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Purpose. Development of reliable mathematical models to predict
skin permeability remains a challenging objective. This article exam-
ines some of the existing algorithms and critically evaluates their
statistical relevance.
Methods. Complete statistics were recalculated for a number of pub-
lished models using a stepwise multiple regression procedure. The
predictivity of the models was obtained by cross-validation using a
“leave-one-out” deletion pattern. The relative contribution of each
independent variable to the models was calculated by a standardiza-
tion procedure.
Results. The heterogeneity of the data in terms of skin origin and
experimental conditions has been shown to contribute to the residual
variance in existing models. Furthermore, rigorous statistics demon-
strate that some published models are based on nonsignificant pa-
rameters. As such, they afford misleading mechanistic insight and will
lead to over-interpretation of the data.
Conclusions. The large number of published models reflects the need
for predictive tools in cutaneous drug delivery and toxicology. How-
ever, such models are more reliable when confined within well-
defined chemical classes, and their applicability is often limited by the
narrow property space of the set of permeants under study.

KEY WORDS: percutaneous absorption; quantitative structure–
permeation relationships; skin permeability; transdermal drug deliv-
ery.

INTRODUCTION

Because the determination of the absorption of chemi-
cals into and through the skin involves ethical difficulties with
respect to human and animal experiments (1), the prediction
of transdermal penetration is an object of great interest in
industrial, governmental, and academic circles.

Quantitative structure–permeation relationships (QSPeRs)
relate variations in the permeation of series of compounds to

variations in their physicochemical and/or structural proper-
ties. QSPeRs provide insights into permeation mechanisms,
may predict the permeation of novel compounds even before
their synthesis, and reduce or eliminate the need for in vivo
experiments. With respect to skin absorption, QSPeR models
are often based on multivariate regression analysis and use an
experimental index of permeation, such as the permeability
coefficient, kp, as the dependent variable. A key feature in the
development of QSPeRs is that all available data must be
consistent and reliable. Variations caused by heterogeneous
experimental conditions will decrease the statistical validity of
models. Furthermore, the physicochemical parameter space
should be broadly and regularly explored to provide relevant
information on the factors governing skin permeation.

The ability of a compound to diffuse passively across the
skin can be assessed in various ways. Commonly, parameters
from Fick’s first law [Eq. (1)], including the steady-state flux
(J) and permeability coefficient (kp), are used (2):

J =
DM � P

h
� �CM = kp � �CM (1)

where DM is the diffusion coefficient of the permeant in the
membrane, P the partition coefficient of the solute between
the membrane and solvent, h the diffusional path length, and
�CM the concentration difference across the membrane.
Typically, the steady-state flux and the kp are assessed from
an in vitro experiment in which the donor concentration of
the penetrant is maintained (more or less) constant while the
receiver phase provides �sink� conditions. Over time, there-
fore, the flux increases to reach a steady-state value (J). kp is
simply calculated from the slope of the linear portion of the
graph of the cumulative amount penetrated as a function of
time.

Back-extrapolation of the latter plot to the x (time) axis
yields the so-called lag-time (Tlag), which is related to the time
necessary to establish a linear concentration profile across the
barrier (∼2.7 · Tlag) (3,4). While Tlag is of practical usefulness
(for example, in the feasibility assessment of a transdermal
drug delivery candidate), it is poorly characterized experi-
mentally. First of all, the manner in which transport data are
back-projected to obtain Tlag is rarely performed objectively
(i.e., no specific criteria are applied to evaluate exactly when
steady-state is attained). Second, for slowly diffusing com-
pounds, the delay to steady-state may be too long to allow
experimental determination; that is, it may not be possible to
continue the study for the necessary time due to disintegra-
tion of the tissue. For these reasons, attention here is focused
on structure–permeation relationships based only on experi-
mentally determined permeability coefficients.

This article revisits and recalculates some of the impor-
tant models proposed to predict skin permeation. Physico-
chemical determinants in passive drug absorption and the rel-
evance of the various approaches are also discussed. A sum-
mary of the chemical classes studied and the ranges of
molecular weight, lipophilicity, and permeability encom-
passed by these datasets are presented in Table I. It should be
emphasized that the results analyzed were obtained from
in vitro experiments that used aqueous donor and receiver
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solutions and human skin (primarily epidermis, separated in
the normal way, or dermatomed tissue). No systematic evalu-
ation of skin penetration data from nonaqueous (including
volatile) vehicles has yet been undertaken, nor is it possible,
for the same reason, to address the role (if any) of different
receptor phases.

STATISTICAL ANALYSIS

Most QSPeR models have been published without com-
plete statistics; recalculations were performed here using a

stepwise multiple regression procedure in Tsar 3.3 (Oxford
Molecular Ltd., Oxford, UK) running on a PC with Windows
2000. All calculations were performed in an identical manner;
the statistical parameters being the number of compounds
included in the analysis (n), the square of the correlation
coefficient adjusted for the number of degrees of freedom
(r2), the standard deviation of the equation (s), Fischer’s sta-
tistical test (F), and the predictive correlation coefficient (q2).
The latter parameter was obtained by cross-validation using a
“leave-one-out” deletion pattern (5–7). Moreover, 95% con-
fidence limits are given in parentheses, and the relative con-

Table I. Summary of the Chemical Series and Ranges of Molecular Weight (MW), Lipophilicity (log Poct) and Permeability (log kp) Upon
Which Each Model was Developed

Chemical series Ranges* Equation Reference

Flynn database (n � 93) 18 < MW < 765 Eq. (9) 45
2.3 < log Poct < 5.5
−9.7 < log kp < −3.5

Alkanols, phenols, steroids, other drugs (n � 38) 18 < MW < 462 Eq. (10) 52
1.4 < log Poct < 2.0
−9.1 < log kp < −5.3

Alkanols, phenols, steroids, other drugs (n � 43) 88 < MW < 504 Eq. (11) 52
1.5 < log Poct < 3.0
−9.1 < log kp < −3.6

Alkanols, phenols, steroids, other drugs (n � 40) 92 < MW < 519 Eq. (12) 52
2.5 < log Poct < 5.5
−7.7 < log kp < −3.5

Flynn database, miscellaneous compounds (n � 107) 30 < MW < 391 Eq. (13) 54
1.5 < log Poct < 7.5
−9.1 < log kp < −3.8

Alkanols, steroids (n � 21) 32 < MW < 362 Eq. (14) 14
0.8 < log Poct < 3.7
−9.1 < log kp < −4.9

Alkanols, phenols, miscellaneous compounds (n � 37) 18 < MW < 158 Eq. (16) 56
1.4 < log Poct < 3.2
−7.1 < log kp < −3.5

Alkanols, phenols, steroids (n � 46) 32 < MW < 362 Eq. (18) 57
0.8 < log Poct < 3.7
−9.1 < log kp < −4.8

Alkanols, phenols, steroids, miscellaneous compounds (n � 53) 32 < MW < 392 Eq. (21) 59
0.8 < log Poct < 4.0
−7.8 < log kp < −3.5

Alkanols, phenols, steroids (n � 22) 18 < MW < 362 Eq. (24) 64
1.4 < log Poct < 3.9
−9.1 < log kp < −4.8

Alkanols, phenols, drugs (n � 52) 32 < MW < 303 Eq. (25) 65
0.8 < log Poct < 4.0
−7.9 < log kp < −4.7

Alkanols, phenols, steroids, barbiturates, other drugs (n � 60) 18 < MW < 362 Eq. (26) 66
2.3 < log Poct < 5.5
−9.1 < log kp < −3.5

Flynn database (n � 91) 18 < MW < 765 Eq. (28) 67
2.3 < log Poct < 5.5
−9.7 < log kp < −3.5

Alkanols, phenols, steroids, barbiturates, other drugs (n � 98) 18 < MW < 765 Eq. (29) 70
3.7 < log Poct < 5.5
−9.7 < log kp < −3.5

Phenols, steroids, miscellaneous compounds (n � 20) 94 < MW < 362 Eq. (30) 72
0.1 < log Poct < 4.6
−5.5 < log kp < −3.4

Phenols, steroids, miscellaneous compounds (n � 48) 94 < MW < 453 Eq. (31) 72
0.1 < log Poct < 4.6
−6.5 < log kp < −3.3

* Permeability coefficients (kp) are expressed in cm/s.
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tribution of each variable to the model is calculated using
Mager’s standardization procedure (8,9).

COMMON MOLECULAR PARAMETERS USED
IN QSPeRs

Molecular Size

Molecular size is believed to play a distinct role in mem-
brane permeation (10,11). Drug diffusivity (D), in general, is
size-dependent (i.e., large molecules diffuse more slowly than
small ones).

In simple liquids, this dependence is often expressed by
the Stokes–Einstein equation (12) [Eq. (2)]:

D =
k � T

6 � � � � � r
(2)

where k is Boltzmann’s constant, T the absolute temperature,
� the viscosity of the solvent, and r the solvated radius of the
diffusing solute. For spherical molecules, Eq. (2) indicates
that D is inversely proportional to the cube-root of the mo-
lecular volume (V).

In more organized media such as polymers and the stra-
tum corneum, the dependence on size is more severe and has
empirically been described by an exponential relationship
(13) [Eq. (3)]:

D = D0 � e−B��V� (3)

where D0 is the diffusivity of a hypothetical molecule having
zero molecular volume, and B is a constant. This means that
drug diffusivity across the stratum corneum decreases as mo-
lecular weight (MW) increases since V and MW are interde-
pendent.

Molecular size also has an impact on the skin–water par-
tition coefficient (P) of a solute. The latter is frequently mod-
eled with the octanol–water partition coefficient (Poct) (14,15)
which depends on both the solute’s molecular volume and its
polar interactions (see next section). The fact that kp depends
on both P and D, as described by Eq. (4), means that the
solute’s volume contributes both positively and negatively to
its permeation, as illustrated in Fig. 1 and later exemplified in
Eqs. (9) and (18).

log kp = log
D � P

h
= log D + log P − log h (4)

A practical result of this observation is that small polar
compounds often have a better permeability than expected
from their lipophilicity alone, due to compensation by a
higher diffusivity.

Solvatochromic Parameters

Linear solvation free-energy relationships (LSERs) are
based on the solvatochromic parameters developed by Taft
and colleagues (16–20). LSER analyses serve to factorize
some given molecular property (Sp) of neutral organic solutes
[e.g., partitioning, retention, or permeation (14,21–24)] in
terms of structural parameters such as the calculated van der
Waals volume (Vw) and the so-called solvatochromic param-
eters (dipolarity/polarizability �*, hydrogen-bond donor acid-
ity �, and hydrogen-bond acceptor basicity �). The linear
equation [Eq. (5)] reflects a differential solvation model con-
structed with an endergonic factor (i.e., the volume term ac-
counting for solvophobic/hydrophobic and dispersive forces)
and exergonic factors (i.e., the polar interactions represented
by �*, �, and �):

log Sp = v � Vw + p � �* + a � � + b � � + c (5)

where v, p, a, and b are the regression coefficients that reflect
the relative contribution of each solute parameter to Sp. The
constant term c includes information on the analyzed system.

Although there are tables of LSER parameters and pre-
dictive relations to help estimate them, LSER values of com-
plex molecules are not easy to determine. Thus, methods al-
ternative to LSERs and called theoretical linear solvation en-
ergy relationships (TLSERs) have been developed and have
been shown to be relevant tools (25,26).

Lipophilicity and Related Parameters

Lipophilicity is classically recognized as a meaningful
parameter in quantitative structure–activity relationships
(QSARs). It is also the single most informative and successful
physicochemical property in medicinal chemistry (27,28). Not
only has lipophilicity found innumerable applications in
QSARs, but its study has revealed a wealth of information on
intermolecular forces, intramolecular interactions, and mo-
lecular structure in the broadest sense (29–31).

Lipophilicity is experimentally determined as a partition
coefficient (log P, valid only for a single electrical state) or as
a distribution coefficient (log D, referring to a pH-dependent
mixture of neutral and ionic forms) (32). As a ratio of two
concentrations at equilibrium, the partition coefficient is the
net result of all intermolecular forces between a solute and
the two phases between which it partitions. When a given type
of interaction elicited by the solute is of similar energy in the
two solvents, the two contributions compensate each other,
and log P will contain no information about this type of in-
teraction.

It is possible to factorize lipophilicity described by par-
tition coefficients into two sets of terms [Eq. (6)]; namely, a
positive cavity term related to hydrophobicity and a negative
term related to polarity (33):

log P = a � V − � (6)

where V is the molecular volume and � is the global polarity
of a given solute in a given solvent system. The slope a de-
pends on the solvent system and on the method used to cal-

Fig. 1. Opposing contributions of solute molecular size to permeabil-
ity where D is the drug diffusivity across the stratum corneum and
P its skin–water partition coefficient.
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culate molecular volume whereas the � term is mostly related
to the solute’s H-bonding capacity. This latter parameter, how
ever, also contains information on dipolarity/polarizability.

A dataset of 75 molecules belonging to different chemi-
cal classes (alkanes, ketones, aliphatic alcohols, phenols,
aromatic acids, aliphatic acids, anilines, and amines) and cov-
ering a large range in lipophilicity and hydrogen-bonding ca-
pacity was used to characterize the intermolecular interac-
tions encoded by another lipophilicity-derived polarity de-
scriptor; namely, the difference between log Poct and log Palk

(denoted as �log Poct−alk).

�log Poct−hep = 0.11 �±0.34� � �* + 1.97 �±0.45� � �
+ 3.40 �±0.26� � � − 0.44 �±0.28� (7)

[n � 75, r2 � 0.93, q2 � 0.92, s � 0.31, F � 295; relative
contributions: �* (11%), � (27%), � (62%)]. This solvato-
chromic analysis using heptane (denoted as hep) as the alkane
solvent demonstrates that the �log P parameter encodes only
polar terms [Eq. (7)], as the contributions of the volume term
in octanol and alkanes are similar (22,34). In fact, �log P
encodes mainly the H-bonding donor acidity (�), as seen after
removal of the terms with low or no significance [Eq. (8)]:

�log Poct−hep = 3.54 �±0.35� � � −0.37 �±0.17� (8)

(n � 75; r2 � 0.84; q2 � 0.83; s � 0.45; F � 377). The �log
P parameter has found valuable applications in QSPeR stud-
ies; for example, in percutaneous absorption or with respect
to the permeability of the blood–brain barrier (14,35–37).

Lipophilicity is also markedly influenced by intramolecu-
lar interactions; that is, electronic conjugation, interactions
between polar groups, and steric and hydrophobic effects
(31). Moreover, several structural factors are responsible for
intramolecular interactions, rendering them too complex to
be expressed in the factorization of log P or log D (38).

QUANTITATIVE STRUCTURE–SKIN
PERMEATION RELATIONSHIPS

Background

During the last 30 years, there have been numerous at-
tempts to relate the skin permeability of compounds to their

physicochemical properties. Quantitative models (i.e., QSPeRs)
were seldom calculated, particularly in the earlier studies,
which were primarily based on the analysis of small and
closely related series. Many of these efforts revealed a linear
relationship between skin permeation and lipophilicity
(39,40). Others, however, reported a parabolic relationship
with lipophilicity, particularly when highly lipophilic com-
pounds were included (40). The problem of analyzing ho-
mologous or closely related series is that there is little phys-
icochemical variety in the data. This results in co-linearity
between descriptors, especially for congeneric series, making
it impossible to separate the effects of lipophilicity and mo-
lecular size. Many examples illustrating this point have been
published (41–43).

Using a larger dataset, Flynn proposed a QSPeR ap-
proach for 94 compounds with a relatively broad range of
properties (18 < MW < 765 and −2.3 < log Poct < 5.5) (44).
Until recently, this set provided the largest available hetero-
geneous database of in vitro skin permeability values across
human skin. It should be noted, however, that these data were
compiled from 15 different literature sources and that they
necessarily demonstrate a high degree of interlaboratory vari-
ability.

In his paper, Flynn proposed a number of algorithms to
predict skin permeability, showing that lipophilicity (octanol–
water partition coefficient) and molecular size were relevant
parameters. A simple approach with algorithms for low- and
high-molecular-weight compounds has been presented in the
form of a decision tree (Fig. 2).

Flynn’s dataset was subsequently analyzed by many au-
thors, and most of the predictive models presented in this
article were obtained from the information in Flynn’s dataset
and various subsets thereof. As clearly demonstrated in many
studies, hydrogen bonding capacity, in addition to lipo-
philicity and size parameters, is a relevant property influenc-
ing skin permeation. Based on the latter molecular properties,
QSPeR models can be classified into different groups, as pro-
posed below. Moreover, as mentioned before, all permeation
data were obtained from experiments using human skin
in vitro in which the diffusant was applied in aqueous solu-
tion.

Fig. 2. Decision tree for predicting approximate skin permeability coefficients (kp) based on Flynn’s
algorithm (44).
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QSPeRs Based on Lipophilicity and Size Parameters

Potts and Guy (45) described a simple model based on
permeant size; that is, molecular weight (MW) or molecular
volume (MV) and octanol–water partition coefficient (Poct),
to predict the permeability coefficients collected by Flynn.
After removal of one compound, they reported the following
relationship (note that here, and in all following correlations,
the units used for kp are cm � s−1):

log kp = 0.72 �±0.13� � log Poct − 0.0059 �±0.0014� � MW
− 6.36 �±0.28� (9)

[n � 93, r2 � 0.67, q2 � 0.65, s � 0.74, F � 92; relative
contributions: log Poct (53%), MW (47%)]. The physical sig-
nificance of this empirical equation is clear. As the permeants
become more lipophilic, their permeability increases due to
better partitioning into the skin but, as they become larger,
their diffusion into the skin is reduced. Our statistical analysis
shows that the model is significant in terms of the descriptors
used. Although the statistical fit in Eq. (9) is comparatively
poor, the authors did note that up to 30% variability in ex-
perimental data was to be expected (46), so that an r2 of
approximatively 70% was considered to be significant. More-
over, the authors neither discussed the problem of outliers
nor mentioned the name of the removed compound.

In a recent study, five algorithms based on log Poct and
molecular weight were compared in terms of predictive reli-
ability for skin permeation (47–51). A large database of 99
solutes was used, and two particular algorithms stood out as
better predictors of the skin permeation of highly hydrophilic
and highly lipophilic chemicals compared to the model of
Potts and Guy.

The difficulties in modeling Flynn’s dataset were exem-
plified by Magee (52). In order to test the hypothesis that
drug absorption changes with lipophilicity, the dataset was
subdivided into three overlapping regions of log Poct (−1.38 to
1.96; 1.53 to 2.97; 2.50 to 5.49). A difference in the QSPeRs
based on log Poct and molar refractivity (MR, standing for a
size parameter) was reported [Eqs. (10)–(12)], and an in-
creased importance of H-bond acceptor groups (HBA) for
the most lipophilic group of chemicals was uncovered. Such
results are not necessarily relevant with respect to predictive
capacity, but they illustrate the mechanistic possibilities of
QSPeR analyses.

Compounds with log P Ranking from −1.38 to 1.96

log kp = 0.79 �±0.14� � log Poct − 0.0371 �±0.0083� � MR
− 5.82 �±0.31� (10)

[n � 38, r2 � 0.77, q2 � 0.73, s � 0.59, F � 58; relative
contributions: log Poct (36%), MR (64%)].

Compounds with log P Ranking from 1.53 to 2.97

log kp = 1.05 �±0.59� � log Poct − 0.0259 �±0.0081)� MR
− 6.8 �±1.2� (11)

[n � 43, r2 � 0.66, q2 � 0.60, s � 0.72, F � 39; relative
contributions: log Poct (33%), MR (67%)].

Compounds with log P Ranking from 2.50 to 5.49

log kp = 0.95 �±0.27� � log Poct − 0.037 �±0.011)� MR
− 0.107 �±0.077� � HBA − 6.48 �±0.86� (12)

[n � 40, r2 � 0.65, q2 � 0.59, s � 0.63, F � 23; relative
contributions: log Poct (26%), MR (53%), HBA (21%)].

Kirchner et al. (53) published a large database of 114 skin
permeability values that incorporates much of the Flynn
dataset and with additional data from Health Canada regu-
latory reports. After subdivision of this dataset into five
groups according to calculated molar volumes, the data were
modeled, and correlations for each group were obtained with
log Poct, indicating the dependence on lipophilicity. However,
the dependence of the complete dataset on lipophilicity was
poor (r2 � 0.32).

All these data were subsequently reanalyzed by Cronin
et al. (54), who demonstrated that seven significant outliers
occurred in the set. Two of them had more than 10 sites to
accept or donate a hydrogen bond (sucrose and digitoxin),
and the others were estriol, atropine, hydrocortisone, etor-
phine, and propylene chloride. Removal of these outliers and
reanalysis against a wide variety of QSPeR parameters led to
the following significant model [Eq. (13)]:

log kp = 0.773 �±0.082� � log Poct − 0.0103 �±0.0014)� MW
− 5.89 �±0.15� (13)

[n � 107, r2 � 0.86, q2 � 0.85, s � 0.39, F � 317; relative
contributions: log Poct (57%), MR (43%)]. Although based
on a larger dataset, Eq. (13) is very similar to Eq. (9) pro-
posed by Potts and Guy (45). The statistical improvement
over the original Potts and Guy model (r2 � 0.86 vs. r2 �
0.67) was further investigated by Frasch et al. (55). It was
discovered that of the 107 compounds studied, 63 were taken
from the Occupational Safety and Health Association
(OSHA) and had calculated log kp values based on an algo-
rithm that was a trivial modification of the original Potts and
Guy equation. Thus, the apparent statistical improvement re-
ported by Cronin et al. (54) is an artefact caused by circular
reasoning because many permeation values were not experi-
mental ones. Therefore, continued use of these data would
lead to a biased selection of the statistical models, an under-
estimation of experimental variability, and an overestimation
of the predictivity of the models.

QSPeRs Based on Parameters Derived from Lipophilicity

In the early 1990s, El Tayar et al. (14) analyzed different
subsets from Flynn’s dataset and pinpointed lipophilicity as a
relevant parameter controlling skin permeability in most of
these subsets. They also described a correlation with the �log
Poct−hep parameter, a measure of the hydrogen bond donor
acidity of solutes [Eq. (14)]:

log kp = −1.36 �±0.40� � �log Poct−hep − 3.39 �±0.99� (14)

(n � 21, r2 � 0.81, q2 � 0.76, s � 0.50, F � 80). It was
further suggested that molecular size was not relevant in the
dataset analyzed, but statistical bias due to two clustered con-
generic series and/or differences in partition coefficient mea-
surements are responsible for this erroneous conclusion.
While the significance of hydrogen bonding with respect to
the control of skin permeability has been well-recognized, the
induction that molecular weight was not important was rightly
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refuted by Potts and Guy (45), as noted in the improved Eq.
(15), for the smaller dataset:

log kp = 0.80 �±0.16� � log Poct − 0.0108 �±0.0015)� MW
− 5.91 �±0.28� (15)

[n � 21, r2 � 0.89, q2 � 0.86, s � 0.40, F � 70; relative
contributions: log Poct (42%), MW (58%)]. This analysis sug-
gested that the complex mechanism of skin permeation can-
not be described by a single physicochemical parameter. In
addition to hydrogen bond donor acidity implicitly contained
in lipophilicity, an additional term (MW) is necessary to bet-
ter predict the dataset.

QSPeRs Based on Solvatochromic Parameters

The role of a solute’s hydrogen bonding capacity in the
determination of skin permeation has been investigated in
detail. Potts and Guy (56), for example, developed a QSPeR
model based on 37 compounds selected from Flynn’s data-
base. The algorithm did not contain a lipophilicity term, but
included molecular volume and descriptors for hydrogen
bond donor (��H

2 ) and acceptor (��H
2 ) capacity [Eq. (16)]:

log kp = 0.0257 �±0.0050� � MV − 1.74 �±0.46� � ��2
H

− 3.85 �±2.44)� ��2
H − 4.89 �±0.50� (16)

[n � 37, r2 � 0.94, q2 � 0.92, s � 0.24, F � 169; relative
contributions: MV (38%), ∑�2

H (30%), ∑�2
H (32%)]. As de-

scribed by Eq. (16), hydrogen bonding capacity restricts skin
permeability. Nevertheless, the reduced size of the dataset
limits its predictability, especially for large compounds (see
range in Table I). To examine the importance of H-bonding
to lipophilicity, we derived the original Potts and Guy rela-
tionship (45) for this same set of 37 compounds [Eq. (17)].
The high correlation between molecular volume (MV) and
molecular weight (MW) for the set of compounds (r � 0.90)
allows one parameter to be replaced by the other.

log kp = 0.93 �±0.37� � log Poct − 0.013 �±0.013� � MW
− 5.67 �±0.80� (17)

[n � 37, r2 � 0.78, q2 � 0.72, s � 0.44, F � 61; relative
contributions: log Poct (71%), MW (29%)]. Clearly MV, ��H

2

and ��H
2 together yield a better model than log Poct and MW

[compare Eqs. (17) and (16)]. It must be noted also that Eq.
(17) is very similar to Eq. (9). The difference in intercepts is
due to the specific set of compounds evaluated. In the latter
case, however, because of the smaller dataset, molecular
weight appears statistically nonsignificant.

Similar results indicating the importance of molecular
size and hydrogen bonding were published by Abraham et al.
(57). For a set of 46 compounds [mainly those selected by
Potts and Guy (56)] in Flynn’s dataset, it was demonstrated
that [Eq. (18)]:

log kp = −0.59 �±0.23� � �2
H − 0.62 �±0.43� � ��2

H

− 3.43 �±0.41)� ��2
H + 1.80 �±0.30� � Vx − 5.07 �±0.21�

(18)

[n � 46, r2 � 0.96, q2 � 0.95, s � 0.25, F � 242; relative
contributions: �2

H (17%), ∑�2
H (4%), ∑�2

H (43%), Vx (36%)]
where �H

2 is dipolarity/polarisability, ��H
2 hydrogen-bond do-

nor acidity, ��H
2 hydrogen-bond acceptor basicity, and Vx is

the McGowan volume (58).

The much smaller positive coefficient associated with Vx

reflects in Eq. (18) the opposing influences of molecular size
on lipophilicity [Eq. (19), based on the same dataset of 46
compounds] and diffusion [Eq. (3)].

log Poct = −0.98 �±0.25� � �2
H + 0.68 �±0.47� � ��2

H

− 3.72 �±0.44)� ��2
H + 4.12 �±0.33� � Vx − 0.08 �±0.27�

(19)

[n � 46, r2 � 0.96, q2 � 0.94, s � 0.25, F � 222; relative
contributions: �2

H (18%), ∑�2
H (3%), ∑�2

H (29%), Vx (50%)].
Application of the relationship described by Potts and Guy
(45) to the same set of 46 compounds gives [Eq. (20)]:

log kp = 0.788 �±0.096� � log Poct − 1.44 �±0.18� � Vx

− 5.64 �±0.26� (20)

[n � 46, r2 � 0.90, q2 � 0.89, s � 0.37, F � 196; relative
contributions: log Poct (43%), Vx (57%)]. A clearly negative
influence of molecular size is highlighted, reflecting the effect
of size on the diffusion component of permeation [see Fig. 1
and Eqs. (3) and (4)].

Dealing with the problem of outliers, especially steroids,
Abraham et al. (59,60) later published a relationship based on
a slightly expanded dataset [Eq. (21)]:

log kp = −0.45 �±0.24� � R2 − 0.49 �±0.23� � �2
H

− 1.49 �±0.27� � ��2
H − 3.43 �±0.31)� ��2

H

+ 1.93 �±0.25� Vx − 5.13 �±0.21� (21)

[n � 53, r2 � 0.96, q2 � 0.95, s � 0.21, F � 216; relative
contributions: R2 (7%), �2

H (12%), ∑�2
H (11%), ∑�2

H (38%),
Vx (32%)] where R2 represents the excess molar refractivity.
This correlation confirms the importance of hydrogen bond-
ing when an explicit lipophilicity descriptor is absent from the
QSPeR equation.

Models based on theoretical rather than experimental
solvatochromic parameters have also been derived. As re-
cently published, the latter parameters are very useful for the
prediction of lipophilicity (61). Thus, applying the relation-
ship described by Potts and Guy (45) to the same set of 53
compounds, using predicted values of lipophilicity, gives [Eq.
(22)]:

log kp = 0.64 �±0.16� � T log Poct − 0.90 �±0.40)� Vx

− 5.01 �±0.43� (22)

[n � 53, r2 � 0.65, q2 � 0.59, s � 0.60, F � 46; relative
contributions: T log Poct (62%), Vx (38%)] where T log Poct

is the predicted value of lipophilicity in the octanol–water
system. These calculations take into account intramolecular
hydrogen-bonding.

Interestingly, the prediction of lipophilicity defined by
1,2-dichloroethane–water partition coefficients gives a better
relationship [Eq. (23)]:

log kp = 0.46 �±0.10� � T log Pdce − 0.57 �±0.37)� Vx

− 5.53 �±0.40� (23)

[n � 53, r2 � 0.82, q2 � 0.77, s � 0.42, F � 114; relative
contributions: T log Pdce (73%), Vx (27%)]. Partitioning into
the 1,2-dichloroethane–water system takes into account the
acceptor and donor H-bonding capacity of a solute (22,31)
whereas partitioning in octanol–water encodes mostly its ac-
ceptor capacity. Consequently, the T log Pdce parameter is a

Geinoz et al.88



better predictor of skin permeation because it encodes two
relevant properties, acceptor and donor H-bonding capacity,
which occur in Eq. (21).

Pugh et al. (62) also examined the role of hydrogen bond-
ing and molecular size in skin permeation. They demon-
strated that hydrogen bond donor acidity predominates over
acceptor basicity. The relative effect of the donor vs. acceptor
capacity was quantified as being 0.6/0.4.

Other QSPeR Models

Flynn’s dataset was also analyzed by Pugh and Hadgraft
using a novel, so-called ab initio approach (63) based on in-
dicator variables for various molecular substructures and fea-
tures. The results using a 17- or 11-descriptor model were
statistically comparable to those of Potts and Guy (45). Al-
though this approach lacks the simple mechanistic interpre-
tation of the model of Potts and Guy based on physicochem-
ical properties, it enables the prediction of skin permeability
of a compound by assigning additive numerical values to its
functional groups. Moreover, this method does not require
experimental measurements that can often limit the develop-
ment of models. This approach also highlighted compounds
that had unusual permeation values, most of which (including
atropine, estriol, naproxen, nicotine, nitroglycerine, sucrose,
and toluene) have been identified as significant outliers in
other studies.

Lien and Gao (64) analyzed a subset of Flynn’s dataset
and developed a satisfactory predictive model [Eq. (24)]
based on the number of hydrogen bonds formed by a com-
pound (Hb), its molecular weight, and a quadratic response to
lipophilicity:

log kp = −0.08 �±0.13� � �log Poct�
2 + 0.82 �±0.57� � log Poct

− 0.25 �±0.12� � Hb − 1.7 �±2.0� � log MW − 2.4 �±3.2�
(24)

[n � 22, r2 � 0.95, q2 � 0.91, s � 0.30, F � 0.88; relative
contributions: (log Poct)

2 (12%), log Poct (43%), Hb (26%),
log MW (19%)]. Although the validity of this model is limited
due to the small number of compounds relative to the number
of variables, it pinpoints the potential importance of hydro-
gen-bonding capacity in skin permeation. The authors, how-
ever, did not emphasize the strong correlation between the
squared log Poct value and log Poct (r � 0.88) and between log
Poct and log MW (r � 0.73) for the set of compounds. More-
over, two parameters [(log Poct)

2 and log MW] are nonsignif-
icant due to large confidence intervals. Such statistical
anomalies due to an insufficient number of compounds leads
to an over-interpretation of the data.

A later study by Pugh et al. (65) demonstrated the use-
fulness of calculated molecular charges (i.e., the sum of partial
charges on atoms) as descriptors of hydrogen bonding using
log (D/h) as permeation indicator estimated by the relation
log kp + 0.024 − 0.59 · log Poct (62). The relationship obtained
for a set of 52 values was [Eq. (25)]:

log�D�h� = −2.69 �±0.13� − 0.00268 �±0.00032� � MW � charge
(25)

(n � 52, r2 � 0.83, q2 � 0.82, s � 0.33, F � 242) where D
(cm2/s) is the diffusion coefficient and h (cm) is the diffusional
path length through the skin. This model only demonstrates

that the diffusion through the skin is inversely influenced by
the permeant size, as MW and MW · charge are very strongly
correlated (r � 0.96). Moreover the large correlation (r �
0.90) between MW and the sum of partial charges on atoms
clearly demonstrated that the latter term only reflects the
permeant size and not its H-bonding capacity. Finally, be-
cause 52 permeation values were used for only 40 compounds,
the statistical weight of some compounds (i.e., estradiol or
aliphatic alcohols) was largely increased.

Based on the complete Flynn dataset, Barratt (66) devel-
oped a QSPeR model after subdividing the values into three
distinct groups (steroids, other pharmacologically active com-
pounds, and small compounds). Barratt’s model differs from
the Potts and Guy relationship (45), since it uses molecular
volume as a measure of molecular size, and includes the melt-
ing point (mpt) as an additional parameter to characterize the
solute’s aqueous solubility. Among the steroids, Barratt
showed that a subset of hydrocortisone derivatives were
poorly predicted. After removing these compounds, a signifi-
cant equation [Eq. (26)] was reported for a set of 60 com-
pounds:

log kp = 0.820 �±0.091� � log Poct − 0.0093 �±0.0021� � MV
− 0.004 �±0.032� � mpt − 5.91 �±0.22� (26)

[n � 60, r2 � 0.90, q2 � 0.89, s � 0.39, F � 176; relative
contributions: log Poct (49%), MV (38%), mpt (13%)]. The
statistical results clearly indicate that the melting point pa-
rameter is nonsignificant. Indeed, its removal does not de-
crease the statistical quality [Eq. (27)]:

log kp = 0.830 �±0.085� � log Poct − 0.0119 �±0.0015� � MV
− 5.87 �±0.22� (27)

[n � 60, r2 � 0.89, q2 � 0.87, s � 0.42, F � 219; relative
contributions: log Poct (51%), MV (49%)]. In a recent study,
Dearden et al. (67) analyzed the entire Flynn dataset using a
large set of physicochemical descriptors. After testing no less
than 81 descriptors, they developed a highly predictive but
mechanistically complex QSPeR model based on six param-
eters [Eq. 28]:

log kp = −2.726 − 0.626 � �Ca − 23.8 � ��Q+���
− 0.289 � SsssCH − 0.0357 � SsOH − 0.482 � IB

+ 0.405 � BR (28)

(n � 91, r2 � 0.83, s � 0.56, F � 69) where �Ca is the
HYBOT-PLUS H-bond acceptor free energy factor, �(Q+)/�
is the HYBOT-PLUS positive charge per unit volume,
SsssCH and SsOH are electrotopological atom-type indices
for single-bonded CH and OH, IB is the Balaban index re-
lated to molecular size, and BR is the number of rotatable
bonds.

Although atropine, naproxen, and nicotine were outliers,
the results clearly indicate that H-bond acceptor capacity and
polarity are inversely correlated with skin permeability.
Moreover, the number of rotatable bonds (BR term) is posi-
tively related to permeability suggesting that a greater con-
formational flexibility increases skin permeation in contrast
to oral bioavailability (68). However, due to the lack of data
in the publication, it was difficult to evaluate the relevance of
all the terms and/or their possible intercorrelation.

In another study, Ghafourian and Fooladi (69) have
demonstrated the use of theoretical parameters derived from
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structural chemistry to replace solvatochromic descriptors in
QSPeRs.

Recently, Buchwald and Bodor (70) developed an en-
tirely structure-based model to describe human skin perme-
ation [Eq. (29)]. The experimental skin-permeability data
were mainly based on the compilations of Johnson et al. (71)
and Wilschut et al. (47):

log kp = 0.0128 �±0.0029� � Ve − 0.492 �±0.0075� � N
− 5.94 �±0.20� (29)

[n � 98, r2 � 0.72, q2 � 0.71, s � 0.62, F � 124; relative
contributions: Ve (41%), N (59%)] where Ve is the effective
van der Waals molecular volume, and N is the hydrogen-
bonding-related N parameter, a quantized descriptor having
only integer values.

The authors stated that, unlike the Potts and Guy ap-
proach, their model eliminates the physicochemical interre-
latedness of the parameters. However, even if Ve and N are
clearly unrelated in a physicochemical perspective, they are
strongly intercorrelated (r � 0.92). It is possible that such
results are biased due to the nature of the dataset because,
especially for drug-like compounds, more hydrogen bonding
sites imply a larger molecule.

While many QSPeR models have been described, few
have analyzed the possible impact of experimental differences
due to the biological model used. Thus, the work of Hostynek
and Magee (72) is particularly interesting. They demonstrated
that the human in vivo absorption of nonrelated chemicals
was influenced by both the vehicle in which the compound
was dissolved and the degree of occlusion of the skin. With
respect to the vehicle, the authors developed a model based
on a permeability coefficient calculated from the maximum
flux observed (kpMax) [Eq. (30)] and applied an indicator vari-
able (VEH) to the different vehicles used (i.e., a value of 1 for
acetone and 2 for ethanol):

log kpMax = −0.60 �±0.47� � VEH − 0.0140 �±0.0094� � MR
− 0.157 �±0.074� � HBA − 0.29 �±0.15� � HBD
− 1.40 �±1.26� (30)

[n � 20, r2 � 0.80, q2 � 0.70, s � 0.35, F � 15; relative
contributions: VEH (23%), MR (27%), HBA (30%), HBD
(20%)] where MR is the molar refractivity, HBA is the num-
ber of hydrogen bond acceptors, and HBD is the number of
hydrogen bond donors. Obviously, this model is of very lim-
ited value due to the large number of parameters relative to
the number of compounds.

Using a larger dataset, Hostynek and Magee (72) devel-
oped another relationship to assess the effect of the degree of
occlusion on the permeation of compounds through human
skin in vivo [Eq (31)]. In this case, an indicator variable
(OCCL) for occlusion was used (i.e., a value of 1 for open,
2 for protected, and 3 for occluded):

log kpMax = 0.13 �±0.14� � log Poct − 0.0168 �±0.0057� � MR
− 0.28 �±0.014� � HBD − 0.26 �±0.19� � OCCL
− 3.76 �±0.59� (31)

[n � 48, r2 � 0.66, q2 � 0.58, s � 0.43, F � 21; relative
contributions: log Poct (14%), MR (40%), HBD (28%),
OCCL (18%)]. In addition to the influence of the vehicle and
the degree of occlusion on drug permeation, physicochemical
parameters such as molecular size (encoded by molar refrac-

tivity) and hydrogen bonding capacity were also relevant in
the latter relationships [Eqs. (30) and (31)] while log Poct in
Eq. (31) was statistically nonsignificant.

General Observations on Outliers

The work of Johnson et al. (73) and Degim et al. (74)
highlights the large discrepancies between skin permeability
measured in different laboratories. The former group (73)
re-examined the results for steroids previously measured by
Scheuplein et al. (75). The latter study (74) reanalyzed other
compounds (naproxen, atropine, and nicotine) from the
Flynn dataset (44), for which experimental values differ by
one or two log units from those published by Flynn. Thus, it
appears that some of the permeability coefficients in Flynn’s
dataset, a well-known reference in the field of skin perme-
ation, may be questioned.

Such observations can help to identify some significant
outliers and to make an informed decision in selecting data
(76,77). Moreover, as the removal of outliers can have a great
influence on the statistical validity of any model, special at-
tention needs to be paid to the origin of the data.

CONCLUSIONS

The aim of this critical evaluation was to revisit the most
significant models to predict skin permeation. The large num-
ber of models that have been developed highlights their use-
fulness as predictive tools in both the drug delivery and toxi-
cology fields. Such quantitative structure–permeation rela-
tionships do not rely on expensive and time-consuming
human studies or on the use of animal models. Moreover,
they are most accurate for compounds within similar classes
and are also useful to predict absorption at the design stage
(i.e., prior to their synthesis and further development). Cer-
tain limitations of these models, however, must be stressed.
An inherent problem lies in the fact that their applicability is
restricted by the limited range of polarity and size of the
permeants on which they are based. In addition, most of the
models use large compilations of data from various investi-
gators and laboratories employing different experimental
protocols. Thus, while these models reasonably explain the
skin permeabilities of compounds falling in the lower molecu-
lar size range and in the middle range of lipophilicity, diver-
gence for very hydrophilic (in particular, charged) and very
lipophilic (i.e., those substances least well-represented in the
datasets) compounds is evident. In the latter case, the rate-
controlling role of the stratum corneum is questionable, and
the impact of the viable epidermis/upper dermis (i.e., a hy-
drophilic barrier) must be taken into account (10). Further-
more, rigorous statistics show that some models are based on
nonsignificant descriptors. As such, they do not afford mecha-
nistic insights and may lead to over-interpretation of the data.
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