ≤ n, one has

〈ωl1(τ1) . . . ωl2n(τ2n)〉ν ≥ 0, (4.12)

〈ωl1(τ1) . . . ωl2n(τ2n)〉ν
≥ 〈ωl1(τ1) . . . ωl2p (τ2p)〉ν〈ωl2p+1(τ2p+1) . . . ωl2n(τ2n)〉ν . (4.13)
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Let � = (�ll′)l,l′∈�, with �ll′ ≥ 0 for all l, l′ ∈ �. Set

µ�β,�(dω�) = 1

Z�β,�
exp





1

2

∑

l,l′∈�
�ll′

∫ β

0
ωl(τ )ωl′(τ )dτ

−
∑

l∈�

∫ β

0
V̂ ([ωl(τ )]

2)dτ

}
χβ,�(dω�), (4.14)

where V̂ denotes either V or Ṽ and 1/Z�β,� is a normalization constant. A corollary of
(4.13) is the following statement, whose proof is standard hence omitted.

Proposition 4.6. If �ll′ ≤ �′
ll′ for all l, l′ ∈ �, then the following inequality

〈ωl(τ )ωl′(τ ′)〉µ�β,� ≤ 〈ωl(τ )ωl′(τ ′)〉
µ�

′
β,�
, (4.15)

holds for all l, l′ ∈ � and τ, τ ′ ∈ [0, β].

Proof of Theorem 3.2. Positiveness in (3.12) follows from the FKG inequality (4.6).
The estimate (3.13) and the periodic boundary domination in (3.12) follow from the
inequality (4.15). To prove the zero boundary estimate in (3.12) we rewrite (3.2) as
follows:

K�
ll′(τ, τ

′|ξ) = 1

[Zβ,�(ξ)]2

∫ ∫

�β,�×�β,�

ωl(τ )− ω′
l (τ )√

2
· ωl′(τ

′)− ω′
l′(τ

′)√
2

× exp





J

2

∑

nn: l,l′∈�

∫ β

0
[ωl(τ )ωl′(τ )+ ω′

l (τ )ω
′
l′(τ )]dτ

+J
∑

nn: l∈�, l′∈�c

∫ β

0
[ωl(τ )+ ω′

l (τ )]ξl′(τ )dτ

−
∑

l∈�

∫ β

0
[V ([ωl(τ )]

2)+ V ([ω′
l (τ )]

2)]dτ

}
⊗

l∈�
(χβ ⊗ χβ)(dωl, dω′

l ).

By means of the substitutions

xl(τ ) = 2−1/2[ωl(τ )− ω′
l (τ )], yl(τ ) = 2−1/2[ωl(τ )+ ω′

l (τ )],

we transform this into

K�
ll′(τ, τ

′|ξ) = 1

[Zβ,�(ξ)]2

∫ ∫

�β,�×�β,�
xl(τ )xl′(τ

′)

× exp





J

2

∑

nn: l,l′∈�

∫ β

0
[xl(τ )xl′(τ )+ yl(τ )yl′(τ )]dτ
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+
√

2J
∑

nn: l∈�, l′∈�c

∫ β

0
yl(τ )ξl′(τ )dτ −

∑

l∈�
B(xl, yl)

−
∑

l∈�

∫ β

0
[Ṽ ([xl(τ )]

2)+ Ṽ ([yl(τ )]
2)]dτ

}

×
⊗

l∈�
(χβ ⊗ χβ)(dxl, dyl). (4.16)

Here Ṽ is defined by (3.10) and

B(xl, yl)
def=

r−1∑

j=1

∫ β

0
bj (yl(τ ))[xl(τ )]

2jdτ,

bj (yl(τ ))
def=

r∑

k=j+1

21−kbk
(

2k

2j

)
[yl(τ )]

2(k−j) ≥ 0, j = 2, . . . , r − 1. (4.17)

Recall that we suppose bk ≥ 0 for all k = 2, . . . , r − 1. Further, for t ∈ [0, 1], set

µ(t)(dx�|y�) = 1

Y (t)(y�)
exp




−t
∑

l∈�
B(xl, yl)+ J

2

∑

nn: l,l′∈�

∫ β

0
xl(τ )xl′(τ )dτ

−
∑

l∈�

∫ β

0
Ṽ ([xl(τ )]

2)dτ

}
χβ,�(dx�), (4.18)

Y (t)(y�) =
∫

�β,�

exp




−t
∑

l∈�
B(xl, yl)+ J

2

∑

nn: l,l′∈�

∫ β

0
xl(τ )xl′(τ )dτ

−
∑

l∈�

∫ β

0
Ṽ ([xl(τ )]

2)dτ

}
χβ,�(dx�). (4.19)

Now we set

�
(t)

ll′ (τ, τ
′|y�) = 〈xl(τ )xl′(τ ′)〉µ(t)(·|y�). (4.20)

By standard arguments, this is a differentiable function of t ∈ (0, 1), which is continuous
on [0, 1]. Then by the definitions (4.18)–(4.20), one has

∂

∂t
�
(t)

ll′ (τ, τ
′|y�) = − 1

Y (t)(y�)

r−1∑

j=2

∑

λ∈�

∫ β

0
bj (yλ(ϑ))

{
〈[xλ(ϑ)]2j xl(τ )xl′(τ

′)〉µ(t)(·|y�)

−〈[xλ(ϑ)]2j 〉µ(t)(·|y�)〈xl(τ )xl′(τ ′)〉µ(t)(·|y�)
}

dϑ. (4.21)

For every t ∈ [0, 1] and y� ∈ �β,�, the moments of the measure (4.18) satisfy the
GKS inequalities, thus, the expression in {·} in the latter formula is non-negative. Taking
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into account (4.17), one concludes that, for all t ∈ [0, 1] and y� ∈ �β,�, l, l′ ∈ �,
τ, τ ′ ∈ [0, β],

∂

∂t
�
(t)

ll′ (τ, τ
′|y�) ≤ 0,

which immediately yields

�
(1)
ll′ (τ, τ

′|y�) ≤ �
(0)
ll′ (τ, τ

′|y�) = K̃�
ll′(τ, τ

′|0). (4.22)

The latter fact holds since, by (4.18), one hasµ(0)(·|y�) = ν̃β,�(·|0). On the other hand,
by (4.16), (4.18), (4.20), one has

K�
ll′(τ, τ

′|ξ) = 1

[Zβ,�(ξ)]2

∫

�β,�

Y (1)(y�)�
(1)
ll′ (τ, τ

′|y�)

× exp





√

2J
∑

nn: l∈�, l′∈�c

∫ β

0
yl(τ )ξl′(τ )dτ

J

2

∑

nn: l,l′∈�

∫ β

0
yl(τ )yl′(τ )dτ

−
∑

l∈�

∫ β

0
Ṽ ([yl(τ )]

2)dτ

}
χβ,�(dy�).

Taking here into account (4.22) and (4.19) one obtains

K�
ll′(τ, τ

′|ξ) ≤ K̃�
ll′(τ, τ

′|0). ��

Proof of Corollary 3.3. By the Schwarz inequality, one has

K̃�
ll′(τ, τ

′|0) ≤
√
K̃�
ll (τ, τ |0)K̃�

l′l′(τ
′, τ ′|0). (4.23)

Let π̃β,�(·|ξ) be the probability kernel defined by (2.19) for the measure ν̃β,�(·|ξ). Then

K̃�
ll (τ, τ |0) = 〈[ωl(τ ))]2〉ν̃β,�(·|0) = 〈[ωl(τ ))]2〉π̃β,�(·|0) ≤ C2

β, (4.24)

with a certain Cβ independent of �, l ∈ � and τ ∈ [0, β]. The latter estimate was
proven in [5] (see Eq. (4.57)). This yields (3.14). ��

4.3. Theorem 3.4. By periodic boundary domination in (3.12) and by (3.13), one con-
cludes that for any pair of boxes �, �′, such that � ⊂ �′, the following is true:

D�ll′(0) ≤ D�ll′(p), D�ll′(0) ≤ D�
′

ll′ (0). (4.25)
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Let us choose the box � as follows:

� = (−L,L]d
⋂

Z
d , L ∈ N. (4.26)

Set

�* = {q = (q1, . . . , qd) | qj = −π + (π/L)κj ,

κj = 1, 2, . . . , 2L, j = 1, 2, . . . , d}. (4.27)

Lemma 4.7. Let κ (cf., (3.17)), d and J satisfy the condition (3.20). Then, for every box
� of the form (4.26), the following holds:

D�ll′(p) ≤ 1

|�|
∑

q∈�*

exp
(
i(q, l − l′)

)

κ−1 − 2dJ + I (q)
, (4.28)

where I (q) is given by (3.19).

Proof. For t ∈ [0, 1], we set

Ẽ
(t)
β,�(ω�|p) = − tJ

2

∑

nn: l,l′∈T (�)

∫ β

0
ωl(τ )ωl′(τ )dτ

+
∑

l∈�

∫ β

0
Ṽ ([ωl(τ )]

2)dτ, (4.29)

and

ν̃
(t)
β,�(dω�|p) = 1

Z̃
(t)
β,�(p)

exp
(
−Ẽ(t)β,�(ω�|p)

)
χβ,�(dω�), (4.30)

where 1/Z̃(t)β,�(p) is the normalization constant and Ṽ is given by (3.10). To shorten
notations by the end of this proof we will write 〈·〉t instead of 〈·〉

ν̃
(t)
β,�(·|p)

. Furthermore,

for l, l′, l1, . . . , l4 ∈ � and τ, τ ′, τ1, . . . , τ4 ∈ [0, β ], we set

Xll′(τ, τ
′|t) = 〈ωl(τ )ωl′(τ ′)〉t , (4.31)

Rl1l2l3l4(τ1, τ2, τ3, τ4|t) = 〈ωl1(τ1)ωl2(τ2)ωl3(τ3)ωl4(τ4)〉t
−Xl1l2(τ1, τ2|t)Xl3l4(τ3, τ4|t)
−Xl1l3(τ1, τ3|t)Xl2l4(τ2, τ4|t)
−Xl1l4(τ1, τ4|t)Xl2l3(τ2, τ3|t). (4.32)

These functions are differentiable with respect to t ∈ (0, 1) and continuous at the end-
points for all possible values of the rest of their arguments. Taking into account (4.29),
(4.30) one concludes that the functionsXll′(τ, τ ′|t) solve the following Cauchy problem:

∂

∂t
Xll′(τ, τ

′|t) = J

2

∑

l1,l2∈�
εl1l2

∫ β

0
Rl1l2ll′(τ1, τ1, τ, τ

′|t)dτ1

+J
∑

l1,l2∈�
εl1l2

∫ β

0
Xll1(τ, τ1|t)Xl′l2(τ ′, τ1|t)dτ1, (4.33)

with the initial condition
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Xll′(τ, τ
′|0) = δll′

Z̃β

∫

Cβ
ωl(τ )ωl(τ

′) exp

(
−

∫ β

0
Ṽ ([ωl(τ )]

2)dτ

)
χβ(dωl)

= δll′

Z̃l
trace

{
ql exp

(
−(τ ′ − τ)H̃

(0)
l

)
ql exp

(
−(β − τ ′ + τ)H̃

(0)
l

)}
.

(4.34)

Here δll′ is the Kronecker delta, εll′ = 1 if l, l′ are nearest neighbors on the torus T (�)
and εll′ = 0 otherwise, 1/Z̃β , 1/Z̃l are normalizing constants. Moreover, comparing
(4.31), (4.30), (4.29) with (3.2), (2.18), one gets

Xll′(τ, τ
′|1) = K̃�

ll′(τ, τ
′|p). (4.35)

Since we are interesting in the Duhamel functions (4.25) only, we will study the following
function:

Yll′(t) =
∫ β

0
Xll′(τ, τ

′|t)dτ ′ =
∫ β

0
Xll′(0, τ

′|t)dτ ′, (4.36)

for which we have from (4.33), (4.34),

∂

∂t
Yll′(t) = J

2

∑

l1,l2∈�
εl1l2

∫ β

0

∫ β

0
Rl1l2ll′(τ1, τ1, 0, τ |t)dτ1dτ

+J
∑

l1,l2∈�
εl1l2Yll1(t)Yl′l2(t), (4.37)

subject to the following conditions (see (4.25) and (3.17)):

Yll′(0) = δll′κ, Yll′(1) = D�ll′(p). (4.38)

By [6], Theorem 6.3, the Lebowitz inequality

Rl1l2l3l4(τ1, τ2, τ3, τ4|t) ≤ 0

holds for all t ∈ [0, 1], thus Eq. (4.36) may be rewritten as

∂

∂t
Yll′(t) = Sll′(t)+ J

∑

l1,l2∈�
εl1l2Yll1(t)Yl′l2(t), Sll′(t) ≤ 0. (4.39)

Along with the latter let us consider the following Cauchy problem:

∂

∂t
Qll′(t) = J

∑

l1,l2∈�
εl1l2Qll1(t)Ql′l2(t), Qll′(0) = δll′κ. (4.40)

Due to the translation symmetry on the torus T (�) it may be diagonalized by means of
the Fourier transformation

Qll′(t) = 1

|�|
∑

q∈�*

Q̂q(t) exp
(
i(q, l − l′)

)
, Q̂q(t) =

∑

l′∈�
Qll′(t) exp

(−i(q, l − l′)
)
,

(4.41)
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where �* is given by (4.27). This yields

∂

∂t
Q̂q(t) = (2dJ − I (q))

[
Q̂q(t)

]2
, Q̂q(0) = κ. (4.42)

Under the condition (3.20) the latter may be solved for t ∈ [0, 1],

Q̂q(t) = 1

κ−1 − t (2dJ − I (q))
,

Qll′(t) = 1

|�|
∑

q∈�*

exp
(
i(q, l − l′)

)

κ−1 − t (2dJ − I (q))
. (4.43)

Given α ∈ (0, 1), we set

Q
(α)

ll′ (t) = Qll′(t + α), t ∈ [0, 1 − α]. (4.44)

These functions solve the Cauchy problem

∂

∂t
Q
(α)

ll′ (t) = J
∑

l1,l2∈�
εll1εl′l1Q

(α)
ll1
(t)Q

(α)

l′l2(t), (4.45)

Q
(α)

ll′ (0) = Qll′(α) > Qll′(0) = δll′κ. (4.46)

Now let us compare the latter problem with the problem (4.38), (4.39), which has a
unique solution defined by (4.31), (4.36). By Theorem V, p. 65, [41], one has

Yll′(t) < Q
(α)

ll′ (t) = Qll′(t + α), t ∈ [0, 1 − α],

which holds for all α ∈ (0, 1). Since both above functions are continuous, this yields
(see (4.38), (4.43))

D�ll′(p) = Yll′(1) ≤ Qll′(1) = 1

|�|
∑

q∈�*

exp
(
i(q, l − l′)

)

κ−1 − 2dJ + I (q)
. (4.47)

��
Proof of Theorem 3.4. Given a box �, let L be the sequence of boxes, each element of
which contains� and is of the form (4.26). Then, for every�′ ∈ L, by (4.25) and (4.28),
one has

D�ll0(0) ≤ D�
′

ll0
(p) ≤ 1

|�′|
∑

q∈�′
*

exp (i(q, l − l0))

κ−1 − 2dJ + I (q)
.

Passing here to the limit �′ L→ Z
d one gets (3.21). ��
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6. Albeverio, S., Kondratiev,Yu., Kozitsky,Yu., Röckner, M.: Euclidean Gibbs states of quantum lattice
systems. Rev. Math. Phys. 14, 1335–1401 (2002)
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