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Abstract We consider the critical focusing wave equation (−∂2
t +�)u + u5 = 0 in

R
1+3 and prove the existence of energy class solutions which are of the form

u(t, x) = t
μ
2 W (tμx)+ η(t, x)

in the forward lightcone {(t, x) ∈ R × R
3 : |x | ≤ t, t � 1} where W (x) = (1 +

1
3 |x |2)− 1

2 is the ground state soliton, μ is an arbitrary prescribed real number (positive
or negative) with |μ| � 1, and the error η satisfies

‖∂tη(t, ·)‖L2(Bt )
+ ‖∇η(t, ·)‖L2(Bt )

� 1, Bt := {x ∈ R
3 : |x | < t}

for all t � 1. Furthermore, the kinetic energy of u outside the cone is small. Conse-
quently, depending on the sign ofμ, we obtain two new types of solutions which either
concentrate as t → ∞ (with a continuum of rates) or stay bounded but do not scat-
ter. In particular, these solutions contradict a strong version of the soliton resolution
conjecture.
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90 R. Donninger, J. Krieger

1 Introduction

In this paper we study the critical focusing wave equation

(−∂2
t +�)u(t, x)+ u(t, x)5 = 0 (1.1)

for u : I × R
3 → R, I ⊂ R an interval. It is well-known that the Cauchy problem for

Eq. (1.1) is well-posed for data in the energy space Ḣ1 × L2(R3), see e.g. [29,43].
Furthermore, Eq. (1.1) admits a static solution W , the ground state soliton given by

W (x) = (1 + 1
3 |x |2)− 1

2 , which indicates the presence of interesting dynamics. Our
main result is the following.

Theorem 1.1 There exists an ε0 > 0 such that for any δ > 0 andμ ∈ R with |μ| ≤ ε0
there exists a t0 ≥ 1 and an energy class solution u : [t0,∞)× R

3 → R of Eq. (1.1)
of the form

u(t, x) = t
μ
2 W (tμx)+ η(t, x), |x | ≤ t, t ≥ t0

and

‖∂t u(t, ·)‖L2(R3\Bt )
+ ‖∇u(t, ·)‖L2(R3\Bt )

≤ δ,

‖∂tη(t, ·)‖L2(Bt )
+ ‖∇η(t, ·)‖L2(Bt )

≤ δ

for all t ≥ t0 where Bt := {x ∈ R
3 : |x | < t}.

The Cauchy problem for Eq. (1.1) has attracted a lot of interest in the recent past
and we briefly review the most important contributions. Equation (1.1) is invariant
under the scaling transformation

u(t, x) �→ uλ(t, x) := λ
1
2 u(λt, λx), λ > 0 (1.2)

and its conserved energy

E(u(t, ·), ut (t, ·)) = 1
2‖(u(t, ·), ut (t, ·))‖2

Ḣ1×L2(R3)
− 1

6‖u(t, ·)‖6
L6(R3)

satisfies E(uλ(t/λ, ·), uλt (t/λ, ·)) = E(u(t, ·), ut (t, ·)) which is why Eq. (1.1) is
called energy critical. Historically, the investigation of the global Cauchy problem
for energy critical wave equations started with the defocusing case,

(−∂2
t +�)u(t, x)− u(t, x)5 = 0,

where the sign of the nonlinearity is reversed compared to Eq. (1.1). After the pio-
neering works [37,39], the development culminated in a proof of global existence
and scattering for arbitrary data [2,16,17,20,40,41,44], see also [47]. However, the

123



Nonscattering solutions and blowup at infinity 91

dynamics in the focusing case are much more complicated. For instance, it is well-
known that there exist solutions with compactly supported smooth initial data which
blow up in finite time. This is most easily seen by observing that

u(t, x) = ( 3
4

) 1
4 (1 − t)−

1
2

is an explicit solution which, by finite speed of propagation, can be used to construct a
blowup solution of the aforementioned type. This kind of breakdown is referred to as
ODE blowup and it is conjectured to comprise the “generic” blowup scenario [4]. We
remark in passing that (parts of) this conjecture have been proved for the subcritical
case

(−∂2
t +�)u + u|u|p−1 = 0, p ∈ (1, 3],

see [7,33,34], but for p > 3 the problem is largely open (see, however, [6]). Another
(less explicit but classical) argument to obtain finite time blowup for focusing wave
equations is due to Levine [28]. Recently, Krieger et al. [27] constructed in the energy
critical case p = 5 more “exotic” blowup solutions of the form1

u(t, x) = (1 − t)−
1
2 (1+ν)W ((1 − t)−1−νx)+ η(t, x), |x | ≤ 1 − t

where ν > 1
2 can be prescribed arbitrarily and η is small in a suitable sense. As a matter

of fact, the proof of Theorem 1.1 makes extensive use of the techniques developed
in [27], see also [23,24] for analogous results in the case of critical wave maps and
Yang-Mills equations. In this respect we also mention another construction of blowup
solutions for the critical wave equation by Hillairet and Raphaël [18], albeit for the
higher dimensional case R

1+4. Furthermore, Duyckaerts et al. [9,10] showed that any
type II blowup solution2 which satisfies a suitable smallness condition decomposes
into a rescaled ground state soliton plus a small remainder.

Apart from the construction of blowup solutions, it is of interest to obtain conditions
on the initial data under which the solution exists globally. As a consequence of
Strichartz estimates it is relatively easy to establish global existence and scattering for
data with small energy, see [37,43]. However, for energies close to the ground state the
situation becomes much more involved. Krieger and Schlag [22] proved the existence
of a small codimension one manifold in the space of initial data, containing (W, 0),
which leads to solutions of the form

u(t, x) = λ(t)
1
2 W (λ(t)x)+ η(t, x)

where λ(t) → a > 0 as t → ∞ and η scatters like a free wave. In other words, the
solutions arising from data on this manifold exist globally and scatter to a rescaling

1 The existence of ground state solitons, i.e., positive static solutions with finite energy such as W requires
p = 5 in spatial dimension 3, cf. [15,19].
2 A type II blowup solution stays bounded in the energy space. The solutions constructed in [27] are of
this type.
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92 R. Donninger, J. Krieger

of the ground state soliton, see also [45] for numerical work in this direction. A
different line of investigation was pursued by Kenig and Merle [21] who established
the following celebrated dichotomy.

Theorem 1.2 (Kenig–Merle [21]) Let u be an energy class solution to Eq. (1.1) with

E(u(0, ·), ut (0, ·)) < E(W, 0).

• If ‖u(0, ·)‖Ḣ1(R3) < ‖W‖Ḣ1(R3) then the solution u(t, x) exists for all t ∈ R and
scatters like a free wave as t → ±∞.

• If ‖u(0, ·)‖Ḣ1(R3) > ‖W‖Ḣ1(R3) then the solution u(t, x) blows up in finite time
in both temporal directions.

Theorem 1.2 was extended by Duyckaerts and Merle [13] to include the case
E(u(0, ·), ut (0, ·)) = E(W, 0) which, in addition to the possibilities of Theorem 1.2,
entails solutions which scatter towards (a rescaling of) W . We also refer the reader
to the recent works by Krieger et al. [25,26] where they consider data with energies
slightly above the ground state. Based on the results in [13,21,22,27] it seemed plau-
sible to expect a strong version of the soliton resolution conjecture to hold. Roughly
speaking, this conjecture states that the long time evolution splits into a finite sum of
solitons plus radiation, see [42].

Conjecture 1.3 (Strong soliton resolution at energies close to the ground state) Any
radial energy class solution of Eq. (1.1) with energy close to E(W, 0) either blows up
in finite time or scatters to zero like a free wave or scatters towards a rescaling of W .

Our Theorem 1.1, however, shows that Conjecture 1.3 is wrong. In addition to the
already known dynamics

• λ(t) → ∞ as t → 1− (exotic blowup [27])
• λ(t) → a > 0 as t → ∞ (scattering towards (a rescaling of) W [13,22])

for solutions of the form u(t, x) = λ(t)
1
2 W (λ(t)x)+ η(t, x) with η small, our result

adds the two new possibilities

• λ(t) → 0 as t → ∞ (“vanishing”)
• λ(t) → ∞ as t → ∞ (“blowup at infinity”)

and either of which contradicts Conjecture 1.3. Furthermore, there exists a continuum
of rates at which the blowup (or vanishing) occurs. It has to be remarked that the blowup
does not take place in the energy norm (which stays bounded) but in a type II fashion
(i.e., only higher order norms blow up). We also note that, although Conjecture 1.3 in
this sharp form does not hold, a weaker version in the radial context was proved after
the submission of the present paper [11]. The result in [11] shows in particular that the
solutions we construct are in a sense the only global solutions which do not scatter.
We also remark in passing that we expect the solutions of Theorem 1.1 to be smooth
and therefore, unlike in the case of the exotic blowup in [27], there is no conjectured
“quantization” of blowup rates as one passes to smooth solutions. The intuitive reason
for this is that we do not encounter a singularity at the lightcone as in [27] since we
cut off our approximate solutions in such a way that they are supported inside the
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Nonscattering solutions and blowup at infinity 93

smaller cone r ≤ t − c for some constant c. At the moment, however, we cannot
rigorously prove the smoothness of the full solutions since parts of our construction
rely on a “soft” argument which only yields energy class regularity. Furthermore, it is
worth mentioning that the technique used to prove Theorem 1.1 appears to have much
wider applicability for similar critical nonlinear problems, as did the construction in
[27]. We also note that the restrictions on μ in our Theorem 1.1 seem to be in part
technical and nonessential. Thus, it appears to be natural to expect at least the range
−1 < μ < ε0 to be allowable, for suitable ε0 > 0.

While this paper was being written up, T. Duyckaerts informed the authors of the
following result, obtained jointly with C. Kenig and F. Merle, which nicely combines
with our Theorem 1.1 in a similar way as [9,10] are related to [27].

Theorem 1.4 (Duyckaerts–Kenig–Merle [12], private communication by T. Duyck-
aerts) If u : [0,∞)× R

3 → R is a radial energy class solution of Eq. (1.1) with

lim sup
t→∞

(‖∂t u(t, ·)‖L2(R3) + ‖∇u(t, ·)‖L2(R3)

)
< 2‖∇W‖L2(R3)

then (up to a change of sign)

u(t, x) = λ(t)
1
2 W (λ(t)x)+ v(t, x)+ oḢ1(R3)(1)

∂t u(t, x) = ∂tv(t, x)+ oL2(R3)(1)

with v a free wave and tλ(t) → ∞ as t → ∞.

Theorem 1.1 should also be contrasted to previous works on other dispersive sys-
tems such as the nonlinear Schrödinger equation. We cannot do justice to the vast
literature on this subject but as an example we mention Tao’s result [46] on the cubic
focusing Schrödinger equation in R

1+3 which states that radial solutions which exist
globally decouple into a smooth function localized near the origin, a radiative term,
and an error that goes to zero as t → ∞. Unlike Theorem 1.1, this result is in con-
cordance with the soliton resolution conjecture. We refer the reader to [42] and the
references therein for more positive results in this direction. Furthermore, the only
system (to our knowledge) of “wave type” (i.e., either nonlinear wave or Schrödinger
equation) for which nonscattering solutions similar to ours are known is the L2-critical
nonlinear Schrödinger equation in R

1+1. For this system nonscattering solutions can
be constructed by combining the “log log” blowup of [38] with the pseudo-conformal
symmetry (the “log log” blowup exists in other dimensions as well, see [30–32]). How-
ever, it is evident that the mechanism which furnishes these solutions is completely
different and not related to the situation here.

1.1 A roadmap of the proof

We give a brief overview of the proof of Theorem 1.1 without going into technical
details. As already mentioned, the construction is in parts based on the techniques
developed in [23,24,27]. However, in order to deal with the present situation, the
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94 R. Donninger, J. Krieger

method has to be modified and extended considerably. In the following we restrict
ourselves to radial functions and the symbols r and |x | are used interchangeably. By a
slight abuse of notation we also write u(t, r) instead of u(t, x) meaning that u(t, ·) is
a radial function. Furthermore, throughout this paper we set3 λ(t) := t−(1−ν) where
ν is assumed to be close to 1. Roughly speaking, the proof splits into three main parts
which we now describe in more detail.

(1) Construction of “elliptic profile modifiers”. An obvious idea is to insert the naive

ansatz u(t, r) = λ(t)
1
2 W (λ(t)r)+η(t, r) into Eq. (1.1) and to derive an equation

for η. By doing so, however, one produces an error ∂2
t [λ(t) 1

2 W (λ(t)r)] which
decays roughly like t−2 and this turns out to be insufficient. Consequently, we

first modify the profile λ(t)
1
2 W (λ(t)r) by a nonperturbative procedure. This is

done in two steps where we solve suitable (linear) approximations to Eq. (1.1) and
thereby improve the error at the center and, in the second step, near the lightcone
r ≈ t . This does not yield an actual solution but a function u2 which solves
Eq. (1.1) only up to an error. However, this error now decays approximately like
t−4 and thus, we have gained two powers which is sufficient to proceed. This
is in contrast to the analogous procedure in [27] where a very large number of
modifications are added to the ground state. In our situation, it turns out that
additional modifications do not improve the error further. The improvement in
decay comes at the expense of differentiability at the lightcone which has to be
accounted for by using suitable cut-offs. Thus, in this first stage of the construction,
we only obtain an approximate solution in a smaller forward light cone (i.e., of
the form |x | ≤ t − c and hence strictly contained inside the standard light cone
|x | ≤ t), in contrast to the procedure in [27].

(2) In a second step we insert the ansatz u = u2 + ε into Eq. (1.1) and derive an
equation for ε which is of the form

(−∂2
t +�)ε + 5W 4

λ(t)ε = nonlinear terms + error (1.3)

where Wλ(x) := λ
1
2 W (λx). Due to the aforementioned lack of smoothness, the

right-hand side of the equation is only defined in a forward lightcone and for the
moment we restrict ourselves to this region. In order to obtain a time-independent
potential on the left-hand side we use R := λ(t)r as a spatial coordinate and, with
an appropriate new time coordinate τ , Eq. (1.3) transforms into

D2ε + cτ−1Dε + (−�+ V )ε = nonlinear terms + error (1.4)

where D is a first order transport-type operator and V = −5W 4. In order to solve
Eq. (1.4) we apply the “distorted Fourier transform” relative to the self-adjoint
operator −�+ V . This requires a careful spectral analysis which is only feasible
since we are in the radial case. The existence of a zero energy resonance plays a
prominent role here. As a result we obtain a transport-type equation for the Fourier

3 We use this convention for “historical” reasons, cf. [27].
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Nonscattering solutions and blowup at infinity 95

coefficients which is then solved by the method of characteristics combined with a
fixed point argument. The treatment of the error terms on the right-hand side of the
transport equation is delicate and requires a good amount of harmonic analysis.
In particular, the functional framework employed differs from that in [27].

(3) The last step consists of a partially “soft” argument which is used to extend
the solution to the whole space and, second, to extract suitable initial data that
lead to the desired solution (recall that we have solved the equation in a forward
lightcone where the Cauchy problem is not well-posed). For this we rely on a
concentration-compactness approach based on the celebrated Bahouri–Gérard
decomposition [1].

1.2 Notation

We write N for the natural numbers {1, 2, 3, . . . } and set N0 := {0} ∪ N. We use
standard Lebesgue and (fractional) Sobolev spaces denoted by L p(
), W s,p(
) and
Hs := W s,2 with
 ⊂ R

d . Our sign convention for the wave operator is� := −∂2
t +�.

Unless otherwise stated, the letter C (possibly with indices) denotes a positive constant
which may change from line to line. As usual, we write a � b if a ≤ Cb and if the
constant C has to be sufficiently large, we indicate this by a � b. Similarly, we
use a � b and a � b means a � b and b � a. Furthermore, we reiterate that
λ(t) := t−(1−ν) with ν a real number close to 1. Throughout the paper, ν is supposed
to be fixed and sufficiently close to 1. Note also that Theorem 1.1 is trivial if ν = 1 since
in this case u(t, x) = W (x). Thus, whenever convenient we exclude the case ν = 1
without further notice. For x ∈ R

d we set 〈x〉 := √1 + |x |2 and write O( f (x)) to
denote a generic real-valued function which satisfies |O( f (x))| � | f (x)| in a domain
of x that is either specified explicitly or follows from the context. If the function attains
complex values as well we indicate this by a subscript, e.g. OC(x). An O-term O(xγ ),
where x, γ ∈ R, is said to behave like a symbol if |∂k

x O(xγ )| ≤ Ck |x |γ−k for all k ∈ N.
A similar definition applies to symbol behavior of O(〈x〉γ )with | · | substituted by 〈·〉.

2 Construction of an approximate solution

Our intention is to construct a solution u of the form u(t, r) = λ(t)
1
2 W (λ(t)r)+η(t, r)

with λ(t) = t−(1−ν) where ν is sufficiently close to 1 and η is small in a suitable

sense. We first improve the approximate solution Wλ(t)(r) := λ(t)
1
2 W (λ(t)r) by

successively adding two correction terms v0 and v1. These corrections are obtained
by approximately solving the equation in a way we describe in the following.

2.1 Improvement at the center

We set u0(t, r) := Wλ(t)(r) and define the first error e0 by

e0 := �u0 + u5
0 = −∂2

t u0

with � = −∂2
t +�.
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96 R. Donninger, J. Krieger

Lemma 2.1 The error e0 is of the form

t2e0(t, r) = cνλ(t)
1
2 〈λ(t)r〉−1 + t2e∗

0(t, r)

where cν is a real constant and e∗
0 satisfies the bounds

|∂�t ∂k
r t2e∗

0(t, r)| ≤ Ck,�λ(t)
1
2 +k+�[λ(t)t]−�〈λ(t)r〉−3−k

for all t ≥ t0 > 0, r ≥ 0 and k, � ∈ N0. In addition, we have

∂2k+1
r e0(t, r)|r=0 = ∂2k+1

r e∗
0(t, r)|r=0 = 0.

Proof Note first that W (R) = √
3〈R〉−1 + W ∗(R) where |∂k

R W ∗(R)| ≤ Ck〈R〉−3−k

for all R ≥ 0 and k ∈ N0. Consequently, the claim follows from

e0(t, r) = −∂2
t u0(t, r) = −∂2

t [λ(t) 1
2 W (λ(t)r)]

by the chain rule. ��
Note that the decay of e0(t, r) near the lightcone r = t is better than at the center.

Consequently, we first attempt to improve the approximation near r = 0. Ideally, we
would like to add a correction v0 such that u1 := u0 + v0 becomes an exact solution,
i.e.,

0 = �u1 + u5
1 = �v0 + 5u4

0v0 + N (u0, v0)+ e0

where

N (u0, v0) := 10u3
0v

2
0 + 10u2

0v
3
0 + 5u0v

4
0 + v5

0 .

Near the center r = 0 we expect the time derivative to be less important and therefore
we neglect it altogether and also drop the nonlinearity to obtain the approximate
equation

�v0 + 5u4
0v0 = −e0 (2.1)

and the next error e1 is defined as

e1 := �u1 + u5
1. (2.2)

We solve Eq. (2.1) for v0 and subsequently show that e1 decays faster than e0.

Lemma 2.2 There exists a function v0 satisfying Eq. (2.1) such that

v0(t, r) = cνλ(t)
1
2 [λ(t)t]−2λ(t)r + dνλ(t)

1
2 [λ(t)t]−2 + v∗

0(t, r)
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Nonscattering solutions and blowup at infinity 97

where cν, dν are real constants and

|∂�t ∂k
r v

∗
0(t, r)| ≤ Ck,�λ(t)

1
2 +k+�[λ(t)t]−2−�〈λ(t)r〉−1−k 〈log〈λ(t)r〉〉

for all t ≥ t0 > 0, r ≥ 0 and k, � ∈ N0. As a consequence, the error e1 defined by
Eq. (2.2) is of the form

t2e1(t, r) = cνλ(t)
1
2 [λ(t)t]−2λ(t)r + dνλ(t)

1
2 [λ(t)t]−2 + t2e∗

1(t, r)

with (different) real constants cν, dν and e∗
1 satisfies the bounds

|∂�t ∂k
r t2e∗

1(t, r)| ≤ Ck,�λ(t)
1
2 +k+�[λ(t)t]−2+ε−�〈λ(t)r〉−1−k

for all t ≥ t0 > 0, 0 ≤ r � t , any (fixed) ε > 0, and k, � ∈ N0. In addition, we have
∂2k+1

r w(t, r)|r=0 = 0 where w ∈ {v0, v
∗
0 , e1, e∗

1}.
Proof Setting ṽ0(t, R) := Rv0(t, λ(t)−1 R) and R := λ(t)r , Eq. (2.1) reads

∂2
R ṽ0(t, R)+ 5W (R)4ṽ0(t, R) = −λ(t)−2 Re0(t, λ(t)

−1 R) (2.3)

which is an inhomogeneous ODE in R and t can be treated as a parameter. Explicitly,
the potential reads

5W (R)4 = 5

(1 + R2

3 )
2

and the homogeneous equation has the fundamental system {φ0, θ0} given by

φ0(R) = R
(

1 − R2

3

) (
1 + R2

3

)− 3
2 = −√

3 + φ∗
0 (R)

θ0(R) =
(

1 + R2

3

)− 3
2
(

1 − 2R2 + R4

9

)
= 1√

3
R + θ∗

0 (R)

where

|∂k
Rφ

∗
0 (R)| ≤ Ck〈R〉−2−k, |∂k

Rθ
∗
0 (R)| ≤ Ck〈R〉−1−k

for all R ≥ 0 and k ∈ N0. Furthermore, for the Wronskian we obtain W (θ0, φ0) =
θ0φ

′
0 − θ ′

0φ0 = 1. According to the variation of constants formula, a solution ṽ0 of
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98 R. Donninger, J. Krieger

Eq. (2.3) is therefore given by

ṽ0(t, R) = −λ(t)−2φ0(R)

R∫

0

θ0(R
′)R′e0(t, λ(t)

−1 R′)d R′

+ λ(t)−2θ0(R)

R∫

0

φ0(R
′)R′e0(t, λ(t)

−1 R′)d R′

and by using Lemma 2.1 we obtain the claim concerning v0.
The assertion for e1 now follows from e1 = −∂2

t v0 + N (u0, v0). We have

e1(t, r)=cνλ(t)
1
2 [λ(t)t]−2t−2λ(t)r +dνλ(t)

1
2 [λ(t)t]−2t−2−∂2

t v
∗
0(t, r)+N (u0, v0)

and |∂2
t v

∗
0(t, r)| � λ(t)

1
2 [λ(t)t]−2+ε t−2〈λ(t)r〉−1 where the ε-loss comes from the

logarithm. The nonlinear contributions are of higher order and belong to e∗
1 since

|N (u0, v0)(t, r)| � λ(t)
5
2 [λ(t)t]−4〈λ(t)r〉−1

where we use [λ(t)t]−1 � 〈λ(t)r〉−1 for 0 ≤ r � t . The derivative bounds follow
from the corresponding bounds on v∗

0 by the Leibniz rule. ��

2.2 Improvement near the lightcone

We have to go one step further and continue improving our approximate solution.
Thus, we add another correction v1 to u1 and set u2 := u1 + v1 = u0 + v0 + v1. This
yields

�u2 + u5
2 = �v1 + 5u4

1v1 + N (u1, v1)+ �u1 + u5
1

= �v1 + 5u4
1v1 + N (u1, v1)+ e1.

This time we intend to improve the approximate solution near the lightcone r = t since
the decay of the error e1 near the center is already good enough. Of course, near the
lightcone we cannot ignore the temporal derivative but thanks to the decay of u1(t, t)
it turns out that we may safely neglect the potential and the nonlinearity. Furthermore,
we also ignore the higher order error e∗

1 which already decays fast enough. Thus, we
arrive at the approximate equation

�v1(t, r) = −cνλ(t)
− 3

2 t−4λ(t)r − dνλ(t)
− 3

2 t−4 (2.4)

and the next error e2 is given by

e2 := �u2 + u5
2. (2.5)
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Note carefully in Lemma 2.3 below that in order to gain decay in t we sacrifice
differentiability at the lightcone.

Lemma 2.3 There exists a solution v1 = v11 + v12 of Eq. (2.4) and a decomposition
v1 j = v

g
1 j + vb

1 j , j = 1, 2, such that

|v11(t, r)|�λ(t)− 1
2 t−4r3, |v12(t, r)|�λ(t)− 3

2 t−4r2
(
r ≤ 1

2 t
)

|vg
11(t, r)| � λ(t)− 1

2 t−1, |vg
12(t, r)| � λ(t)− 3

2 t−2 (r ≤ 2t)

|vb
11(t, r)| � λ(t)− 1

2 t−1
(
1 − r

t

) 1
2 (1−ν)

, |vb
12(t, r)| � λ(t)− 3

2 t−2
(
1 − r

t

) 1
2 (1−3ν)

(r < t)

for all t ≥ t0 > 0 and estimates for the derivatives follow by formally differentiating
these bounds. As a consequence, the error e2 as defined by Eq. (2.5), satisfies the
bound

|t2e2(t, r)| � λ(t)
1
2 [λ(t)t]−2+ε t

5
2 |1−ν|〈λ(t)r〉−1

for 0 < r < t − c, all t ≥ t0 > c0 ≥ c (where c0 is a fixed constant), and for any
(fixed) ε > 0. Finally, we have ∂2k

r v11(t, r)|r=0 = ∂2k+1
r v12(t, r)|r=0 = 0, k ∈ N0.

Proof Instead of solving Eq. (2.4) directly, we set v1 = v11 + v12 and consider

�v11 = −cνλ(t)
− 3

2 t−4λ(t)r, �v12 = −dνλ(t)
− 3

2 t−4

separately. In order to reduce these equations to ODEs, we use the self-similar coor-
dinate a = r

t . We start with

t2�v11(t, r) = −cνλ(t)
− 1

2 t−1 r
t

and make the self-similar ansatz

v11(t, r) = λ(t)−
1
2 t−1ṽ11

( r
t

)

which yields

(1 − a2)
[
ṽ′′

11(a)+ 2
a ṽ

′
11(a)

]− (1 + ν)aṽ′
11(a)− [ 1

2 (1 − ν)− 1
] [ 1

2 (1 − ν)− 2
]

ṽ11(a) = −cνa. (2.6)

The homogeneous equation has the fundamental system {θ±} given by

θ±(a) = 1
a (1 ± a)

1
2 (1−ν)

with the Wronskian

W (θ+, θ−)(a) = ν − 1

a2(1 − a2)
1
2 (1+ν) .
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100 R. Donninger, J. Krieger

Furthermore, ψ := θ− − θ+ is another solution of the homogeneous equation which
is smooth at a = 0 and clearly, W (θ+, ψ) = W (θ+, θ−). Consequently, a solution ṽ11
of Eq. (2.6) is given by

ṽ11(a) = cνθ+(a)
ν − 1

a∫

0

b3(1 − b2)
1
2 (ν−1)ψ(b)db

−cνψ(a)

ν − 1

a∫

0

b3(1 − b2)
1
2 (ν−1)θ+(b)db (2.7)

and it follows that ṽ11(a) = O(a3) as a → 0. Thus, we obtain v11(t, r) =
v

g
11(t, r) + vb

12(t, r) with the stated bounds. Next, we turn to the equation t2�v12 =
−dνλ(t)−

3
2 t−2. Here, we make the ansatz v12(t, r) = λ(t)− 3

2 t−2ṽ12(
r
t ) which yields

Eq. (2.6) but with ν replaced by 3ν. Thus, we obtain ṽ12(a) = O(a2) as a → 0 and
v12 = v

g
12 + vb

12 with the claimed bounds.
By construction, the error e2 is given by

e2 = 5u4
1v1 + N (u1, v1)+ e∗

1

and from Lemma 2.2 we recall the bounds

|u1(t, r)| ≤ |u0(t, r)| + |v0(t, r)| � λ(t)
1
2 〈λ(t)r〉−1 + λ(t)

1
2 [λ(t)t]−2λ(t)r

� λ(t)
1
2 〈λ(t)r〉−1

|e∗
1(t, r)| � λ(t)

1
2 [λ(t)t]−2+ε t−2〈λ(t)r〉−1.

From above we have the bounds

|v1(t, r)| � λ(t)
1
2 [λ(t)t]−4〈λ(t)r〉3

for 0 ≤ r < 1
2 t and

|vb
11(t, r)| � λ(t)

1
2 [λ(t)t]−1 (1 − r

t

) 1
2 (1−ν) � λ(t)

1
2 [λ(t)t]−1t

1
2 |1−ν|

for 1
2 t ≤ r ≤ t − c. Furthermore,

|vb
12(t, r)| � λ(t)

1
2 [λ(t)t]−2 (1 − r

t

) 1
2 (1−3ν) � λ(t)

1
2 [λ(t)t]−1t

1
2 |1−ν|

for 1
2 t ≤ r ≤ t − c and the stated bounds for e2 follow. ��

Remark 2.4 There is a slight nuisance associated with the function v11 constructed in
Lemma 2.3: its odd derivatives with respect to r do not vanish at the origin, i.e., v11 is
not smooth at the center when viewed as a radial function on R

3. This inconvenient
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Nonscattering solutions and blowup at infinity 101

fact, however, is easily remedied if we replace v11 by θv11 where θ is a smooth function
with θ(r) = r for, say, r ∈ [0, 1

2 ] and θ(r) = 1 for r ≥ 1. This modification does not
affect the bounds given in Lemma 2.3 (provided that t0 > 1) and it yields the desired
behavior near the center. Furthermore, since �(θv11)(t, r) = �v11(t, r) for r ≥ 1,
the stated estimates for the corresponding error e2 are not altered either. Consequently,
we may equally well assume from the onset that v11 and e2 are smooth at the center
(as functions on R

3). This remark will be useful later on.

3 The transport equation

For the sake of clarity we outline the main results of this section.

(1) We make the ansatz u = u2 + ε and perform the change of variables (t, r) �→
(τ, R) where τ = 1

ν
λ(t)t , R = λ(t)r . From the requirement �u + u5 = 0 we

derive an equation for v(τ, R) := Rε(νλ̃(τ )−1τ, λ̃(τ )−1 R) of the form

D2v + βν(τ )Dv + Lv = λ̃(τ )−2[r.h.s.] (3.1)

where D = ∂τ +βν(τ )(R∂R −1), βν(τ ) = (1− 1
ν
)τ−1, and L = −∂2

R −5W (R)4.
(2) Next, we discuss the spectral theory of the Schrödinger operator L. We derive

the asymptotics of the spectral measure μ associated to L by applying Weyl–
Titchmarsh theory. As a consequence, we obtain a precise description of the
spectral transformation (the “distorted Fourier transform”) U : L2(0,∞) →
L2(σ (L), dμ), the unitary map satisfying UK f (ξ) = ξU f (ξ).

(3) We apply this map to Eq. (3.1) in order to “transform away” the potential
−5W (R)4. This yields an equation for4 x(τ, ξ) := [Uv(τ, ·)](ξ) of the form

[
D̂2

c + βν(τ )D̂c + ξ
]

x(τ, ξ) = λ̃−2(τ )[r.h.s.] + “K − terms”

where D̂c = ∂τ−2βνξ∂ξ+O(τ−1). The expression “K-terms” stands for nonlocal
error terms which arise from the application of U to R∂R (in D).

(4) Then we study the inhomogeneous equation

[
D̂2

c + βν(τ )D̂c + ξ
]

x(τ, ξ) = b(τ, ξ)

and solve it by the method of characteristics. We obtain suitable pointwise bounds
for the kernel of the solution operator (the “parametrix”).

(5) Finally, we introduce the basic solution spaces we work with and prove bounds
for the parametrix in these spaces.

4 In fact, we have to work with a vector-valued function x since L has a negative eigenvalue. This is not
essential for the argument but complicates the notation. Thus, for the moment we ignore this issue.
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3.1 Change of variables

The function u2 constructed in Sect. 2 satisfies the critical wave equation only up to
an error e2. In this section we aim at constructing an exact solution to

�u + u5 = 0

of the form u = u2 + ε where ε(t, r) decays sufficiently fast as t → ∞. Recall that
u2 is nonsmooth at the lightcone and thus, we restrict our construction to a truncated
forward lightcone

K ∞
t0,c := {(t, x) ∈ R × R

3 : t ≥ t0, |x | ≤ t − c}

for t0 > c > 0. Consequently, we have to solve the equation

�ε + 5u4
2ε + N (u2, ε)+ e2 = 0

which we rewrite as

�ε + 5u4
0ε = 5(u4

0 − u4
2)ε − N (u2, ε)− e2. (3.2)

As before, in order to obtain a time-independent potential, we use the new space
variable R(t, r) = λ(t)r . Furthermore, it is convenient to introduce the new time
variable τ(t) = 1

ν
tν . We write λ(t) = λ̃(τ (t)) and note that

τ ′(t) = λ(t), λ̃′(τ (t)) = λ′(t)
λ(t)

.

Consequently, the derivatives transform according to

∂t = λ̃(τ )
(
∂τ + λ̃′(τ )λ̃(τ )−1 R∂R

)
, ∂r = λ̃(τ )∂R

and by setting ṽ(τ (t), R(t, r)) = ε(t, r) we obtain from Eq. (3.2) the problem

[∂τ + βν(τ )R∂R]2ṽ + βν(τ )[∂τ + βν(τ )R∂R]ṽ −
[
∂2

R + 2
R ∂R + 5W (R)4

]
ṽ

= λ̃(τ )−2
[
5(u4

2 − u4
0)ṽ + N (u2, ṽ)+ e2

]
(3.3)

with

βν(τ ) = λ̃′(τ )λ̃(τ )−1 = − ( 1
ν

− 1
)
τ−1 (3.4)

where it is understood, of course, that the functions u0, u2 and e2 be evaluated accord-
ingly. Finally, the standard substitution ṽ(τ, R) = R−1v(τ, R) transforms the radial
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Nonscattering solutions and blowup at infinity 103

3d Laplacian into the radial 1d Laplacian and, by noting that

[∂τ + βν(τ )R∂R] v(τ,R)R = 1
R [∂τ + βν(τ )R∂R − βν(τ )]v(τ, R),

we end up with the main equation

D2v + βν(τ )Dv + Lv = λ̃(τ )−2
[
5(u4

2 − u4
0)v + RN (u2, R−1v)+ Re2

]
(3.5)

where D = ∂τ + βν(τ )(R∂R − 1) and L = −∂2
R − 5W (R)4. Our goal is to solve

Eq. (3.5) backwards in time with zero Cauchy data at τ = ∞. Roughly speaking,
the idea is to perform a distorted Fourier transform with respect to the self-adjoint
operator L and to solve the remaining transport-type equation on the Fourier side by
the method of characteristics.

3.2 Spectral theory of L and the distorted Fourier transform

In the following we recall some standard facts about the spectral theory of L, see
e.g. [8,14,49,50]. We write V := −5W 4 and emphasize that V (R) depends smoothly
on R and decays like R−4 as R → ∞. The Schrödinger operator L = −∂2

R + V is
self-adjoint in L2(0,∞) with domain

dom(L) = { f ∈ L2(0,∞) : f, f ′ ∈ AC[0, R] ∀R > 0, f (0) = 0,L f ∈ L2(0,∞)}

since the endpoint 0 is regular whereas ∞ is in the limit-point case. Furthermore, there
exists a zero energy resonance which is induced by the scaling symmetry of the wave
equation. More precisely, the function

φ0(R) = 2R∂λ|λ=1λ
1
2 W (λR) = R(1 − 1

3 R2)

(1 + 1
3 R2)3/2

(3.6)

belongs to L∞(0,∞) and (formally) satisfies Lφ0 = 0. Since φ0 has precisely one
zero on (0,∞), it follows by Sturm oscillation theory (see e.g. [8]) that L has exactly
one simple negative eigenvalue ξd < 0. The corresponding eigenfunctionφd is smooth
and positive on (0,∞) and decays exponentially towards ∞. Thus, the spectrum of L
is given by σ(L) = {ξd} ∪ [0,∞) and thanks to the decay of V , the continuous part
is in fact absolutely continuous.

We denote by {φ(·, z), θ(·, z)}, z ∈ C, the standard fundamental system of

L f = z f (3.7)

satisfying

φ(0, z) = θ ′(0, z) = 0, φ′(0, z) = θ(0, z) = 1.
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In particular we have W (θ(·, z), φ(·, z)) = 1 for all z ∈ C. Furthermore, ψ(·, z) for
z ∈ C\R denotes the Weyl–Titchmarsh solution of Eq. (3.7), i.e., the unique solution
of Eq. (3.7) which belongs to L2(0,∞) and satisfies ψ(0, z) = 1. Consequently, for
each z ∈ C\R there exists a number m(z) such that

ψ(·, z) = θ(·, z)+ m(z)φ(·, z)

and we obtain m(z) = W (θ(·, z), ψ(·, z)). The Weyl–Titchmarsh m-function is of
crucial importance since it determines the spectral measure.

Proposition 3.1 (1) For any ξ > 0 the limit

ρ(ξ) := 1
π

lim
ε→0+ Im m(ξ + iε)

exists but ρ(ξ) → ∞ as ξ → 0+.
(2) Let μ be the Borel measure defined by

dμ(ξ) = d�ξd (ξ)

‖φ(·, ξd)‖2
L2(0,∞)

+ ρ(ξ)dξ

where d�ξd denotes the Dirac measure at ξd . Then there exists a unitary oper-
ator U : L2(0,∞) → L2(σ (L), dμ), the “distorted Fourier transform”, which
diagonalizes L, i.e.,

UL = MidU

where Mid is the (maximally defined) operator of multiplication by the identity
function.5

(3) The distorted Fourier transform is explicitly given by

U f (ξ) = lim
b→∞

b∫

0

φ(R, ξ) f (R)d R, ξ ∈ σ(L)

where the limit is understood with respect to ‖ · ‖L2(σ (L),dμ).
(4) The inverse transform U−1 reads

U−1 f̂ (R) = φ(R, ξd)

‖φ(·, ξd)‖2
L2(0,∞)

f̂ (ξd)+ lim
b→∞

b∫

0

φ(R, ξ) f̂ (ξ)ρ(ξ)dξ

where the limit is understood with respect to ‖ · ‖L2(0,∞).

5 In other words, Mid f (ξ) = ξ f (ξ).
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Proof Let Im z > 0 (and Im
√

z > 0). The Weyl–Titchmarsh solution is given by
ψ(·, z) = c0(z) f+(·, z) where the Jost function f+(·, z) is defined by L f+(·, z) =
z f+(·, z) and f+(R, z) ∼ ei

√
z R as R → ∞. The coefficient c0(z) is chosen such that

ψ(0, z) = 1, i.e.,

c0(z) = 1

W ( f+(·, z), φ(·, z))
. (3.8)

The Jost function satisfies the Volterra equation

f+(R, z) = ei
√

z R + 1√
z

∞∫

R

sin(
√

z(R′ − R))V (R′) f+(R′, z)d R′ (3.9)

and from this representation it follows immediately that

f+(R, ξ) = lim
ε→0+ f+(R, ξ + iε)

exists provided that ξ > 0 and moreover, f+(R, ξ) satisfies Eq. (3.9) with z = ξ ,
cf. [5]. From Eq. (3.9) we also have W ( f+(·, z), f+(·, z)) = −2i

√
z and thus, by

expanding

f+(·, ξ) = a(ξ)φ(·, ξ)+ b(ξ)θ(·, ξ)

we obtain (recall that φ(·, ξ) and θ(·, ξ) are real-valued)

−2i
√
ξ = W ( f+(·, ξ), f+(·, ξ)) = 2iIm (a(ξ)b(ξ))

which in particular implies b(ξ) �= 0 if ξ > 0. Consequently, we infer

W ( f+(·, ξ), φ(·, ξ)) = b(ξ) �= 0

and this shows that c0(ξ) (and therefore ψ(R, ξ)) is well-defined and finite provided
that ξ > 0. However, due to the zero energy resonance we clearly have |c0(ξ)| → ∞ as
ξ → 0+. The connection between the Weyl–Titchmarsh m-function and the spectral
measure μ is provided by the classical formula

μ̃(ξ) = 1
π

lim
δ→0+ lim

ε→0+

ξ+δ∫

δ

Im m(t + iε)dt

where the distribution function μ̃ determines μ in the sense of Lebesgue–Stieltjes.
The statements about the distorted Fourier transform are well-known and classical,
see e.g. [8,14,49,50]. ��

123



106 R. Donninger, J. Krieger

3.3 Asymptotics of the spectral measure for small ξ

In order to be able to apply the distorted Fourier transform, we require more detailed
information on the behavior of the spectral measure. We start with the asymptotics as
ξ → 0+ where the spectral measure blows up due to the existence of the zero energy
resonance. We also obtain estimates for the fundamental system {φ(·, ξ), θ(·, ξ)}
which will be relevant later on. As before, φ0(R) = φ(R, 0) is the resonance function
given in Eq. (3.6) and we write θ0(R) := θ(R, 0). Explicitly, we have

θ0(R) = 1 − 2R2 + 1
9 R4

(1 + 1
3 R2)3/2

.

Lemma 3.2 There exists a (complex-valued) function �(·, ξ) satisfying L�(·, ξ) =
ξ�(·, ξ) such that

�(R, ξ) = [φ0(R)+ iθ0(R)][1 + a(R, ξ)]

where a(0, ξ) = a′(0, ξ) = 0 and

|∂�ξ ∂k
R[Re a(R, ξ)]| ≤ Ck,�〈R〉2−kξ1−�

|∂�ξ ∂k
R[Im a(R, ξ)]| ≤ Ck,�

[
〈R〉1−kξ1−� + 〈R〉4−kξ2−�]

for all R ∈ [0, ξ− 1
2 ], 0 < ξ � 1 and k, � ∈ N0. In particular, we have φ = Re� and

θ = Im�.

Proof We write�0 := φ0 + iθ0 and note that�0 does not vanish anywhere on [0,∞).
Inserting the ansatz �(·, ξ) = �0[1 + a(·, ξ)] into L�(·, ξ) = ξ�(·, ξ) yields the
Volterra equation

a(R, ξ) = −ξ
R∫

0

R∫

R′
�0(R

′′)−2d R′′ �0(R
′)2[1 + a(R′, ξ)]d R′ (3.10)

which is of the form

a(R, ξ) =
R∫

0

K (R, R′, ξ)[1 + a(R′, ξ)]d R′

with a kernel satisfying |K (R, R′, ξ)| � 〈R′〉ξ for all 0 ≤ R′ ≤ R and ξ > 0.
Consequently, we have

ξ
− 1

2∫

0

sup

R∈(R′,ξ− 1
2 )

|K (R, R′, ξ)|d R′ � 1
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and a standard Volterra iteration yields the existence of a(·, ξ)with |a(R, ξ)| � 〈R〉2ξ

for all R ∈ [0, ξ− 1
2 ] and 0 < ξ � 1. Obviously, we have a(0, ξ) = a′(0, ξ) = 0 and

this immediately yields φ = Re� and θ = Im�. Now observe that, for 0 ≤ R′ ≤ R,

R∫

R′
�0(R

′′)−2d R′′ =
R∫

R′

[
O(〈R′′〉−2)+ i O(〈R′′〉−3)

]
d R′′ = O(〈R′〉−1)+i O(〈R′〉−2)

which implies

R∫

R′
�0(R

′′)−2d R′′ �0(R
′)2 = O(〈R′〉)+ i O(1).

Consequently, with |a(R, ξ)| � 〈R〉2ξ from above and Eq. (3.10) we infer

Im a(R, ξ) = O(〈R〉ξ)+ ξ Im

R∫

0

OC(〈R′〉)a(R′, ξ)d R′ = O(〈R〉ξ)+ O(〈R〉4ξ2).

The derivative bounds follow inductively from Eq. (3.10) by symbol calculus. ��
Next, we consider the Jost function f+(·, ξ).

Lemma 3.3 The Jost function f+(·, ξ) of the operator L is of the form

f+(R, ξ) = ei
√
ξ R[1 + b(R, ξ)]

where b(·, ξ) satisfies the bounds

|∂�ξ ∂k
Rb(R, ξ)| ≤ Ck,�〈R〉−3−kξ− 1

2 −�

for all R ≥ ξ− 1
6 , 0 < ξ � 1 and k, � ∈ N0.

Proof The function b(·, ξ) satisfies the Volterra equation

b(R, ξ) = 1

2i
√
ξ

∞∫

R

[
e2i

√
ξ(R′−R) − 1

]
V (R′)[1 + b(R′, ξ)]d R′

=
∞∫

R

K (R, R′, ξ)[1 + b(R′, ξ)]d R′. (3.11)

Thanks to the strong decay of V we have |K (R, R′, ξ)| � 〈R′〉−4ξ− 1
2 for R ≤ R′ and

thus,
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∞∫

ξ
− 1

6

sup

R∈(ξ− 1
6 ,R′)

|K (R, R′, ξ)|d R′ � 1.

Consequently, a standard Volterra iteration yields the claim. The derivative bounds
follow inductively by symbol calculus. ��

The information provided by Lemmas 3.2 and 3.3 already suffices to obtain the
asymptotics of the spectral measure for ξ → 0+.

Lemma 3.4 For the functions c0 and ρ given in Eq. (3.8) and Proposition 3.1, respec-
tively, we have

c0(ξ) = − i√
3
ξ− 1

2 [1 + OC(ξ
1
5 )], ρ(ξ) = 1

3π ξ
− 1

2 [1 + O(ξ
1
5 )]

for 0 < ξ � 1 where the O-terms behave like symbols under differentiation.

Proof For the Weyl–Titchmarsh solution ψ(·, ξ) we have ψ(·, ξ) = c0(ξ) f+(·, ξ)
where the coefficient c0(ξ) is given by

c0(ξ) = 1

W ( f+(·, ξ), φ(·, ξ)) ,

cf. the proof of Proposition 3.1. From Lemma 3.2 we have

φ(R, ξ) = Re�(R, ξ) = φ0(R)[1 + Re a(R, ξ)] − θ0(R)Im a(R, ξ)

= φ0(R)[1 + O(〈R〉2ξ)+ O(〈R〉5ξ2)], R ≥ 1

and, by noting that |φ′
0(R)| � 〈R〉−3 for R ≥ 1,

φ′(R, ξ) = O(〈R〉−3)[1 + O(〈R〉4ξ)+ O(〈R〉7ξ2)], R ≥ 1.

We evaluate the Wronskian at R = ξ− 3
10 . Thus, we use

φ(ξ− 3
10 , ξ) = φ0(ξ

− 3
10 )[1 + O(ξ

2
5 )] = −√

3[1 + O(ξ
2
5 )]

φ′(ξ− 3
10 , ξ) = O(ξ

9
10 )[1 + O(ξ− 1

5 )] = O(ξ
7

10 )

and, from Lemma 3.3,

f+(ξ− 3
10 , ξ) = eiξ1/5 [1 + OC(ξ

2
5 )] = 1 + OC(ξ

1
5 )

f ′+(ξ− 3
10 , ξ) = iξ

1
2 eiξ1/5 [1 + OC(ξ

1
5 )] = iξ

1
2 [1 + OC(ξ

1
5 )]

and all O-terms behave like symbols under differentiation. Consequently, we obtain
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W ( f+(·, ξ), φ(·, ξ)) = √
3iξ

1
2 [1 + OC(ξ

1
5 )]

and thus, c0(ξ) = − i√
3
ξ− 1

2 [1 + OC(ξ
1
5 )] where the O-term behaves like a symbol.

The Weyl–Titchmarsh m-function is given by

m(ξ) = W (θ(·, ξ), ψ(·, ξ)) = c0(ξ)W (θ(·, ξ), f+(·, ξ)).

From Lemma 3.2 we have

θ(ξ− 3
10 , ξ) = O(ξ− 3

10 ), θ ′(ξ− 3
10 , ξ) = 1√

3
+ O(ξ

1
5 )

and thus, W (θ(·, ξ), f+(·, ξ)) = − 1√
3

+ OC(ξ
1
5 ). This yields ρ(ξ) = 1

π
Im m(ξ) =

1
3π ξ

− 1
2 [1 + O(ξ

1
5 )] with an O-term that behaves like a symbol. ��

3.4 Asymptotics of the spectral measure for large ξ

In this section we study the behavior of ρ(ξ) as ξ → ∞. This is considerably easier
than the limit ξ → 0+. In order to get a small factor in front of the potential, it is

convenient to rescale the equation L f = ξ f by setting f (R) = f̃ (ξ
1
2 R)which yields

f̃ ′′(y)+ f̃ (y) = ξ−1V (ξ− 1
2 y) f̃ (y) (3.12)

for y ≥ 0, ξ � 1 and this form already suggests to treat the right-hand side perturba-
tively.

Lemma 3.5 The Jost function f+(·, ξ) of L is of the form

f+(R, ξ) = ei
√
ξ R[1 + b(R, ξ)]

where

|∂�ξ ∂k
Rb(R, ξ)| ≤ Ck,�〈R〉−3−kξ− 1

2 −�

for all R ≥ 0, ξ � 1 and k, � ∈ N0.

Proof We start by constructing a solution f̃+(·, ξ) to Eq. (3.12) of the form f̃+(y, ξ) =
eiy[1 + b̃(y, ξ)]. Inserting this ansatz into Eq. (3.12) yields the Volterra equation

b̃(y, ξ) = 1
2i ξ

−1

∞∫

y

[e2i(y′−y) − 1]V (ξ− 1
2 y′)[1 + b̃(y′, ξ)]dy′

=
∞∫

y

K (y, y′, ξ)[1 + b̃(y′, ξ)]dy′ (3.13)
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where |K (y, y′, ξ)| � ξ−1〈ξ− 1
2 y′〉−4 for all 0 ≤ y ≤ y′ and ξ � 1. Consequently,

we have

∞∫

0

sup
y∈(0,y′)

|K (y, y′, ξ)|dy′ � ξ− 1
2 � 1

and a Volterra iteration yields |b̃(y, ξ)| � ξ− 1
2 〈ξ− 1

2 y〉−3. Furthermore, by introducing
the new variable u = y′ − y, we rewrite Eq. (3.13) as

b̃(y, ξ) = 1
2i ξ

−1

∞∫

0

[e2iu − 1]V (ξ− 1
2 (u + y))[1 + b̃(u + y, ξ)]du

and with

|∂�ξ ∂k
y V (ξ− 1

2 (u + y))| ≤ Ck,�ξ
− 1

2 k−�〈ξ− 1
2 (u + y)〉−4−k, k, � ∈ N0

for all y, u ≥ 0, ξ � 1, we obtain inductively the bounds

|∂�ξ ∂k
y b̃(y, ξ)| ≤ Ck,�ξ

− 1
2 − 1

2 k−�〈ξ− 1
2 y〉−3−k

for all y ≥ 0, ξ � 1 and k, � ∈ N0. We have f̃+(ξ
1
2 R) ∼ ei

√
ξ R as R → ∞ and

thus, as already suggested by the notation, the Jost solution is given by f+(R, ξ) =
f̃+(ξ

1
2 R, ξ) and by setting b(R, ξ) = b̃(ξ

1
2 R, ξ)we obtain the stated form of f+(·, ξ)

and the bounds for b follow from the ones for b̃ by the chain rule. ��
Lemma 3.6 The functions c0 and ρ are of the form

c0(ξ) = 1 + OC(ξ
− 1

2 ), ρ(ξ) = 1
π
ξ

1
2 [1 + O(ξ− 1

2 )]

for ξ � 1 where the O-terms behave like symbols under differentiation.

Proof By evaluation at R = 0 we obtain from Lemma 3.5

W ( f+(·, ξ), φ(·, ξ)) = f+(0, ξ) = 1 + b(0, ξ) = 1 + OC(ξ
− 1

2 )

which, by Eq. (3.8), implies c0(ξ) = 1 + OC(ξ
− 1

2 ) where the O-term behaves like a
symbol. Furthermore, we have

W (θ(·, ξ), f+(·, ξ))= f ′+(0, ξ)= iξ
1
2 [1 + b(0, ξ)]+b′(0, ξ)= iξ

1
2 [1 + OC(ξ

− 1
2 )]

and we infer
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ρ(ξ) = 1
π

Im
[
c0(ξ)W (θ(·, ξ), f+(·, ξ))

] = 1
π
ξ

1
2 [1 + O(ξ− 1

2 )]
with an O-term that behaves like a symbol. ��

It is now a simple matter to obtain a convenient representation of φ(·, ξ) in terms
of the Jost function f+(·, ξ).
Corollary 3.7 The function φ(·, ξ) has the representation

φ(R, ξ) = a(ξ) f+(R, ξ)+ a(ξ) f+(R, ξ)

where

a(ξ) =
√

3
2 + OC(ξ

1
5 ), 0 < ξ � 1

a(ξ) = 1
2i ξ

− 1
2 [1 + OC(ξ

− 1
2 )], ξ � 1

and the O-terms behave like symbols.

Proof Since W ( f+(·, ξ), f+(·, ξ)) = −2i
√
ξ it is clear that there exist coefficients

a(ξ), b(ξ) such that φ(·, ξ) = a(ξ) f+(·, ξ)+b(ξ) f+(·, ξ) provided that ξ > 0. From
the fact that φ(·, ξ) is real-valued it follows that b(ξ) = a(ξ). Consequently, we obtain

1
c0(ξ)

= W ( f+(·, ξ), φ(·, ξ)) = −2iξ
1
2 a(ξ)

and Lemmas 3.4, 3.6 yield the claim.

3.5 The transference identity

Unfortunately, it is not straightforward to apply the distorted Fourier transform to
Eq. (3.5) due to the presence of the derivative R∂R . The idea is to substitute the term
R∂R by a suitable derivative on the Fourier side. This is not possible without making an
error. For the following it is convenient to distinguish between the continuous and the
discrete part of the spectrum of L. This is most effectively done by introducing vector
notation. Consequently, we interpret the distorted Fourier transform, now denoted by
F , as a vector-valued map F : L2(0,∞) → C × L2((0,∞), ρ(ξ)dξ) given by

F f :=
(

U f (ξd)

U f |[0,∞)

)

with U from Proposition 3.1. By Proposition 3.1 the inverse map

F−1 : C × L2((0,∞), ρ(ξ)dξ) → L2(0,∞)

reads

F−1
(

a
f

)
= a

φ(·, ξd)

‖φ(·, ξd)‖2
L2(0,∞)

+ lim
b→∞

b∫

0

φ(·, ξ) f (ξ)ρ(ξ)dξ. (3.14)
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We define the error operator K by

F((·) f ′ − f ) = AF f + KF f (3.15)

for f ∈ C∞
c (0,∞) where

A :=
(

0 0
0 Ac

)
, Acg(ξ) := −2ξg′(ξ)−

(
5
2 + ξρ′(ξ)

ρ(ξ)

)
g(ξ)

and we write

K =
(

Kdd Kdc

Kcd Kcc

)

for the matrix components of K. We call Eq. (3.15) the “transference identity” since
it allows us to transfer derivatives with respect to R to derivatives with respect to the
Fourier variable ξ . In order to motivate the definitions of A and K, let us take the free
case as a model problem, i.e., assume for the moment that V = 0 and L = −∂2

R . Note,
however, that the free case with a Dirichlet condition at zero is not a good model for
our problem since it is not resonant. Consequently, we assume a Neumann condition
instead. In the free case there is no discrete spectrum and the corresponding φ(·, ξ)
can be given explicitly and reads φ(R, ξ) = − cos(ξ

1
2 R). Furthermore, the spectral

measure is ρ(ξ) = 1
π
ξ− 1

2 . For the transference identity we obtain

U((·) f ′ − f )(ξ) =
∞∫

0

φ(R, ξ)R f ′(R)d R − U f (ξ)

= −
∞∫

0

Rξ
1
2 sin(ξ

1
2 R) f (R)d R − 2

∞∫

0

φ(R, ξ) f (R)d R

= −2ξ∂ξ

∞∫

0

φ(R, ξ) f (R)d R − 2U f (ξ)

= −2ξ(U f )′(ξ)−
(

5
2 + ξρ′(ξ)

ρ(ξ)

)
U f (ξ)

for f ∈ C∞
c (0,∞) and we recover the operator Ac whereas the corresponding error

operator is identically zero. Due to the strong decay of V (R) as R → ∞ it is reasonable
to expect that the transference identity Eq. (3.15) is well approximated by the above
model case, at least to leading order. Therefore, K should be “small” in a suitable
sense. We will make this idea rigorous in Sect. 5 where we prove appropriate mapping
properties of K which exhibit a certain smoothing effect that turns out to be crucial
for the whole construction.
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3.6 Application of the distorted Fourier transform

Now we intend to apply the distorted Fourier transform to Eq. (3.5). In order to be able
to do so, however, we have to deal with the fact that the functions on the right-hand
side of Eq. (3.5) are only defined in a forward lightcone and we have to extend them
smoothly to all r ≥ 0. To this end we use a smooth cut-off χ satisfying χ(x) = 0
for x ≤ 1

2 and χ(x) = 1 for x ≥ 1. Then χ( t−r
c ) is identically 1 in the truncated

cone r ≤ t − c and identically 0 if r ≥ t − c
2 . Of course, we assume here that t ≥ c.

Furthermore, in terms of the new variables τ = 1
ν

tν = 1
ν
λ(t)t and R = λ(t)r , the

cut-off reads

χ̃ (τ, R) := χ
(
λ̃(τ )−1 ντ−R

c

)
.

Consequently, the equation we really want to solve is given by

D2v + βν(τ )Dv + Lv = λ̃(τ )−2χ̃
[
5(u4

2 − u4
0)v + RN (u2, R−1v)+ Re2

]
,

(3.16)

cf. Eq. (3.5), and we recall that D = ∂τ + βν(τ )(R∂R − 1). Thus, we have

FD = ∂τF + βν(A + K)F =: D̂F

and this yields FD2 = D̂2F where

D̂2 = ∂2
τ + 2βν(A + K)∂τ + β2

ν (A2 + KA + AK + K2)+ β ′
ν(A + K)

= (∂τ + βνA)2 + 2βνK∂τ + β2
ν (2KA + [A,K] + K2)+ β ′

νK.

We conclude that

D̂2 + βνD̂ = (∂τ + βνA)2 + βν(2K + 1)(∂τ + βνA)
+β2

ν

(
K2 + [A,K] + K + β ′

ν

β2
ν
K
)
.

In the following we write (xd(τ ), x(τ, ξ)) = Fv(τ, ·)(ξ). Consequently, by applying
F to Eq. (3.16), we end up with the system

(
∂2
τ + ξd 0

0 (∂τ + βν(τ )Ac)
2 + ξ

)(
xd(τ )

x(τ, ξ)

)

=
5∑

j=1

N j

(
xd

x

)
(τ, ξ)− βν(τ )(2K + 1)(∂τ + βν(τ )A)

(
xd(τ )

x(τ, ·)
)
(ξ)

−βν(τ )2
(
K2 + [A,K] + K + β ′

ν (τ )

βν(τ )2
K
)( xd(τ )

x(τ, ·)
)
(ξ)+

(
ê2(τ, ξd)

ê2(τ, ξ)

)

(3.17)
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where the operators N j , j ∈ {1, 2, 3, 4, 5}, are given by

N j

(
xd

x

)
(τ, ξ) := F

(

| · |ϕ j (τ, ·)
[
| · |−1F−1

(
xd(τ )

x(τ, ·)
)] j
)

(ξ) (3.18)

with

ϕ1(τ, R) = 5λ̃(τ )−2χ̃(τ, R)[u2(νλ̃(τ )
−1τ, λ̃(τ )−1 R)4 − u0(νλ̃(τ )

−1τ, λ̃(τ )−1 R)4]
ϕ2(τ, R) = 10λ̃(τ )−2χ̃(τ, R)u2(νλ̃(τ )

−1τ, λ̃(τ )−1 R)3

ϕ3(τ, R) = 10λ̃(τ )−2χ̃(τ, R)u2(νλ̃(τ )
−1τ, λ̃(τ )−1 R)2

ϕ4(τ, R) = 5λ̃(τ )−2χ̃(τ, R)u2(νλ̃(τ )
−1τ, λ̃(τ )−1 R)

ϕ5(τ, R) = λ̃(τ )−2χ̃ (τ, R)

and

ê2(τ, ξ) = λ̃(τ )−2

∞∫

0

φ(R, ξ)χ
(
λ̃(τ )−1 ντ−R

c

)
Re2

(
νλ̃(τ )−1τ, λ̃(τ )−1 R

)
d R.

(3.19)

3.7 Solution of the transport equation

Our goal is to treat the entire right-hand side of Eq. (3.17) perturbatively. To this end
it is necessary to be able to solve the two decoupled equations

x ′′
d (τ )+ ξd xd(τ ) = bd(τ ) (3.20)

[
∂τ − βν(τ )

(
2ξ∂ξ + 5

2 + ξρ′(ξ)
ρ(ξ)

)]2
x(τ, ξ)+ ξ x(τ, ξ) = b(τ, ξ) (3.21)

for some given functions bd and b. Recall that we are interested in decaying solutions
as τ → ∞ and by variation of constants it is readily seen that

xd(τ ) =
∞∫

τ0

Hd(τ, τ
′)bd(τ

′)dτ ′, Hd(τ, τ
′) := − 1

2 |ξd |− 1
2 e−|ξd |1/2|τ−τ ′|

for some constant τ0 is a solution to Eq. (3.20) which behaves well at infinity. For
future reference we denote by Hd the solution operator, i.e.,

Hd f (τ ) :=
∞∫

τ0

Hd(τ, τ
′) f (τ ′)dτ ′. (3.22)
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In order to solve Eq. (3.21) we first define a new variable y(τ, ξ) by

x(τ, ξ) = λ̃(τ )
5
2 ρ(ξ)−

1
2 y(τ, ξ).

Then, by recalling that βν(τ ) = λ̃′(τ )λ̃(τ )−1, we observe that

[
∂τ − 5

2βν(τ )− βν(τ )
(

2ξ∂ξ + ξρ′(ξ)
ρ(ξ)

)]
x(τ, ξ)

= λ̃(τ )
5
2 ρ(ξ)−

1
2 [∂τ − 2βν(τ )ξ∂ξ ]y(τ, ξ)

and thus, Eq. (3.21) is equivalent to

[∂τ − 2βν(τ )ξ∂ξ ]2 y(τ, ξ)+ ξ y(τ, ξ) = λ̃(τ )−
5
2 ρ(ξ)

1
2 b(τ, ξ). (3.23)

Now we solve Eq. (3.23) by the method of characteristics, i.e., we compute

d
dτ y(τ, ξ(τ )) = ∂τ y(τ, ξ(τ ))+ ξ ′(τ )∂ξ y(τ, ξ(τ ))

and by comparison with the differential operator in Eq. (3.23) we obtain the character-
istic equation ξ ′(τ ) = −2βν(τ )ξ(τ ) which, by recalling that βν(τ ) = −( 1

ν
− 1)τ−1

from Eq. (3.4), is readily solved as ξ(τ ) = γ τ 2( 1
ν
−1) for some constant γ . Thus, along

the characteristic τ �→ (τ, γ τ 2( 1
ν
−1)), Eq. (3.23) takes the form

ỹ′′(τ ; γ )+ γ τ 2( 1
ν
−1) ỹ(τ ; γ ) = b̃(τ ; γ ) (3.24)

where ỹ(τ ; γ )= y(τ, γ τ 2( 1
ν
−1)) and b̃(τ ; γ )= λ̃(τ )− 5

2 ρ(γ τ 2( 1
ν
−1))

1
2 b(τ, γ τ 2( 1

ν
−1)).

By setting ỹ(τ ; γ )= τ− 1
2 (

1
ν
−1)w(νγ

1
2 τ

1
ν ) we infer that the homogeneous version of

Eq. (3.24) is equivalent to

w′′(z)+
(

1 − ( ν2 )
2 − 1

4

z2

)

w(z) = 0

where z = νγ
1
2 τ

1
ν and this identifies Eq. (3.24) as a Bessel equation. Consequently, a

fundamental system {φ j (·; γ ) : j = 0, 1} for the homogeneous version of Eq. (3.24)
is given by

φ0(τ ; γ ) = aντ
1
2 Jν/2(νγ

1
2 τ

1
ν )

φ1(τ ; γ ) = bντ
1
2 Yν/2(νγ

1
2 τ

1
ν )

(3.25)

where Jν/2, Yν/2 are the standard Bessel functions, see e.g. [35,36], and aν , bν are
chosen such that

aν Jν/2(z) = ν− ν
2 z

ν
2 [1 + O(z2)], bνYν/2(z) = ν

ν
2 z− ν

2 [1 + O(zν)] (3.26)

123



116 R. Donninger, J. Krieger

as z → 0+. This yields the asymptotics

φ0(τ ; γ ) = γ
ν
4 τ [1 + O(γ τ

2
ν )]

φ1(τ ; γ ) = γ− ν
4 [1 + O(γ

ν
2 τ)] (3.27)

for, say, 0 < γ
1
2 τ

1
ν ≤ 1 and the O-terms behave like symbols. By evaluation at τ = 0

we also obtain the Wronskian W (φ0(·; γ ), φ1(·; γ )) = −1. Furthermore, from the

Hankel asymptotics we have |H ( j)
ν/2(z)| � z− 1

2 for z ≥ 1, j = 1, 2 (see [35,36])

and thus, the relations Jν/2 = 1
2 (H

(1)
ν/2 + H (2)

ν/2) as well as Yν/2 = 1
2i (H

(1)
ν/2 − H (2)

ν/2)

immediately yield the bound

|φ j (τ ; γ )| � γ− 1
4 τ− 1

2 (
1
ν
−1), j = 0, 1 (3.28)

for γ
1
2 τ

1
ν ≥ 1. Consequently, assuming sufficient decay of b̃(·; γ ), a decaying solution

to Eq. (3.24) is given by

ỹ(τ ; γ ) =
∞∫

τ

[φ1(τ ; γ )φ0(σ ; γ )− φ0(τ ; γ )φ1(σ ; γ )]b̃(σ ; γ )dσ.

In order to obtain an expression for x(τ, ξ), we set γ = ξτ−2( 1
ν
−1) and this yields

x(τ, ξ) =
∞∫

τ

Hc(τ, σ, ξ)b(σ,
(
σ
τ

)2( 1
ν
−1)

ξ )dσ =: Hcb(τ, ξ) (3.29)

with

Hc(τ, σ, ξ) = λ̃(τ )
5
2 ρ(ξ)−

1
2

[
φ1

(
τ ; ξτ−2( 1

ν
−1)
)
φ0

(
σ ; ξτ−2( 1

ν
−1)
)

−φ0

(
τ ; ξτ−2( 1

ν
−1)
)
φ1

(
σ ; ξτ−2( 1

ν
−1)
)]
λ̃(σ )−

5
2 ρ

((
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

.

(3.30)

Now we establish bounds for Hc(τ, σ, ξ).

Lemma 3.8 The function Hc defined by Eq. (3.30) satisfies the bounds

|Hc(τ, σ, ξ)| �
(
σ
τ

) 7
2 | 1
ν
−1|

⎧
⎪⎨

⎪⎩

ξ− 1
2 τξ

1
2 ≥ 1, σ ξ

1
2 ≥ 1

τ
1
2 (1−ν)ξ− 1

4 (1+ν) 0 < τξ
1
2 ≤ 1, σ ξ

1
2 ≥ 1

σ 0 < τξ
1
2 ≤ 1, 0 < σξ

1
2 ≤ 1

for all 1 ≤ τ ≤ σ and ξ > 0.
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Proof Recall that λ̃(τ ) = (ντ)−( 1
ν
−1) and thus, λ̃(τ )

5
2 λ̃(σ )− 5

2 = ( σ
τ
)

5
2 (

1
ν
−1). Further-

more, if ξ ≥ 1 we have |ρ(ξ)|− 1
2 � ξ− 1

4 by Lemma 3.6 and, if ( σ
τ
)2(

1
ν
−1)ξ ≥ 1, we

infer

∣∣
∣∣∣
ρ(ξ)−

1
2 ρ

((
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

∣∣
∣∣∣
� ξ− 1

4
(
σ
τ

) 1
2 (

1
ν
−1)

ξ
1
4 �
(
σ
τ

) 1
2 | 1
ν
−1|

again by Lemma 3.6. Note that we always have ( σ
τ
)

1
2 (

1
ν
−1) � ( σ

τ
)

1
2 | 1
ν
−1| regardless of

the sign of 1
ν

− 1 since 1 ≤ τ ≤ σ is assumed throughout this proof. If, on the other

hand, 0 < (σ
τ
)2(

1
ν
−1)ξ ≤ 1 we obtain

∣∣∣∣∣
ρ(ξ)−

1
2 ρ

((
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

∣∣∣∣∣
� ξ− 1

4
(
σ
τ

)− 1
2 (

1
ν
−1)

ξ− 1
4 �
(
σ
τ

) 1
2 | 1
ν
−1|

since |ρ(ξ)| 1
2 � ξ− 1

4 for 0 < ξ ≤ 1 by Lemma 3.4.

In the case 0 < ξ ≤ 1 we have |ρ(ξ)|− 1
2 � ξ

1
4 and thus, either

∣∣∣∣
∣
ρ(ξ)−

1
2 ρ

((
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

∣∣∣∣
∣
� ξ

1
4
(
σ
τ

)− 1
2 (

1
ν
−1)

ξ− 1
4 �
(
σ
τ

) 1
2 | 1
ν
−1|

or

∣
∣∣∣∣
ρ(ξ)−

1
2 ρ

(
(
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

∣
∣∣∣∣
� ξ

1
4
(
σ
τ

) 1
2 (

1
ν
−1)

ξ
1
4 �
(
σ
τ

) 1
2 | 1
ν
−1|

by Lemma 3.6 depending on whether 0 < (σ
τ
)

1
2 (

1
ν
−1)ξ ≤ 1 or ( σ

τ
)

1
2 (

1
ν
−1)ξ ≥ 1. We

conclude that

∣∣
∣∣∣
λ̃(τ )

5
2 λ̃(σ )−

5
2 ρ(ξ)−

1
2 ρ

((
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

∣∣
∣∣∣
�
(
σ
τ

)3| 1
ν
−1| (3.31)

for all 1 ≤ τ ≤ σ and ξ > 0.
It remains to estimate the terms involving φ j . We have different asymptotic descrip-

tions of φ j (τ ; γ ) depending on whether 0 < γ
1
2 τ

1
ν ≤ 1 or γ

1
2 τ

1
ν ≥ 1. For

γ = ξτ−2( 1
ν
−1) this distinction reads 0 < τξ

1
2 ≤ 1 or τξ

1
2 ≥ 1. Thus, in princi-

ple we have to deal with the four cases

(1) τξ
1
2 ≥ 1 and σξ

1
2 ≥ 1

(2) 0 < τξ
1
2 ≤ 1 and σξ

1
2 ≥ 1

(3) 0 < τξ
1
2 ≤ 1 and 0 < σξ

1
2 ≤ 1

(4) τξ
1
2 ≥ 1 and 0 < σξ

1
2 ≤ 1.
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However, since we are only interested in τ ≤ σ , case (4) is void.

(1) We use the bound from the Hankel asymptotics stated in Eq. (3.28) to obtain

|φ0(τ ; γ )φ1(σ ; γ )| � γ− 1
2 τ− 1

2 (
1
ν
−1)σ− 1

2 (
1
ν
−1) �

(
σ
τ

) 1
2 | 1
ν
−1|
ξ− 1

2

by evaluation at γ = ξτ−2( 1
ν
−1). This bound is symmetric in τ and σ and thus,

by Eq. (3.31), we infer

|Hc(τ, σ, ξ)| �
(
σ
τ

) 7
2 | 1
ν
−1|
ξ− 1

2 .

(2) From Eqs. (3.27) and (3.28) we have

|φ1(τ ; γ )φ0(σ ; γ )| � γ− 1
4 (1+ν)σ− 1

2 (
1
ν
−1)

|φ0(τ ; γ )φ1(σ ; γ )| � γ− 1
4 (1−ν)τσ− 1

2 (
1
ν
−1) � γ− 1

4 (1+ν)σ− 1
2 (

1
ν
−1)

and thus,

|Hc(τ, σ, ξ)| �
(
σ
τ

)3| 1
ν
−1|
τ

1
2 (

1
ν
−ν)σ− 1

2 (
1
ν
−1)ξ− 1

4 (1+ν)

�
(
σ
τ

) 7
2 | 1
ν
−1|
τ

1
2 (1−ν)ξ− 1

4 (1+ν)

by Eq. (3.31).
(3) Eq. (3.27) yields

|φ0(τ ; γ )φ1(σ ; γ )| � τ

and this implies |Hc(τ, σ, ξ)| � ( σ
τ
)3| 1

ν
−1|(τ + σ) � ( σ

τ
)3| 1

ν
−1|σ .

��
We shall also require bounds for the differentiated kernel

Ĥc(τ, σ, ξ) :=
[
∂τ − βν(τ )(2ξ∂ξ + 5

2 + ξρ′(ξ)
ρ(ξ)

)
]

Hc(τ, σ, ξ) (3.32)

where, as always, βν(τ ) = −( 1
ν

− 1)τ−1. These are established next.

Lemma 3.9 The differentiated kernel satisfies the bounds

|Ĥc(τ, σ, ξ)| �
(
σ
τ

) 7
2 | 1
ν
−1|

⎧
⎪⎨

⎪⎩

1 τξ
1
2 ≥ 1, σ ξ

1
2 ≥ 1

τ− 1
2 (1−ν)ξ− 1

4 (1−ν) 0 < τξ
1
2 ≤ 1, σ ξ

1
2 ≥ 1

1 0 < τξ
1
2 ≤ 1, 0 < σξ

1
2 ≤ 1

for all 1 ≤ τ ≤ σ and ξ > 0.
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Proof Note that for any differentiable function f of two variables we have

[
∂τ − βν(τ )(2ξ∂ξ + 5

2 + ξρ′(ξ)
ρ(ξ)

)
] (
λ̃(τ )

5
2 ρ(ξ)−

1
2 f (τ, ξ)

)

= λ̃(τ )
5
2 ρ(ξ)−

1
2 [∂τ − 2βν(τ )ξ∂ξ ] f (τ, ξ).

By Eq. (3.30) and

[∂τ − 2βν(τ )ξ∂ξ ]φ j

(
τ ; ξτ−2( 1

ν
−1)
)

= ∂1φ j

(
τ ; ξτ−2( 1

ν
−1)
)

[∂τ − 2βν(τ )ξ∂ξ ]φ j

(
σ ; ξτ−2( 1

ν
−1)
)

= 0

for j = 0, 1 we therefore obtain

Ĥc(τ, σ, ξ) = λ̃(τ )
5
2 ρ(ξ)−

1
2 ∂1φ1

(
τ ; ξτ−2( 1

ν
−1)
)
φ0

(
σ ; ξτ−2( 1

ν
−1)
)

−∂1φ0

(
τ ; ξτ−2( 1

ν
−1)
)
φ1

(
σ ; ξτ−2( 1

ν
−1)
)
λ̃(σ )−

5
2 ρ

((
σ
τ

)2( 1
ν
−1)

ξ

) 1
2

.

From Eq. (3.27) we immediately infer

∂1φ0(τ ; γ ) = γ
ν
4 [1 + O(γ τ

2
ν )]

∂1φ1(τ ; γ ) = O(γ
ν
4 )

(3.33)

for 0 < γ
1
2 τ

1
ν ≤ 1. Furthermore, since

∂1φ0(τ ; γ ) = 1
2τ

− 1
2 aν Jν/2(νγ

1
2 τ

1
ν )+ γ

1
2 τ

1
ν
− 1

2 aν J ′
ν/2(νγ

1
2 τ

1
ν )

∂1φ1(τ ; γ ) = 1
2τ

− 1
2 bνYν/2(νγ

1
2 τ

1
ν )+ γ

1
2 τ

1
ν
− 1

2 bνY ′
ν/2(νγ

1
2 τ

1
ν ),

see Eq. (3.25), the identity C ′
ν/2 = 1

2 (Cν/2−1 − Cν/2+1), C ∈ {J,Y } [36], and the

asymptotics of the Hankel functions yield |C ′
ν/2(z)| � z− 1

2 for z � 1 and thus,

|∂1φ j (τ ; γ )| � γ− 1
4 τ− 1

2 (1+ 1
ν
) + γ

1
4 τ

1
2 (

1
ν
−1) � γ

1
4 τ

1
2 (

1
ν
−1) (3.34)

for γ
1
2 τ

1
ν ≥ 1 and j = 0, 1.

As in the proof of Lemma 3.8 we now distinguish three cases and we always assume
1 ≤ τ ≤ σ .

(1) If τξ
1
2 ≥ 1 and σξ

1
2 ≥ 1 we use Eqs. (3.28) and (3.34) to conclude

|∂1φ1(τ ; γ )φ0(σ ; γ )| + |∂1φ0(τ ; γ )φ1(σ ; γ )| �
(
σ
τ

) 1
2 | 1
ν
−1|

which, by Eq. (3.31), implies |Ĥc(τ, σ, ξ)| � ( σ
τ
)

7
2 | 1
ν
−1|.
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(2) If 0 < τξ
1
2 ≤ 1 and σξ

1
2 ≥ 1 we obtain

|∂1φ1(τ ; γ )φ0(σ ; γ )| + |∂1φ0(τ ; γ )φ1(σ ; γ )| � γ− 1
4 (1−ν)σ− 1

2 (
1
ν
−1)

by Eqs. (3.33) and (3.28). Hence, upon setting γ = ξτ−2( 1
ν
−1), we conclude

|Ĥc(τ, σ, ξ)| �
(
σ
τ

) 7
2 | 1
ν
−1|
τ− 1

2 (1−ν)ξ− 1
4 (1−ν).

(3) In the case 0 < τξ
1
2 ≤ 1 and 0 < σξ

1
2 ≤ 1 we have, by Eqs. (3.27) and (3.33),

|∂1φ1(τ ; γ )φ0(σ ; γ )| + |∂1φ0(τ ; γ )φ1(σ ; γ )| � 1 + γ
ν
2 σ � 1

which yields |Ĥc(τ, σ, ξ)| � ( σ
τ
)3| 1

ν
−1| by Eq. (3.31). ��

3.8 Estimates for the solution operator

In order to set up our main contraction argument for Eq. (3.17) we have to introduce
appropriate function spaces.

Definition 3.10 For δ, α ∈ R and p ∈ [1,∞) we define norms ‖ · ‖X p,α
δ

and ‖ · ‖Y p,α

by

‖ f ‖X p,α
δ

:=
⎛

⎝
∞∫

0

∣
∣∣∣ f (ξ)

(
ξ 〈ξ 〉−1

) 1
2 −δ∣∣∣∣

p

dξ

⎞

⎠

1/p

+
⎛

⎝
∞∫

0

| f (ξ)|2ξ 〈ξ 〉2αρ(ξ)dξ

⎞

⎠

1/2

,

‖ f ‖Y p,α := ‖ f ‖L p(0,∞) +
⎛

⎝
∞∫

0

| f (ξ)|2〈ξ 〉2αρ(ξ)dξ

⎞

⎠

1/2

.

Furthermore, for a function b of two variables and a Banach space X we write

‖b‖
L∞,β
τ0 X

:= sup
τ≥τ0

τβ‖b(τ, ·)‖X

where β ≥ 0 and τ0 > 0 (in what follows we always assume τ0 to be sufficiently
large).

For the following it is convenient to introduce the notation

Bc,νb(τ, ξ) :=
[
∂τ − βν(τ )

(
2ξ∂ξ + 5

2 + ξρ′(ξ)
ρ(ξ)

)]
b(τ, ξ).
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Proposition 3.11 Fix a δ with 2| 1
ν

− 1| < δ < 1
2 and let p ∈ (1,∞) be so large that

p′ (1 − δ + 2| 1
ν

− 1|) < 1

where p′ is the Hölder conjugate of p, i.e., 1
p + 1

p′ = 1. Suppose further that τ0 ≥ 1,

β ≥ 5
2 and α ∈ [0, 1] be fixed. Then we have the bounds

‖Hcb‖
L∞,β−1−2δ
τ0 X p,α

δ

� ‖b‖
L∞,β
τ0 Y p,α

‖Bc,νHcb‖
L∞,β−1
τ0 Y p,α � ‖b‖

L∞,β
τ0 Y p,α .

Proof Let q ∈ (1,∞). By Hölder’s inequality we have

|Hcb(τ, ξ)| ≤
∞∫

τ

|Hc(τ, σ, ξ)b

(
σ,
(
σ
τ

)2( 1
ν
−1)

ξ

)
|dσ

≤ Aμ,q ′(τ, ξ)

⎛

⎝
∞∫

τ

|σμb

(
σ,
(
σ
τ

)2( 1
ν
−1)

ξ

)
|qdσ

⎞

⎠

1/q

with μ ∈ R and

Aμ,q ′(τ, ξ) :=
⎛

⎝
∞∫

τ

|σ−μHc(τ, σ, ξ)|q ′
dσ

⎞

⎠

1/q ′

.

We claim that

Aμ,q ′(τ, ξ) �
{
τ

−μ+ 1
q′ ξ− 1

2 τξ
1
2 ≥ 1

τ
−μ+ 1

q′ +1
0 < τξ

1
2 ≤ 1

(3.35)

provided that μ > 1+ 1
q ′ +5| 1

ν
−1|. Indeed, if τξ

1
2 ≥ 1 we have from Lemma 3.8 the

bound |Hc(τ, σ, ξ)| � ( σ
τ
)

7
2 | 1
ν
−1|ξ− 1

2 and this implies the first estimate in Eq. (3.35).

In order to prove the second bound in Eq. (3.35) we use |Hc(τ, σ, ξ)| � ( σ
τ
)5| 1

ν
−1|σ

from Lemma 3.8 which yields Aμ,q ′(τ, ξ) � τ
−μ+ 1

q′ +1
in the case 0 < τξ

1
2 ≤ 1 as

claimed.
Now note that Eq. (3.35) implies

Aμ,q ′(τ, ξ) � τ
−μ+ 1

q′ +2δ
ξ− 1

2 +δ � τ
−μ+ 1

q′ +2δ
(ξ 〈ξ 〉−1)−

1
2 +δ
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for all ξ > 0 and thus, by interchanging the order of integration, we obtain

∞∫

0

∣∣∣Hcb(τ, ξ)(ξ 〈ξ 〉−1)
1
2 −δ
∣∣∣

p
dξ

�
∞∫

τ

∞∫

0

∣
∣∣Aμ,p′(τ, ξ)(ξ 〈ξ 〉−1)

1
2 −δ
∣
∣∣

p
∣∣
∣∣σ
μb

(
σ,
(
σ
τ

)2( 1
ν
−1)

ξ

)∣∣
∣∣

p

dξdσ

� τ
p(−μ+ 1

p′ +2δ+2( 1
ν
−1))

∞∫

τ

∞∫

0

|σμ−2( 1
ν
−1)b(σ, η)|pdηdσ.

Now we set μ = β− δ which is admissible since β− δ > 1 + 1
p′ + 5| 1

ν
− 1| provided

ν is sufficiently close to 1 which we may safely assume. Hence, we infer

∞∫

0

∣∣∣Hcb(τ, ξ)(ξ 〈ξ 〉−1)
1
2 −δ
∣∣∣

p
dξ

� τ
p(−β+ 1

p′ +3δ+2( 1
ν
−1))‖b‖p

L∞,β
τ0 L p(0,∞)

∞∫

τ

σ−p(δ+2( 1
ν
−1))dσ

� τ p(−β+1+2δ)‖b‖p

L∞,β
τ0 Y p,α

where the last step is justified since 1 − δ − 2( 1
ν

− 1) < 1
p′ = 1 − 1

p and this implies

−p(δ + 2( 1
ν

− 1)) < −1.
For the L2 based part in ‖ · ‖X p,α

δ
we proceed similarly and obtain from Eq. (3.35)

the bound Aμ,2(τ, ξ) � τ−μ+ 1
2 ξ− 1

2 for all ξ > 0. This shows

∞∫

0

|Hcb(τ, ξ)|2ξ 〈ξ 〉2αρ(ξ)dξ

� τ 2(−μ+ 1
2 )

∞∫

τ

∞∫

0

∣∣∣σμb(σ, ω(τ, σ )−1ξ)

∣∣∣
2 〈ξ 〉2αρ(ξ)dξdσ

= τ 2(−μ+ 1
2 )

∞∫

τ

∞∫

0

∣∣σμb(σ, η)
∣∣2 〈ω(τ, σ )η〉2αω(τ, σ )ρ(ω(τ, σ )η)dηdσ

where we write ω(τ, σ ) = ( σ
τ
)−2( 1

ν
−1). We clearly have 〈ω(τ, σ )η〉2α � ( σ

τ
)4| 1

ν
−1|

〈η〉2α for all η > 0 and also, ω(τ, ρ)ρ(ω(τ, σ )η) � ( σ
τ
)3| 1

ν
−1|ρ(η) provided that

ω(τ, σ )η ≥ 1, cf. Lemma 3.6. In the case 0 < ω(τ, σ )η ≤ 1, Lemma 3.4 implies
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ω(τ, σ )ρ(ω(τ, σ )η) � ω(τ, σ )
1
2 η− 1

2 �
(
σ
τ

)| 1
ν
−1|
ρ(η).

Consequently, by choosing μ = β − 5
8 we infer

∞∫

0

|Hcb(τ, ξ)|2ξ 〈ξ 〉2αρ(ξ)dξ � τ 2(−β+ 9
8 − 7

2 | 1
ν
−1|)‖b‖

L∞,β
τ0 Y p,α

∞∫

τ

σ− 5
4 +7| 1

ν
−1|dσ

� τ 2(−β+1)‖b‖
L∞,β
τ0 Y p,α

and this finishes the proof of the first estimate.
For the second bound note that the operator Bc,νHc has the kernel Ĥ(τ, σ, ξ) from

Lemma 3.9 and based on the bounds given there it is straightforward to prove the
claimed estimate by repeating the above arguments. ��

It is also an easy exercise to prove an appropriate bound for the discrete part Hd .

Lemma 3.12 Let β > 0 and suppose bd ∈ L∞,β
τ0 . Then

‖Hdbd‖
L∞,β
τ0

� ‖bd‖
L∞,β
τ0
, ‖(Hdbd)

′‖
L∞,β
τ0

� ‖bd‖
L∞,β
τ0
.

Proof By definition (Eq. (3.22)) we have

Hdbd(τ ) = − 1
2 |ξd |− 1

2 e−|ξd |1/2τ
τ∫

τ0

e|ξd |1/2σbd(σ )dσ

− 1
2 |ξd |− 1

2 e|ξd |1/2τ
∞∫

τ

e−|ξd |1/2σbd(σ )dσ

=: I1(τ )+ I2(τ ).

It is evident that |I2(τ )| � 〈τ 〉−β and in order to estimate I1(τ ) we note that

|I1(τ )| � sup
σ>τ0

σβ |bd(σ )|e−|ξd |1/2τ
τ∫

τ0

e|ξd |1/2σ σ−βdσ

and the first assertion follows by performing one integration by parts. The proof of the
second bound is identical.

4 Estimates for the nonlinear and inhomogeneous terms

We provide estimates (in terms of the spaces in Definition 3.10) for the various con-
tributions on the right-hand side of our main equation (3.17) that do not involve the
operator K from the transference identity. Thus, this section is mainly concerned with
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the nonlinear contributions. In order to treat the nonlinearity, we first discuss mapping
properties of the distorted Fourier transform F . These allow us to transfer the problem
to the physical side where the nonlinearity can be estimated using standard tools. The
main ingredients are basic inequalities and interpolation theory of Sobolev spaces as
well as the fractional Leibniz rule. As a consequence, we infer the crucial contraction
property of the nonlinearity on our spaces.

4.1 The inhomogeneous term

We start with the inhomogeneous term ê2 as defined in Eq. (3.19).

Lemma 4.1 For any fixed ε > 0 we have

ê2 ∈ L∞,3−ε−3| 1
ν
−1|Y p,α, ê2(·, ξd) ∈ L∞,3−ε−3| 1

ν
−1|

for all p > 1 and α ∈ [0, 1
4 ).

Proof We distinguish between ξ � 1 (including ξ = ξd ) and ξ � 1. If ξ � 1 we have
from Corollary 3.7 the bound |φ(R, ξ)| � 1 and from Lemma 2.3 we recall

∣
∣∣λ̃(τ )−2e2

(
νλ̃(τ )−1τ, λ̃(τ )−1 R

)∣∣∣ � λ̃(τ )
1
2 τ−4+ε+ 5

2 | 1
ν
−1|〈R〉−1

in the truncated cone r ≤ t − c which corresponds to R ≤ ντ − λ̃(τ )c. Thus, by
Eq. (3.19) we obtain

|ê2(τ, ξ)| � λ̃(τ )
1
2 τ−4+ε+ 5

2 | 1
ν
−1|

∞∫

0

χ
(
λ̃(τ )−1 ντ−R

c

)
d R

� λ̃(τ )
1
2 τ−4+ε+ 5

2 | 1
ν
−1|

τ∫

0

d R � τ−3+ε+3| 1
ν
−1|

by recalling that λ̃(τ )�τ−( 1
ν
−1) since the cut-off localizes to the lightcone R ≤ντ � τ .

If ξ � 1 we use

φ(R, ξ) = OC(ξ
− 1

2 )ei
√
ξ R[1 + OC(〈R〉−3ξ− 1

2 )] + OC(ξ
− 1

2 )e−i
√
ξ R

[1 + OC(〈R〉−3ξ− 1
2 )]

with symbol behavior of all O-terms (Lemma 3.5 and Corollary 3.7) and perform one
integration by parts to obtain
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|ê2(τ, ξ)| � λ̃(τ )
1
2 τ−4+ε+ 5

2 | 1
ν
−1|ξ−1

τ∫

0

〈R〉−1d R

+λ̃(τ )− 1
2 τ−4+ε+ 5

2 | 1
ν
−1|ξ−1

∞∫

0

∣∣∣χ ′ (λ̃(τ )−1 ντ−R
c

)∣∣∣ d R

� λ̃(τ )
1
2 τ−3+ε+ 5

2 | 1
ν
−1|ξ−1 + λ̃(τ )−

1
2 τ−4+ε+ 5

2 | 1
ν
−1|ξ−1

ντ− 1
2 λ̃(τ )c∫

ντ−λ̃(τ )c
d R

� τ−3+ε+3| 1
ν
−1|ξ−1.

��

4.2 Mapping properties of F

It is of fundamental importance to understand the action of the distorted Fourier
transform on the spaces X p,α

δ . In the following we use the standard Sobolev spaces
W s,p(R3) and in order to make sense of ‖ f ‖W s,p(R3) for a function f : [0,∞) → C,
we identify f with the radial function x �→ f (|x |) on R

3. In this sense we have, for
instance, ‖ f ‖L2(0,∞) � ‖| · |−1 f ‖L2(R3). Note that if f : [0,∞) → C is smooth and
f (2k−1)(0) = 0 for all k ∈ N then x �→ f (|x |) is a smooth function on R

3. To begin
with, we write

‖ f ‖2
L2,α
ρ

:=
∞∫

0

| f (ξ)|2〈ξ 〉2αρ(ξ)dξ

and recall a fundamental result from [27].

Lemma 4.2 Let α ≥ 0. Then

‖(a, f )‖
C×L2,α

ρ
� ‖| · |−1F−1(a, f )‖H2α(R3)

for all (a, f ) ∈ C × L2,α
ρ or, equivalently,

‖F(| · | g)‖
C×L2,α

ρ
� ‖g‖H2α(R3)

for all radial g ∈ H2α(R3).

Proof This is a consequence of the unitarity of U , see [27]. ��
Lemma 4.3 Fix a small δ > 0 and let p ≥ 1 be so large that p′(1 − δ) < 1.
Furthermore, denote by χ a smooth cut-off function which satisfies χ(ξ) = 0 for
ξ ∈ [0, 1] and χ(ξ) = 1 for ξ ≥ 2. Then, for any α ≥ 0, the following estimates hold:
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(1) ‖| · |−1F−1(a, χ f )‖H2α+1(R3) � ‖(a, f )‖
C×X p,α

δ
,

(2) ‖F−1(a, (1 − χ) f )‖L∞(0,∞) � ‖(a, f )‖
C×X p,α

δ
,

(3) ‖| · |−1F−1(a, (1 − χ) f )‖Lq (R3) � ‖(a, f )‖
C×X p,α

δ
for any q ∈ (3,∞],

(4) ‖| · |−1F−1(a, (1−χ) f )‖
Ẇ

2θ, 2
θ+ 2

q (1−θ)
(R3)

� ‖(a, f )‖
C×X p,α

δ
for any q ∈ (3,∞)

and θ ∈ [0, 1].
Proof Recall that F−1(a, f ) is given by

F−1(a, f ) = a
φ(·, ξd)

‖φ(·, ξd)‖2
L2(0,∞)

+
∞∫

0

φ(·, ξ) f (ξ)ρ(ξ)dξ.

Since |·|−1φ(|·|, ξd) ∈ C∞(R3)with exponential decay towards infinity, the estimates
for the discrete part follow immediately. Thus, we focus on the integral term.

(1) By Lemma 4.2 it suffices to note that

‖χ f ‖
L2,α+1/2
ρ

� ‖χ f ‖X p,α
δ
.

(2) By Corollary 3.7 we have |φ(R, ξ)| � 1 for all R, ξ ≥ 0 and thus, Hölder’s
inequality yields

∣∣∣∣
∣∣

∞∫

0

φ(R, ξ)[1 − χ(ξ)] f (ξ)ρ(ξ)dξ

∣∣∣∣
∣∣

�

⎛

⎝
2∫

0

| f (ξ)ξ
1
2 −δ|pdξ

⎞

⎠

1/p ⎛

⎝
2∫

0

|ξ− 1
2 +δρ(ξ)|p′

dξ

⎞

⎠

1/p′

and the right-hand side of this inequality is finite and controlled by ‖ f ‖X p,α
δ

since

|ρ(ξ)ξ− 1
2 +δ| � ξ−1+δ for ξ ∈ (0, 2) (Lemma 3.4) and p′(−1 + δ) > −1 by

assumption on p.
(3) From Lemma 3.2 and Corollary 3.7 we obtain

sup
ξ∈(0,2)

∣∣∣∣
φ(R, ξ)

R

∣∣∣∣ � 〈R〉−1

for all R ≥ 0 and by repeating the argument in (2) this implies

|R−1F−1(a, (1 − χ) f )(R)| � 〈R〉−1‖(a, (1 − χ) f )‖
C×X p,α

δ

which yields
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‖| · |−1F−1(a, (1 − χ) f )‖Lq (R3) � ‖(a, (1 − χ) f )‖
C×X p,α

δ

for any q ∈ (3,∞].
(4) From Lemma 4.2 we have

‖| · |−1F−1(a, (1 − χ) f )‖Ḣ2(R3) � ‖(a, (1 − χ) f )‖
C×X p,α

δ

and the claim follows from this and (3) by complex interpolation since

[Lq , Ḣ2]θ = Ẇ
2θ, 2

θ+ 2
q (1−θ) , see [3].

��

4.3 The operator N1

In order to estimate the operator N1, defined in Eq. (3.18), we first prove the following
auxiliary result.

Lemma 4.4 Let p, δ be as in Lemma 4.3 and let ϕ : [0,∞) → R be a function
satisfying

|ϕ(k)(R)| ≤ Ck〈R〉−γ−k

for some γ > 3
2 and all R ≥ 0, k ∈ N0. Then ϕ ∈ H2(R3) and there exists a small

ε > 0 such that

‖F(| · |ϕg)‖
C×Y p, 1

8
�
[‖ϕ‖H2(R3) + ‖ϕ‖L1(0,∞)

] [‖| · |g−‖L∞(0,∞) + ‖g−‖L∞(0,∞)

+‖g−‖
Ẇ

1
4 ,16−ε

(R3)
+ ‖g+‖

H
5
4 (R3)

]

for all g = g−+g+ where g− and g+ belong to the respective spaces on the right-hand
side.

Proof Note first that ϕ ∈ L2(R3). Furthermore, we have

∂k∂ jϕ(|x |) = ϕ′′(|x |) x j xk

|x |2 + ϕ′(|x |)
[
δ jk
|x | − x j xk

|x |3
]

and thus, |∂k∂ jϕ(|x |)| � |x |−1〈x〉−γ−1 which implies ϕ ∈ H2(R3). Now recall that

F(ϕg) =
(∫∞

0 φ(R, ξd)ϕ(R)g(R)d R∫∞
0 φ(R, ·)ϕ(R)g(R)d R

)

and ‖ · ‖Y p,α � ‖ · ‖L p(0,∞) + ‖ · ‖L2,α
ρ

. We proceed in four steps, estimating each
component separately.
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(1) We note the estimate

‖uv‖
H

1
4 (R3)

� ‖u‖
H

7
8 (R3)

‖v‖
H

7
8 (R3)

which is a consequence of the fractional Leibniz rule ([48], p. 105, Proposition
1.1)

‖uv‖
H

1
4 (R3)

� ‖u‖
L

24
5 (R3)

‖v‖
W

1
4 ,

24
7 (R3)

+ ‖v‖
L

24
5 (R3)

‖u‖
W

1
4 ,

24
7 (R3)

and the Sobolev embeddings H
7
8 (R3) ↪→ L

24
5 (R3), H

7
8 (R3) ↪→ W

1
4 ,

24
7 (R3).

With these preparations at hand we immediately conclude from Lemma 4.2 that

‖F(| · |ϕg+)‖
C×L

2, 1
8

ρ

� ‖ϕg+‖
H

1
4 (R3)

� ‖ϕ‖
H

7
8 (R3)

‖g+‖
H

7
8 (R3)

� ‖ϕ‖H2(R3)‖g+‖
H

5
4 (R3)

.

(2) In order to estimate the L p-part of g+ note first that |φ(R, ξ)| � 〈ξ 〉− 1
2 for all

R ≥ 0 by Lemmas 3.2, 3.3, 3.5 and Corollary 3.7. This yields

|[F(| · |ϕg+)]2(ξ)| � 〈ξ 〉− 1
2 ‖ϕ‖L2(0,∞)‖| · |g+‖L2(0,∞)

� 〈ξ 〉− 1
2 ‖ϕ‖L2(0,∞)‖g+‖L2(R3)

� 〈ξ 〉− 1
2 ‖ϕ‖H2(R3)‖g+‖

H
5
4 (R3)

by noting that ‖ϕ‖L2(0,∞) � ‖ϕ‖L∞(R3) + ‖ϕ‖L2(R3) � ‖ϕ‖H2(R3). By raising
the above inequality to the power p > 2 we conclude

‖F(| · |ϕg+)‖C×L p(0,∞) � ‖ϕ‖H2(R3)‖g+‖
H

5
4 (R3)

.

(3) In order to estimate the L p-norm of the second component we note, as in (2),

|[F(| · |ϕg−)]2(ξ)| � 〈ξ 〉− 1
2 ‖ϕ‖L1(0,∞)‖| · |g−‖L∞(0,∞)

and therefore,

‖[F(| · |ϕg−)]2‖L p(0,∞) � ‖ϕ‖L1(0,∞)‖| · |g−‖L∞(0,∞)

provided that p > 2.
(4) For the L2-part of g− we use Lemma 4.2 again and obtain

‖F(| · |ϕg−)‖
C×L

2, 1
8

ρ

� ‖ϕg−‖
H

1
4 (R3)

� ‖ϕg−‖L2(R3) + ‖ϕg−‖
Ḣ

1
4 (R3)

.
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Note that

‖ϕg−‖L2(R3) � ‖ϕ‖L2(R3)‖g−‖L∞(0,∞) � ‖ϕ‖H2(R3)‖g−‖L∞(0,∞)

and it remains to bound the Ḣ
1
4 -norm. For this we use the fractional Leibniz rule

and obtain

‖ϕg−‖
Ḣ

1
4 (R3)

� ‖ϕ‖
Ḣ

1
4 (R3)

‖g−‖L∞(0,∞)

+‖ϕ‖
L

16
7 +

(R3)
‖g−‖

Ẇ
1
4 ,16−

(R3)

and this yields the claim since H2(R3) ↪→ L
16
7 +(R3) by Sobolev embedding.

��
Now we are ready to establish the crucial estimate for the operator N1, cf. Eq. (3.18).

Lemma 4.5 Let p, δ be as in Lemma 4.3 and βd , βc ≥ 0. Then we have

‖N1(xd , x)‖
L

∞,βd +2
τ0 ×L∞,βc+2

τ0 Y p, 1
8

� ‖(xd , x)‖
L

∞,βd
τ0 ×L∞,βc

τ0 X
p, 1

8
δ

.

Proof Recall from Eq. (3.18) that

N1(xd , x)(τ, ξ) = F
(
| · |ϕ1(τ, ·)| · |−1F−1(xd(τ ), x(τ, ·))

)
(ξ)

with

ϕ1(τ, R) = 5λ̃(τ )−2χ̃(τ, R)[u2(νλ̃(τ )
−1τ, λ̃(τ )−1 R)4 − u0(νλ̃(τ )

−1τ, λ̃(τ )−1 R)4].

Furthermore, we have u2 = u0 + v0 + v1 with v0 and v1 from Lemmas 2.2 and 2.3,
respectively. Now note that

u4
2 − u4

0 = 4u3
0v + 6u2

0v
2 + 4u0v

3 + v4

where v := v0 + v1 and from Lemmas 2.2 and 2.3 as well as the definition of u0 we
have the bounds

|v(νλ̃(τ )−1τ, λ̃(τ )−1 R)| � λ̃(τ )
1
2 τ−2〈R〉

|u0(νλ̃(τ )
−1τ, λ̃(τ )−1 R)| � λ̃(τ )

1
2 〈R〉−1

for R ≤ ντ − 1
2 λ̃(τ )c which imply

|ϕ1(τ, R)| � τ−2〈R〉−2.
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We also have |∂k
Rϕ1(τ, R)| ≤ Ckτ

−2〈R〉−2−k for all k ∈ N0 and this implies

‖ϕ1(τ, ·)‖H2(R3) + ‖ϕ1(τ, ·)‖L1(0,∞) � τ−2,

cf. Lemma 4.4.

For given (xd , x) ∈ L∞,βd
τ0 × L∞,βc

τ0 X
p, 1

8
δ we now set

y(τ, R) := R−1F−1(xd(τ ), x(τ, ·))(R),

i.e., we have N1(xd , x)(τ, ξ) = F(| · |ϕ1(τ, ·)y(τ, ·))(ξ) and obviously, our goal is to
apply Lemma 4.4. According to Lemma 4.3 we have a decomposition y = y− + y+
such that

‖y+(τ, ·)‖
H

5
4 (R3)

� ‖(xd(τ ), x(τ, ·))‖
C×X

p, 1
8

δ

‖| · |y−(τ, ·)‖L∞(0,∞) � ‖(xd(τ ), x(τ, ·))‖
C×X

p, 1
8

δ

‖y−(τ, ·)‖L∞(0,∞) � ‖(xd(τ ), x(τ, ·))‖
C×X

p, 1
8

δ

‖y−(τ, ·)‖
Ẇ

1
4 ,16−ε

(R3)
� ‖(xd(τ ), x(τ, ·))‖

C×X
p, 1

8
δ

with the ε from Lemma 4.4. Consequently, Lemma 4.4 indeed applies and yields

‖N1(xd , x)(τ, ·)‖
C×Y p, 1

8
� τ−2‖(xd(τ ), x(τ, ·))‖

C×X
p, 1

8
δ

which implies the claim. ��

4.4 The operator N5

Next, we study the operator N5. As before, we start with an auxiliary estimate that
does not take into account the time dependence.

Lemma 4.6 Let p, δ be as in Lemma 4.3. Then there exists a small ε > 0 such that

‖F
(
| · |g5

)
‖

C×Y p, 1
8

� ‖g−‖5
L5(R3)

+ ‖g−‖5
L∞(R3)

+‖g−‖5

Ẇ
1
4 ,16−ε

(R3)
+ ‖g+‖5

H
5
4 (R3)

for all g = g− + g+ such that the right-hand side is finite.

Proof We have g5 = (g− + g+)5 = g5− + · · · + g5+ and study the extreme cases g5−
and g5+ first. The intermediate terms are then estimated by interpolation. Let us note
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the estimate
∥∥∥
∥∥∥

5∏

j=1

f j

∥∥∥
∥∥∥

H
1
4 (R3)

�
5∑

j=1

‖ f j‖
W

1
4 ,6(R3)

∏

� �= j

‖ f�‖L12(R3)

which is a consequence of the fractional Leibniz rule ([48], p. 105, Proposition 1.1).

By the Sobolev embeddings H
5
4 (R3) ↪→ L12(R3) and H

5
4 (R3) ↪→ W

1
4 ,6(R3) we

infer
∥∥∥∥
∥∥

5∏

j=1

f j

∥∥∥∥
∥∥

H
1
4 (R3)

�
5∏

j=1

‖ f j‖
H

5
4 (R3)

which will be useful in the following.

(1) According to Lemma 4.2 we have

‖F(| · |g5+)‖
C×L

2, 1
8

ρ

� ‖g5+‖
H

1
4 (R3)

� ‖g+‖5

H
5
4 (R3)

.

(2) In order to estimate the L p-part of g+ recall that |φ(R, ξ)| � 〈ξ 〉− 1
2 for all R ≥ 0

and thus,

|[F(| · |g5+)]2(ξ)| � ‖φ(·, ξ)‖L2(0,1)‖| · |g5+‖L2(0,1)

+‖| · |−1φ(·, ξ)‖L∞(1,∞)‖| · |2g5+‖L1(1,∞)

� 〈ξ 〉− 1
2

(
‖g+‖5

L10(R3)
+ ‖g+‖5

L5(R3)

)
.

Consequently, the Sobolev embeddings H
5
4 (R3) ↪→ L10(R3) and H

5
4 (R3) ↪→

L5(R3) yield

‖[F(| · |g5+)]2‖L p(0,∞) � ‖g+‖5

H
5
4 (R3)

for p > 2 as desired.
(3) For the L p-part of g− note that

|[F(| · |g5−)]2(ξ)| � 〈ξ 〉− 1
2

[
‖g5−‖L∞(0,1) + ‖| · |2g5−‖L1(1,∞)

]

� 〈ξ 〉− 1
2

[
‖g−‖5

L∞(R3)
+ ‖g−‖5

L5(R3)

]

which yields the desired bound

‖[F(| · |g5−)]2‖L p(0,∞) � ‖g−‖5
L∞(R3)

+ ‖g−‖5
L5(R3)

provided that p > 2.
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(4) According to Lemma 4.3 we have

‖F(| · |g5−)‖
C×L

2, 1
8

ρ

� ‖g5−‖
H

1
4 (R3)

and since ‖g5−‖L2(R3) = ‖g−‖5
L10(R3)

� ‖g−‖5
L5(R3)

+ ‖g−‖5
L∞(R3)

it suffices to

control the homogeneous Sobolev norm ‖g5−‖
Ḣ

1
4 (R3)

. For this we use the frac-

tional Leibniz rule to conclude

‖g5−‖
Ḣ

1
4 (R3)

� ‖g−‖4

L
64
7 +

(R3)
‖g−‖

Ẇ
1
4 ,16−

(R3)

�
[
‖g−‖4

L5(R3)
+ ‖g−‖4

L∞(R3)

]
‖g−‖

Ẇ
1
4 ,16−

(R3)
.

We briefly comment on how to estimate the mixed terms. First of all, it is trivial to
bound the L p norms since

|[F(| · |g5−k− gk+)]2(ξ)| �
∞∫

0

|φ(R, ξ)|R
[
|g−(R)|5 + |g+(R)|5

]
d R

for all k ∈ {1, 2, 3, 4} by the pointwise inequality |g5−k− gk+| � |g−|5 + |g+|5 which
brings us back to the two extreme cases considered above. For the L2-parts the only

nontrivial contributions come from the Ḣ
1
4 (R3) homogeneous Sobolev norms. In

order to control these, one proceeds as before by applying the fractional Leibniz rule
followed by Sobolev embedding, i.e.,

‖g5−k− gk+‖
Ḣ

1
4 (R3)

� ‖g−‖5−k
L∞(R3)

‖g+‖k−1
L3(k−1)(R3)

‖g+‖
Ẇ

1
4 ,6(R3)

+‖g+‖k

Lk 16
7 +

(R3)
‖g−‖4−k

L∞(R3)
‖g−‖

Ẇ
1
4 ,16−

(R3)

� ‖g−‖5−k
L∞(R3)

‖g+‖k

H
5
4 (R3)

+ ‖g−‖5−k

Ẇ
1
4 ,16−

(R3)
‖g+‖k

H
5
4 (R3)

.

Lemma 4.7 Let p, δ be as in Lemma 4.3 and βd , βc ≥ 0. Then we have the estimate

‖N5(xd , x)‖
L

∞,5βd − 1
4

τ0 ×L
∞,5βc− 1

4
τ0 Y p, 1

8
� ‖(xd , x)‖5

L
∞,βd
τ0 ×L∞,βc

τ0 X
p, 1

8
δ

.

Proof Recall that

N5(xd , x)(τ, ξ) = F
(

| · |ϕ5(τ, ·)
[
| · |−1F−1(xd(τ ), x(τ, ·))

]5)
(ξ)
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and by setting y(τ, R) := R−1F(xd(τ ), x(τ, ·))(ξ) we obtain from Lemma 4.3 the
existence of a decomposition y = y− + y+ with the bound

‖y−(τ, ·)‖L5(R3) + ‖y−(τ, ·)‖L∞(R3) + ‖y−(τ, ·)‖
Ẇ

1
4 ,16−ε

(R3)

� ‖(xd(τ ), x(τ, ·))‖
C×X

p, 1
8

δ

as well as

‖y+(τ, ·)‖
H

5
4 (R3)

� ‖(xd(τ ), x(τ, ·))‖
C×X

p, 1
8

δ

for any (small) ε > 0. Thus, since |∂k
Rϕ5(τ, R)| ≤ Ck λ̃(τ )

−2−k � τ
1
4 for bounded k,

Lemma 4.6 yields

‖N5(xd(τ ), x(τ, ·))‖
C×Y p, 1

8
� τ

1
4 ‖(xd(τ ), x(τ, ·))‖5

C×X
p, 1

8
δ

which implies the claim. ��
Remark 4.8 The loss of τ

1
4 in Lemma 4.7 can be improved to τ ε with ε → 0+ as

ν → 1 but the stated result suffices for our purposes and it avoids the introduction of
an additional ε.

The remaining operators N2, N3, N4 are in a certain sense interpolates between
N1 and N5 and can be treated in the exact same fashion. Note that we do not gain
additional decay in τ from the ϕ j factors because they involve the (rescaled) soliton u0
which does not decay. In fact, from ϕ j we may even have a loss of τ ε (with ε → 0+ as
ν → 1) depending on the sign of 1−ν. Consequently, the gain comes exclusively from
the nonlinearity, as is the case for the operator N5. We only state the corresponding
result and leave the verification to the reader.

Lemma 4.9 Let p, δ be as in Lemma 4.3 and βd , βc ≥ 0. Then we have the estimate

‖N j (xd , x)‖
L

∞, jβd − 1
4

τ0 ×L
∞, jβc− 1

4
τ0 Y p, 1

8
� ‖(xd , x)‖ j

L
∞,βd
τ0 ×L∞,βc

τ0 X
p, 1

8
δ

for j ∈ {2, 3, 4}.
Furthermore, by basically repeating the above computations and using elementary

identities such as

an − bn = (a − b)
n−1∑

j=0

a j bn−1− j ,

it is straightforward to see that we have the following estimate for the operator N :=∑5
j=1 N j .
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Lemma 4.10 Let p, δ be as in Lemma 4.3 and βd , βc ≥ 3
2 . Then there exists a contin-

uous function γ : [0,∞)× [0,∞) → R such that

‖N (xd , x)− N (yd , y)‖
L

∞,βd + 5
4

τ0 ×L
∞,βc+ 5

4
τ0 Y p, 1

8
≤ γ (X,Y )‖(xd , x)

−(yd , y)‖
L

∞,βd
τ0 ×L∞,βc

τ0 X
p, 1

8
δ

where

X := ‖(xd , x)‖
L

∞,βd
τ0 ×L∞,βc

τ0 X
p, 1

8
δ

, Y := ‖(yd , y)‖
L

∞,βd
τ0 ×L∞,βc

τ0 X
p, 1

8
δ

.

5 Estimates for the terms involving K and [A,K]

Finally, we consider the terms on the right-hand side of Eq. (3.17) which come from the
transference identity. The main results in this respect are summarized in the following
proposition.

Proposition 5.1 (Estimates for the K-operators) Let δ > 0 be small and assume
p∈(1,∞) to be so large that p′(1−δ)<1. Then we have the estimates

‖K(a, f )‖
C×X

p, 1
8

δ

� ‖(a, f )‖
C×X

p, 1
8

δ

‖[A,K](a, f )‖
C×X

p, 1
8

δ

� ‖(a, f )‖
C×X

p, 1
8

δ‖K(a, f )‖
C×Y p, 1

8
� ‖(a, f )‖

C×X
p, 1

8
δ

‖[A,K](a, f )‖
C×Y p, 1

8
� ‖(a, f )‖

C×X
p, 1

8
δ‖K(a, g)‖

C×Y p, 1
8

� ‖(a, g)‖
C×Y p, 1

8
‖[A,K](a, g)‖

C×Y p, 1
8

� ‖(a, g)‖
C×Y p, 1

8

for all a ∈ C, f ∈ X
p, 1

8
δ , and g ∈ Y p, 1

8 .

Based on these bounds and the nonlinear estimates from Sect. 4 we then prove the
existence of a solution to Eq. (3.17) by a fixed point argument.

5.1 A convenient expression for K

First, we need to obtain an explicit expression for the operator K. Definition (3.15)
can be rewritten as

(K + 1)

(
a
f

)
= F
(

| · |
[
F−1
(

a
f

)]′)
− A
(

a
f

)

or, equivalently,

F−1(K + 1)

(
a
f

)
= | · |

[
F−1
(

a
f

)]′
− F−1A

(
a
f

)
.
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By definition of A and Eq. (3.14) we have

F−1A
(

a
f

)
= F−1

(
0

−2| · | f ′ − 5
2 f − |·|ρ′

ρ
f

)

= −2

∞∫

0

φ(·, η)η f ′(η)ρ(η)dη −
∞∫

0

φ(·, η)
[

5
2 + ηρ′(η)

ρ(η)

]
f (η)ρ(η)dη

and, assuming that f ∈ C∞
c (0,∞), an integration by parts yields

F−1A
(

a
f

)
= 2

∞∫

0

η∂ηφ(·, η) f (η)ρ(η)dη +
∞∫

0

φ(·, η)
[
− 1

2 + ηρ′(η)
ρ(η)

]
f (η)ρ(η)dη

= 2

∞∫

0

η∂ηφ(·, η) f (η)ρ(η)dη + F−1

(
0(

− 1
2 + |·|ρ′

ρ

)
f

)

.

Consequently, we obtain

F−1K
(

a
f

)
(R) = a

(R∂R − 1)φ(R, ξd)

‖φ(·, ξd)‖2
L2(0,∞)

+
∞∫

0

[R∂Rφ(R, η)− 2η∂ηφ(R, η)] f (η)ρ(η)dη

−F−1

(
0(

1
2 + |·|ρ′

ρ

)
f

)

(R)

and thus,

Kdda = a

‖φ(·, ξd)‖2
L2(0,∞)

∞∫

0

φ(R, ξd)[R∂R − 1]φ(R, ξd)d R = − 3
2 a

Kcda(ξ) = a

‖φ(·, ξd)‖2
L2(0,∞)

∞∫

0

φ(R, ξ)[R∂R − 1]φ(R, ξd)d R

Kdc f =
∞∫

0

∞∫

0

φ(R, ξd)[R∂Rφ(R, η)− 2η∂ηφ(R, η)] f (η)ρ(η)dηd R
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Kcc f (ξ) =
∞∫

0

∞∫

0

φ(R, ξ)[R∂Rφ(R, η)− 2η∂ηφ(R, η)] f (η)ρ(η)dηd R

−
(

1
2 + ξρ′(ξ)

ρ(ξ)

)
f (ξ)

where, as before,

K =
(

Kdd Kdc

Kcd Kcc

)
.

5.2 Kcc as a Calderón–Zygmund operator

First, we focus on Kcc which is the most complicated of the above operators. The
respective estimates for Kcd and Kdc will follow easily after we have understood
Kcc and Kdd is trivial anyway. In order to proceed, we need a more manageable
representation of Kcc, more precisely of the integral part of Kcc which we denote by
K̃0 for the moment, i.e.,

K̃0 f (ξ) :=
∞∫

0

∞∫

0

φ(R, ξ)[R∂Rφ(R, η)− 2η∂ηφ(R, η)] f (η)ρ(η)dηd R.

Note first that, for f ∈ C∞
c (0,∞), the function

R �→
∞∫

0

[R∂Rφ(R, η)− 2η∂ηφ(R, η)] f (η)ρ(η)dη

is rapidly decreasing as R → ∞. This can be immediately concluded from the rep-
resentation of φ given in Corollary 3.7 and integration by parts. It follows that the
operator K̃0 is well-defined as a linear mapping from C∞

c (0,∞) to C[0,∞). Further-
more, by dominated convergence, K̃0 is continuous when viewed as a map into the
space of distributions. Consequently, by the Schwartz kernel theorem there exists a
(distributional) kernel K̃0 such that

K̃0 f (ξ) =
∞∫

0

K̃0(ξ, η) f (η)dη. (5.1)

In fact, the operator Kcc has already been studied in [27] and from there we have the
following result (note carefully that our Kcc is called K0 in [27]).
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Theorem 5.2 For f ∈ C∞
c (0,∞) the operator Kcc is given by

Kcc f (ξ) =
∞∫

0

K0(ξ, η) f (η)dη

where the kernel K0 is of the form

K0(ξ, η) = ρ(η)

ξ − η
F(ξ, η)

with a symmetric function F ∈ C2((0,∞) × (0,∞)). Furthermore, for any N ∈ N,
F satisfies the bounds

|F(ξ, η)| ≤ CN

{
ξ + η ξ + η ≤ 1

(ξ + η)−1(1 + |ξ 1
2 − η

1
2 |)−N ξ + η ≥ 1

|∂ξ F(ξ, η)| + |∂ηF(ξ, η)| ≤ CN

{
1 ξ + η ≤ 1

(ξ + η)− 3
2 (1 + |ξ 1

2 − η
1
2 |)−N ξ + η ≥ 1

max
j+k=2

|∂ j
ξ ∂

k
η F(ξ, η)| ≤ CN

{
(ξ + η)− 1

2 ξ + η ≤ 1

(ξ + η)−2(1 + |ξ 1
2 − η

1
2 |)−N ξ + η ≥ 1

.

Proof This is Theorem 5.1 in [27]. One starts with an integration by parts and thereby
identifies the function F which can be expressed as an integral over φ, ρ and some
explicitly known function resulting from the potential V . The stated estimates are then
obtained by a careful analysis of this expression based on the asymptotic descriptions
of φ and ρ from Sect. 3. We refer the reader to [27] for the details. ��

5.3 Bounds for Kcc

In order to obtain estimates in the X p,α
δ and Y p,α spaces, we require boundedness of

Kcc in weighted L p spaces. However, this problem reduces to boundedness on ordinary
L p by simply attaching the weights to the kernel. The (weighted) L2 boundedness
of K0 is already established in [27], Proposition 5.2. Unfortunately, the result there
does not exactly apply to our situation (at least not for small frequencies) since it only
considers weights of the form 〈·〉2α but we have to deal with more general expressions,
cf. Definition 3.10. Thus, we have to make sure that despite this slight modification
the reasoning in [27] still goes through. Furthermore, we have to take care of the L p

component in X p,α
δ which is not present in [27]. Finally, we need to exploit a certain

additional smoothing property of Kcc at small frequencies which was irrelevant for
the construction in [27].

In order to prove boundedness in weighted spaces of the type occurring in the
definition of X p,α

δ , we define kernels K (a,b)
0 for a, b ∈ R by

K (a,b)
0 (ξ, η) := ξ− 1

2 〈ξ 〉 1
2 ξ−a〈ξ 〉−b K0(ξ, η)η

a〈η〉b (5.2)
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and denote by K(a,b)
0 the corresponding operators. Observe carefully the additional

weight ξ− 1
2 〈ξ 〉 1

2 on the “output” variable which encodes the aforementioned smooth-
ing effect. Our aim is to prove L p boundedness of K(a,b)

0 for any a, b and 1 < p < ∞
which then implies the desired boundedness properties of Kcc in X p,α

δ and Y p,α .
Due to the singular behavior of the spectral measure at zero it is advantageous to

separate the diagonal from the off-diagonal behavior. This is most effectively done by
introducing a dyadic covering of the diagonal � = {(ξ, η) ∈ R

2 : ξ = η},

� ⊂
⋃

j∈Z

I j × I j ,

where I j := [2 j−1, 2 j+1]. Furthermore, letχ : R → [0, 1] be a smooth bump function
satisfying

χ(ξ) :=
{

1 if ξ ∈ [ 3
4 ,

7
4 ]

0 if ξ ≤ 1
2 or ξ ≥ 2

and set χ j (ξ) := χ(2− jξ). Then we have supp(χ j ) ⊂ I j and the sets {(ξ, η) ∈ R
2 :

χ j (ξ)χ j (η) = 1} still cover the diagonal. We smoothly restrict the kernel K (a,b)
0 to

I j × I j by using χ j and write

K(a,b)
0, j f := χ jK(a,b)

0 (χ j f )

for the corresponding truncated operator.

Lemma 5.3 Fix (a, b) ∈ R
2 and let 1 < p < ∞. Then K(a,b)

0, j extends to a bounded
operator on L p(R) and

‖K(a,b)
0, j f ‖L p(R) � ‖ f ‖L p(R)

for all f ∈ L p(R) and j ∈ Z, j ≤ 2.

Proof The point of the dyadic decomposition is of course that ξ, η ∈ I j implies
η ≤ 4ξ . In other words, for any two elements ξ, η ∈ I j we have ξ � η � 2 j with
implicit constants independent of j! This allows us to control the singular behavior
of ρ(η) uniformly in j . We write F(ξ, η) = F(ξ, ξ)+ (ξ − η)F̃(ξ, η) where

F̃(ξ, η) = −
1∫

0

∂2 F(ξ, ξ + s(η − ξ))ds
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and by Theorem 5.2 we have the bound |F̃(ξ, η)| � 1 for all ξ, η. Thus, the kernel
decomposes as K (a,b)

j,0 (ξ, η) = A j (ξ, η)+ B j (ξ, η) where

A j (ξ, η) = χ j (ξ)ξ
− 1

2 〈ξ 〉 1
2 ξ−a〈ξ 〉−b F(ξ, ξ)

ξ − η
χ j (η)ρ(η)η

a〈η〉b =: ψ0, j (ξ)ψ1, j (η)

ξ − η

B j (ξ, η) = χ j (ξ)ξ
− 1

2 〈ξ 〉 1
2 ξ−a〈ξ 〉−b F̃(ξ, η)χ j (η)ρ(η)η

a〈η〉b

and we call the respective operators A j and B j . In other words, we have A j f =
πψ0, j H(ψ1, j f ) where H is the Hilbert transform. By the L p boundedness of H for
p ∈ (1,∞) we immediately obtain

‖A j f ‖L p(R) � ‖ψ0, j‖L∞(R)‖ψ1, j f ‖L p(R) ≤ ‖ψ0, j‖L∞(R)‖ψ1, j‖L∞(R)‖ f ‖L p(R)

and from Theorem 5.2 and Lemma 3.4 we infer the bounds

|ψ0, j (ξ)| � 2(−
1
2 −a+1) j , |ψ1, j (η)| � 2(−

1
2 +a) j

for all ξ, η ∈ R which yield ‖A j f ‖L p(R) � ‖ f ‖L p(R). Furthermore, the kernel B j

satisfies

|B j (ξ, η)| � 2− jχ j (ξ)χ j (η)

and thus,

‖B j f ‖L p(R) � 2− j‖χ j‖L p(R)‖χ j‖L p′
(R)

‖ f ‖L p(R)

� 2
(−1+ 1

p + 1
p′ ) j‖ f ‖L p(R) = ‖ f ‖L p(R).

��
An analogous result holds for j ≥ 1 as well.

Lemma 5.4 Fix (a, b) ∈ R
2 and let 1 < p < ∞. Then K(a,b)

0, j extends to a bounded
operator on L p(R) and

‖K(a,b)
0, j f ‖L p(R) � ‖ f ‖L p(R)

for all f ∈ L p(R) and j ∈ Z, j ≥ 1.

Proof We perform the same decomposition K(a,b)
0, j = A j + B j as in the proof of

Lemma 5.3 and this time we have

|ψ0, j (ξ)| � 2−(a+b+1) j , |ψ1, j (η)| � 2(
1
2 +a+b) j

for all ξ, η ∈ R by Theorem 5.2 and Lemma 3.4. Consequently, as before, the L p

boundedness of the Hilbert transform yields ‖A j f ‖L p(R) � ‖ f ‖L p(R) for p ∈ (1,∞).
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For the operator B j we note that |F̃(ξ, η)| � |ξ + η|− 3
2 by Theorem 5.2 and thus,

|B j (ξ, η)| � 2− jχ j (ξ)χ j (η) which yields ‖B j f ‖L p(R) � ‖ f ‖L p(R).

The bounds obtained in Lemmas 5.3 and 5.4 can be summed.

Corollary 5.5 Fix (a, b) ∈ R
2 and 1 < p < ∞. Then the operator

K(a,b)
0,� :=

∑

j∈Z

K(a,b)
0, j

is bounded on L p(R).

Proof It suffices to note that

‖K(a,b)
0,� f ‖p

L p(R)
�
∑

j∈Z

‖K(a,b)
0, j (1I j f )‖p

L p(R)
�
∑

j∈Z

‖1I j f ‖p
L p(R)

� ‖ f ‖p
L p(R)

by Lemmas 5.3 and 5.4 where 1I j denotes the characteristic function of the set I j . ��
Now we can conclude the desired boundedness properties of Kcc.

Proposition 5.6 Fix α ≥ 0 and δ > 0 small. Furthermore, let 1 < p < ∞ be so
large that p′(1 − δ) < 1. Then we have the bounds

‖Kcc f ‖X p,α
δ

� ‖ f ‖X p,α
δ

‖Kcc f ‖Y p,α � ‖ f ‖X p,α
δ

‖Kcc f ‖Y p,α � ‖ f ‖Y p,α .

Proof We write K� f :=∑ j∈Z
χ jKcc(χ j f ) for the diagonal part of Kcc. By Corol-

lary 5.5 it is evident that ‖K� f ‖X p,α
δ

� ‖ f ‖X p,α
δ

and ‖K� f ‖Y p,α � ‖ f ‖Y p,α . In order
to obtain the mixed estimate we exploit the smoothing property, i.e., we note that

‖K� f ‖L p(0,∞) � ‖| · | 1
2 〈·〉− 1

2 f ‖L p(0,∞) � ‖| · | 1
2 −δ〈·〉− 1

2 +δ f ‖L p(0,∞) � ‖ f ‖X p,α
δ

as well as

‖K�( f )〈·〉αρ 1
2 ‖L2(0,∞) � ‖ f | · | 1

2 〈·〉α− 1
2 ρ

1
2 ‖L2(0,∞) � ‖ f ‖X p,α

δ
.

It remains to study the off-diagonal contributions and to this end we set

ϕA(ξ, η) := 1A(ξ, η)

⎡

⎣1 −
∑

j∈Z

χ j (ξ)χ j (η)

⎤

⎦

for A ⊂ [0,∞)2. We distinguish between large ξ, η and small ξ, η and consider the
two truncated kernels

K− := ϕ[0,1]2 K0, K+ := ϕ[0,∞)2\[0,1]2 K0
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and denote by K−, K+ the respective operators. Note that (ξ, η) ∈ supp(ϕ[0,1]2)

implies that η ≤ cξ or η ≥ 1
c ξ for a suitable c ∈ (0, 1). This implies |ξ − η| �

ξ + η and from Theorem 5.2 and Lemma 3.4 we obtain the estimate |K−(ξ, η)| �
ϕ[0,1]2(ξ, η)η− 1

2 . We infer

|K− f (ξ)| � 1[0,1](ξ)
1∫

0

η− 1
2 | f (η)|dη = 1[0,1](ξ)

1∫

0

η−1+δ|η 1
2 −δ f (η)|dη

� 1[0,1](ξ)‖| · | 1
2 −δ f ‖L p(0,1)

by Hölder’s inequality and the condition p′(1−δ) < 1. Note that this estimate implies
|K− f (ξ)| � 1[0,1](ξ)‖ f ‖X p,α

δ
and also |K− f (ξ)| � 1[0,1](ξ)‖ f ‖Y p,α for all ξ ≥ 0.

Thus, we immediately obtain the bound ‖K− f ‖X p,α
δ

� ‖K− f ‖L∞(0,1) � ‖ f ‖X p,α
δ

.
For the remaining two estimates it is crucial that the spectral measure ρ be integrable
near 0, i.e., we have

‖K− f ‖Y p,α � ‖K− f ‖L∞(0,1)‖ρ‖L1(0,1) � ‖ f ‖X p,α
δ

and analogously, ‖K− f ‖Y p,α � ‖ f ‖Y p,α .
In order to bound the operator K+ we note that, as before, we have |ξ−η| � ξ+η on

supp(ϕ[0,∞)2\[0,1]2) and thus, by Theorem 5.2 and Lemma 3.6 we infer |K+(ξ, η)| ≤
CN 〈ξ 〉−N 〈η〉−N for any N . This yields the three stated estimates for K+ as well. ��

5.4 Estimates for the operators Kdc and Kcd

It is now an easy exercise to conclude the respective boundedness for the remaining
operators Kdc and Kcd .

Lemma 5.7 Let α ≥ 0, δ > 0 and 1 < p < ∞ be as in Proposition 5.6. Then we
have the bounds

‖Kcda‖
X

p, 1
8

δ

� |a|, |Kdc f | � ‖ f ‖X p,α
δ

as well as

‖Kcda‖
Y p, 1

8
� |a|, |Kdcg| � ‖g‖Y p,α

for all a ∈ C and f ∈ X p,α
δ , g ∈ Y p,α .
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Proof Recall that

Kcda(ξ) = a

‖φ(·, ξd)‖2
L2(0,∞)

∞∫

0

φ(R, ξ)[R∂R − 1]φ(R, ξd)d R

Kdc f =
∞∫

0

∞∫

0

φ(R, ξd)[R∂Rφ(R, η)− 2η∂ηφ(R, η)] f (η)ρ(η)dηd R.

According to Lemma 3.5 and Corollary 3.7 we obtain |Kcda(ξ)| � |a|〈ξ 〉− 3
2 by

performing two integrations by parts. This already shows ‖Kcda‖
X

p, 1
8

δ

� |a| and

‖Kcda‖
Y p, 1

8
� |a| as claimed. Furthermore, the operator Kdc has a similar (in fact,

better behaved) kernel as Kcc and we conclude |Kdc f | � ‖ f ‖X p,α
δ

as well as |Kdcg| �
‖g‖Y p,α . ��

We summarize our results.

Corollary 5.8 Let δ > 0 be small and assume p∈(1,∞) be so large that p′(1−δ)<1.
Then the operator K satisfies the estimates

‖K(a, f )‖
C×X

p, 1
8

δ

� ‖(a, f )‖
C×X

p, 1
8

δ

‖K(a, f )‖
C×Y p, 1

8
� ‖(a, f )‖

C×X
p, 1

8
δ

‖K(a, g)‖
C×Y p, 1

8
� ‖(a, g)‖

C×Y p, 1
8

for all a ∈ C, f ∈ X
p, 1

8
δ and g ∈ Y p, 1

8 .

Proof This is the content of Proposition 5.6 and Lemma 5.7. ��

5.5 Estimates for [A,K]

It remains to estimate the commutator [A,K]. To this end recall that

A =
(

0 0
0 Ac

)

with Ac f (ξ) = −[2ξ∂ξ + 5
2 + ξρ′(ξ)

ρ(ξ)
] f (ξ). Thus, the commutator reads

[A,K] =
(

0 KdcAc

−AcKcd [Ac,Kcc]
)
.

Obviously, the most complicated contribution comes from [Ac,Kcc]. Recall that Kcc

is a continuous map from C∞
c (0,∞) to the space of distributions D′(0,∞). Conse-

quently, [Ac,Kcc] : C∞
c (0,∞) → D′(0,∞) is well-defined and continuous.
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Proposition 5.9 Let α, δ, p be as in Proposition 5.6. Then [Ac,Kcc] satisfies the
bounds

‖[Ac,Kcc] f ‖X p,α
δ

� ‖ f ‖X p,α
δ

‖[Ac,Kcc] f ‖Y p,α � ‖ f ‖X p,α
δ

‖[Ac,Kcc] f ‖Y p,α � ‖ f ‖Y p,α .

Proof In [27], Proposition 5.2 it is shown that [Kcc,Ac] has a similar kernel as Kcc.
Thus, the verification of the stated bound consists of a repetition of the above arguments
that led to Proposition 5.6. ��

Finally, we bound the operators AcKcd and KdcAc.

Lemma 5.10 Let α, δ, p be as in Proposition 5.6. Then we have the bounds

‖AcKcda‖
X

p, 1
8

δ

� |a|, |KdcAc f | � ‖ f ‖X p,α
δ

as well as

‖AcKcda‖
Y p, 1

8
� |a|, |KdcAcg| � ‖g‖Y p,α

for all a ∈ C and f ∈ X p,α
δ , g ∈ Y p,α .

Proof We start with AcKcd . If 0 < ξ � 1 we have |ξ∂ξφ(R, ξ)| � 〈R〉 for all R > 0
by Lemmas 3.2, 3.3 and Corollary 3.7. This implies |AcKcda(ξ)| � 1 since φ(R, ξd)

decays exponentially as R → ∞. On the other hand, if ξ � 1, we obtain by integration

by parts the estimate |AcKcda(ξ)| � 〈ξ 〉− 3
2 as in the proof of Lemma 5.7. This shows

‖AcKcda‖
X

p, 1
8

δ

� |a| and ‖AcKcda‖
Y p, 1

8
� |a|.

Furthermore, from [27], Theorem 5.1 we have the representation

KdcAc f =
∞∫

0

K̃d(η) f (η)dη

with K̃d bounded and rapidly decreasing. This yields

|KdcAc f | � ‖| · |− 1
2 +δ|K̃d | 1

2 ‖L p′
(0,∞)

‖| · | 1
2 −δ|K̃d | 1

2 f ‖L p(0,∞)

� ‖| · | 1
2 −δ|K̃d | 1

2 f ‖L p(0,∞)

since p′(− 1
2 + δ) > p′(−1 + δ) > −1 by assumption and this yields |KdcAc f | �

‖ f ‖X p,α
δ

as well as |KdcAcg| � ‖g‖Y p,α . ��
By putting together Proposition 5.9 and Lemma 5.10 we arrive at the desired result.
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Corollary 5.11 Let δ > 0 be small and assume p ∈ (1,∞) be so large that p′(1− δ)
< 1. Then the operator [A,K] satisfies the estimates

‖[A,K](a, f )‖
C×X

p, 1
8

δ

� ‖(a, f )‖
C×X

p, 1
8

δ

‖[A,K](a, f )‖
C×Y p, 1

8
� ‖(a, f )‖

C×X
p, 1

8
δ

‖[A,K](a, g)‖
C×Y p, 1

8
� ‖(a, g)‖

C×Y p, 1
8

for all a ∈ C, f ∈ X
p, 1

8
δ and g ∈ Y p, 1

8 .

5.6 Construction of an exact solution in the forward lightcone

We solve the main equation (3.17) by a contraction argument. To this end, we write
H := diag(Hd ,Hc) for the solution operator of the transport equation (3.20), (3.21).
Furthermore, we set

�(xd , x) := H
[
N (xd , x)+ RνBν(xd , x)+ Tν(xd , x)+ Ê2

]
(5.3)

where

RνBν
(

xd

x

)
(τ, ξ) := −βν(τ )(2K + 1)(∂τ + βν(τ )A)

(
xd(τ )

x(τ, ·)
)
(ξ)

Tν
(

xd

x

)
(τ, ξ) := −βν(τ )2

(
K2 + [A,K] + K + β ′

ν (τ )

βν(τ )2
K
)( xd(τ )

x(τ, ·)
)
(ξ)

Ê2(τ, ξ) :=
(

ê2(τ, ξd)

ê2(τ, ξ)

)

and

Bν
(

xd

x

)
(τ, ξ) := (∂τ + βν(τ )A)

(
xd(τ )

x(τ, ·)
)
(ξ)

Thus, solutions of Eq. (3.17) correspond to fixed points of �. In order to simplify
notation, we define the following Banach space where we run our fixed point argument.

Definition 5.12 Fix a δ with 2| 1
ν

− 1| < δ < 1
8 and a (large) p ∈ (2,∞) such that

p′(1−δ+2| 1
ν
−1|) < 1. Then, for xd : [τ0,∞) → R and x : [τ0,∞)×[0,∞) → R,

where τ0 > 0, we set

‖(xd , x)‖X τ0,ν := ‖(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

+ ‖Bν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8
.

The Banach space of the respective functions is denoted by X τ0,ν .
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Theorem 5.13 Let τ0 ≥ 1 be sufficiently large and ν be sufficiently close to 1. Then
� (as defined in Eq. (5.3)) maps the unit ball in X τ0,ν to itself and is contractive, i.e.,

‖�(xd , x)−�(yd , y)‖X τ0,ν ≤ 1
2‖(xd , x)− (yd , y)‖X τ0,ν

for all (xd , x), (yd , y) ∈ X τ0,ν with ‖(xd , x)‖X τ0,ν ≤ 1, ‖(yd , y)‖X τ0,ν ≤ 1. As a
consequence, there exists a unique fixed point of� (and hence, a solution of Eq. (3.17))
which belongs to X τ0,ν (in fact, to the unit ball in X τ0,ν).

Proof We consider each term on the right-hand side of Eq. (5.3) separately.

(1) According to Lemma 4.1 we have Ê2 ∈ L∞,3−δ
τ0

× L∞,3−δ
τ0

Y p, 1
8 and thus, we find

‖HÊ2‖
L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

� τ−δ
0 ‖Ê2‖

L∞,3−δ
τ0 ×L∞,3−δ

τ0 Y p, 1
8

and also

‖BνHÊ2‖
L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8

� τ−δ
0 ‖Ê2‖

L∞,3−δ
τ0 ×L∞,3−δ

τ0 Y p, 1
8

by Proposition 3.11 and Lemma 3.12. Hence, since τ0 ≥ 1 is assumed large, we
infer ‖HÊ2‖X τ0,ν ≤ 1

8 .
(2) By Corollaries 5.8 and 5.11 we infer

‖Tν(xd , x)‖
L∞,4−4δ
τ0 ×L∞,4−4δ

τ0 Y p, 1
8

� ‖(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

and by Proposition 3.11 and Lemma 3.12 this implies

‖HTν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X p, 1
8

� τ−1+2δ
0 ‖(xd , x)‖

L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

as well as

‖BνHTν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8
�τ−1+2δ

0 ‖(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

.

We obtain ‖HTν(xd , x)‖X τ0,ν ≤ 1
8‖(xd , x)‖X τ0,ν provided that τ0 ≥ 1 is suffi-

ciently large.
(3) From Corollary 5.8 we obtain

‖RνBν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,3−2δ

τ0 Y p, 1
8

� | 1
ν

− 1|‖Bν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8

by recalling that βν(τ ) = −( 1
ν

− 1)τ−1. By Proposition 3.11 and Lemma 3.12
this yields

‖HRνBν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

� | 1
ν

− 1|‖Bν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8
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as well as

‖BνHRνBν(xd , x)‖
L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8
� | 1

ν
−1|‖Bν(xd , x)‖

L∞,3−2δ
τ0 ×L∞,2−2δ

τ0 Y p, 1
8
.

Consequently, if ν is sufficiently close to 1, we infer ‖HRνBν(xd , x)‖X τ0,ν ≤
1
8‖(xd , x)‖X τ0,ν .

(4) Finally, for the nonlinearity we infer from Lemma 4.10 that

‖N (xd , x)− N (yd , y)‖
L∞,4
τ0 ×L∞,3−2δ

τ0 Y p, 1
8

� τ
− 1

4 +2δ
0 ‖(xd , x)− (yd , y)‖

L∞,3−2δ
τ0 ×L∞,2−4δ

τ0 X
p, 1

8
δ

.

for all (xd , x), (yd , y) in the unit ball in X τ0,ν . As before, since τ0 is large,
Proposition 3.11 and Lemma 3.12 yield ‖HN (xd , x) − HN (yd , y)‖X τ0,ν ≤
1
8‖(xd , x) − (yd , y)‖X τ0,ν and by recalling that N (0) = 0 this also implies
‖HN (xd , x)‖X τ0,ν ≤ 1

8‖(xd , x)‖X τ0,ν .

The claim now follows by the contraction mapping principle. ��

5.7 Transformation to the physical space

Recall that our original intention was to solve Eq. (3.2), given by

�ε + 5u4
0ε = 5(u4

0 − u4
2)ε − N (u2, ε)− e2, (5.4)

where u0(t, r) = λ(t)
1
2 W (λ(t)r) and the functions u2 and e2 are the approximate

solution and the error constructed in Sect. 2. However, u2 and e2 are only defined in
the forward lightcone

K ∞
t0,c = {(t, x) ∈ R × R

3 : t ≥ t0, 0 ≤ |x | ≤ t − c}, t0 > c > 0

and as a consequence, we had to introduce the smooth cut-off χc(t, r) := χ( t−r
c )

where χ(s) = 0 for s ≤ 1
2 and χ(s) = 1 for s ≥ 1. Then we considered the truncated

equation

�ε + 5u4
0ε = χc

[
5(u4

0 − u4
2)ε − N (u2, ε)− e2

]
(5.5)

instead of Eq. (5.4). As a consequence of Theorem 5.13 we now have the following
result which concludes the construction of the solution inside the forward lightcone.

Lemma 5.14 Let t0 > 0 be sufficiently large and ν be sufficiently close to 1. Then
there exists a solution ε of Eq. (5.5) with
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‖(ε(t, ·), εt (t, ·))‖H1(B2t )×L2(B2t )
� t−1

for all t ≥ t0 where B2t := {x ∈ R
3 : |x | < 2t}.

Proof Recall the transformations that led from Eq. (5.5) to the main system Eq. (3.17)
which we have finally solved in Theorem 5.13. Schematically, we had

ε
(τ,R)−→ṽ

·R−→v
F−→
(

xd

x

)

and in order to prove the claim we simply have to undo these transformations. The
coordinates (t, r) and (τ, R) are related by τ = 1

ν
λ(t)t and R = λ(t)r . Thus, let

(xd , x) ∈ X τ0,ν be the solution of Eq. (3.17) constructed in Theorem 5.13 (which
exists since we assume t0 and hence τ0 = 1

ν
λ(t0)t0 to be large) and set

ṽ−(τ, R) := R−1F−1
(

xd(τ )

(1 − χ)x(τ, ·)
)
(R)

ṽ+(τ, R) := R−1F−1
(

0
χx(τ, ·)

)
(R)

where χ is again a smooth cut-off with χ(ξ) = 0 for, say, ξ ≤ 1
2 and χ(ξ) = 1 for

ξ ≥ 1. According to Lemma 4.3 we have ṽ+(τ, ·) ∈ H
5
4 (R3) (recall that we have

set α = 1
8 ) and therefore, ‖ṽ+(τ, ·)‖H1(R3) � ‖ṽ+(τ, ·)‖

H
5
4 (R3)

� τ−2+4δ for some

small δ > 0 (see Definition 5.12). Furthermore, Lemma 4.3 yields ‖ṽ−(τ, ·)‖Ḣ2(R3) �
τ−2+4δ and also, ‖| · |ṽ−(τ, ·)‖L∞(R3) � τ−2+4δ . Thus, we obtain

‖ṽ−(τ, ·)‖L2(B2ντ )
� ‖| · |ṽ−(τ, ·)‖L∞(R3)‖1‖L2(B2ντ )

� τ− 3
2 +4δ

which implies ‖ṽ−(τ, ·)‖H2(B2ντ )
� τ− 3

2 +4δ . By setting ṽ = ṽ− + ṽ+ we infer

‖ṽ(τ, ·)‖H1(B2ντ )
� τ− 3

2 +4δ and thus, with ε(t, r) = ṽ( 1
ν
λ(t)t, λ(t)r), we obtain

‖ε(t, ·)‖H1(B2t )
� t−1 since ν is assumed to be close to 1.

For the time derivative recall that ∂t = λ̃(τ )[∂τ + βν(τ )R∂R] and thus,

∂tε(t, r) = λ̃(τ )R−1[∂τ + βν(τ )(R∂R − 1)]v(τ, R).

By the transference identity Eq. (3.15) we have

R−1[∂τ+βν(τ )(R∂R − 1)]v(τ, R)= R−1F−1
(

[∂τ+βν(τ )(A+K)]
(

xd(τ )

x(τ, ·)
))

.

By Theorem 5.13, Lemma 4.2, Corollary 5.8 and the definition of the space Y p, 1
8 we

therefore obtain the desired ‖∂tε(t, ·)‖L2(B2t )
� t−1. ��
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6 Extraction of initial data

Letχc(t, r) be the smooth localizer to the truncated cone which is defined byχc(t, r) =
χ( t−r

c ) where χ is a fixed smooth cut-off with χ(s) = 0 for s ≤ 1
2 and χ(s) = 1

for s ≥ 1. Furthermore, we set θ(t, r) := 1 − χ( r
2t ), i.e., θ(t, r) = 1 if r ≤ t and

θ(t, r) = 0 if r ≥ 2t . As a consequence of Lemma 5.14 there exists a function uc of
the form

uc(t, r)=λ(t) 1
2 W (λ(t)r)+θ(t, r)[v0(t, r)+vg

1 (t, r)+ε(t, r)]+χc(t, r)v
b
1(t, r),

(6.1)

where v0 and vg
1 := v

g
11 + v

g
12, vb

1 := vb
11 + vb

12 are from Lemmas 2.2 and 2.3, and
�uc(t, r)+ uc(t, r)5 = 0 provided that (t, r) ∈ K ∞

t0,c with t0 > 0 sufficiently large.

6.1 Energy estimates

As a first step we establish energy bounds for the solution uc.

Lemma 6.1 Let t0 ≥ 1 be sufficiently large and suppose ν is sufficiently close to 1.
Then we have the bounds

‖χc(t, ·)∂t uc(t, ·)‖L2(R3) � [λ(t)t]− 1
2 + c− ν

2

‖χc(t, ·)∂t Wλ(t)‖L2(R3) � [λ(t)t]− 1
2

‖∇[uc(t, ·)− Wλ(t)]‖L2(R3) � [λ(t)t]− 1
2 + c− ν

2

for all t ≥ t0 > 2c ≥ 1 where, as before, Wλ(t)(r) = λ(t)
1
2 W (λ(t)r).

Proof We consider each constituent of uc separately.

(1) For the time derivative of Wλ(t) we have

∂t [λ(t) 1
2 W (λ(t)r)] = 1

2λ(t)
− 1

2 λ′(t)W (λ(t)r)+ λ(t)
1
2 λ′(t)r W ′(λ(t)r)

and, since

t∫

0

|W (λ(t)r)|2r2dr = λ(t)−3

λ(t)t∫

0

|W (r)|2r2dr � λ(t)−2t,

we infer

‖χc(t, ·)∂t Wλ(t)‖L2(R3) � λ(t)−
3
2 λ′(t)t

1
2 � t−

1
2 ν = [λ(t)t]− 1

2 .
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(2) According to Lemma 2.2 we have the estimates

|v0(t, r)| � λ(t)−
1
2 t−2r

|∂tv0(t, r)| + |∂rv0(t, r)| � λ(t)−
1
2 [t−3r + t−2] � λ(t)−

1
2 t−2

for all t ≥ t0 and 0 ≤ r ≤ 2t . Furthermore, note that |∂tθ(t, r)| � r t−2|χ ′( r
2t )|

and |∇θ(t, r)| � t−1|χ ′( r
2t )|. Thus, we obtain

‖χc(t, ·)∂tθ(t, ·)v0(t, ·)‖2
L2(R3)

� λ(t)−1t−8

2t∫

t

r6dr � [λ(t)t]−1

and analogously, ‖∇θ(t, ·)v0(t, ·)‖L2(R3) � [λ(t)t]− 1
2 . Similarly, we infer

‖χc(t, ·)θ(t, ·)∂tv0(t, ·)‖2
L2(R3)

+ ‖θ(t, ·)∇v0(t, ·)‖2
L2(R3)

� λ(t)−1t−4

2t∫

0

r2dr

� [λ(t)t]−1.

(3) Note that θ(t, r)vg
1 (t, r)+ χc(t, r)vb

1(t, r) = v1(t, r) provided r ≤ 1
2 t . Thus, in

the case r ≤ 1
2 t we put vg

1 and vb
1 together and use the bounds

|v1(t, r)| � λ(t)−
1
2 t−1

|∂tv1(t, r)| + |∂rv
g
1 (t, r)| � λ(t)−

1
2 t−2

from Lemma 2.3. If 1
2 t ≤ r ≤ 2t we similarly have

|vg
1 (t, r)| � λ(t)−

1
2 t−1|∂tv

g
1 (t, r)| + |∂rv

g
1 (t, r)| � λ(t)−

1
2 t−2

by Lemma 2.3 and thus, these terms can be treated in the exact same fashion as
v0.

(4) For ε it suffices to invoke the bound from Lemma 5.14 which immediately yields

‖χc(t, ·)∂t [θ(t, ·)ε(t, ·)]‖L2(R3) + ‖∇[θ(t, ·)ε(t, ·)]‖L2(R3) � t−1 � [λ(t)t]− 1
2 .

(5) Finally, we come to the most interesting contribution, the term χcv
b
1 = χc(v

b
11 +

vb
12). We emphasize that the following estimates are key to the whole construction.

We may restrict ourselves to r ≥ 1
2 t since the case r ≤ 1

2 t is already included in
point (3) above. We start with χcv

b
11. Lemma 2.3 yields

|vb
11(t, r)| � λ(t)−

1
2 t−1 (1 − r

t

) 1
2 (1−ν)

|∂tv
b
11(t, r)| + |∂rv

b
11(t, r)| � λ(t)−

1
2 t−2 (1 − r

t

) 1
2 (1−ν)−1
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for all t ≥ t0 and 1
2 t ≤ r < t . Furthermore, note that

|∂tχc(t, r)| + |∂rχc(t, r)| � 1
c |χ ′ ( t−r

c

) |.

We infer

‖∂tχc(t, ·)vb
11(t, ·)‖2

L2(R3\Bt/2)
� 1

c2 λ(t)
−1t−2

t− c
2∫

t−c

(
1 − r

t

)1−ν
r2dr

= 1
c2 λ(t)

−1t

1− c
2t∫

1− c
t

(1 − s)1−νs2ds

� 1
(2−ν)c2 λ(t)

−1t︸ ︷︷ ︸
t2−ν

( c
t

)2−ν � c−ν

and by the very same calculation we also obtain ‖∇χc(t, ·)vb
11(t, ·)‖L2(R3) � c− ν

2 .
If the derivative hits vb

11 we have

‖χc(t, ·)∂tv
b
11(t, ·)‖2

L2(R3\Bt/2)
� λ(t)−1t−4

t− c
2∫

1
2 t

(
1 − r

t

)−ν−1
r2dr

= [λ(t)t]−1

1− c
2t∫

1
2

(1 − s)−ν−1s2ds

� 1
ν

t−ν
( c

2t

)−ν � c−ν

and analogously we get ‖χc(t, ·)∇vb
11(t, ·)‖L2(R3) � c− ν

2 as well. The term vb
12

is handled by the exact same computations upon replacing ν by 3ν. ��
Next, we estimate the residual energy outside the (truncated) lightcone K ∞

t0,c.

Lemma 6.2 Under the assumptions of Lemma 6.1 we have the bounds

‖χc(t, ·)∂t Wλ(t)‖L2(R3\Bt−c)
� [λ(t)t]− 1

2

‖∇Wλ(t)‖L2(R3\Bt−c)
� [λ(t)t]− 1

2

P for all t ≥ t0 > 2c ≥ 2 where Bt−c = {x ∈ R
3 : |x | < t − c}.
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Proof The first bound follows from Lemma 6.1. Thus, it suffices to note that

‖∇Wλ(t)‖2
L2(R3\Bt−c)

� λ(t)

∞∫

t−c

|∂r W (λ(t)r)|2r2dr

� λ(t)3
∞∫

t−c

λ(t)−4r−2dr � λ(t)−1(t − c)−1

� [λ(t)t]−1.

��
To conclude the energy bounds, we provide estimates for the L6 norms.

Corollary 6.3 Under the assumptions of Lemma 6.1 we have

‖uc(t, ·)− Wλ(t)‖L6(R3) � [λ(t)t]− 1
2 + c− ν

2

‖Wλ(t)‖L6(R3\Bt−c)
� [λ(t)t]− 1

2

for all t ≥ t0 > 2c ≥ 2.

Proof The first assertion is an immediate consequence of Lemma 6.1 and the Sobolev
embedding Ḣ1(R3) ↪→ L6(R3). For the second bound we calculate explicitly

‖Wλ(t)‖6
L6(R3\Bt−c)

� λ(t)3
∞∫

t−c

λ(t)−6r−6r2dr � λ(t)−3(t − c)−3 � [λ(t)t]−3.

��

6.2 Extension of the solution to the whole space

Lemmas 6.1 and 6.2 show that the bulk of the energy of uc is concentrated on the
soliton inside the truncated lightcone. Now we pick a sequence of times (Tn) with
Tn ≥ t0 and Tn → ∞ as n → ∞. Then we consider the sequence of Cauchy data
( f n

c , gn
c ) given by

f n
c (r) = uc(Tn, r) (6.2)

gn
c (r) = χc(Tn, r)∂t uc(t, r)|t=Tn .

Since χc(Tn, r) ≡ 1 for r ≤ Tn − c, we have6 ( f n
c , gn

c ) = uc[Tn] on BTn−c. As
a consequence of Lemma 6.1, the sequence ( f n

c , gn
c ) is uniformly bounded in Ḣ1 ×

L2(R3) for all n ∈ N. Now we solve the equation backwards in time with data ( f n
c , gn

c )

at t = Tn . For the following it is useful to introduce the notation

6 Here and in the following we employ the convenient abbreviation u[t] = (u(t, ·), ∂t u(t, ·)).
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K Tn
t0,c := {(t, x) ∈ R × R

3 : t0 ≤ t ≤ Tn, |x | ≤ t − c}.

Furthermore, for U ⊂ R
3 open we set

EU ( f, g) := 1

2

∫

U

(|∇ f (x)|2 + |g(x)|2)dx − 1

6

∫

U

| f (x)|6dx

= 1
2‖( f, g)‖2

Ḣ1×L2(U )
− 1

6‖ f ‖6
L6(U ).

Thus, ER3 is the energy functional associated with the focusing quintic wave equation.

Lemma 6.4 Let t0 ≥ 1 and c ≥ 1 be sufficiently large and assume t0 ≥ 2c. Then, for
any n ∈ N, there exists an energy class solution u(Tn) of

{
�u(Tn)(t, x)+ u(Tn)(t, x)5 = 0, (t, x) ∈ [t0, Tn] × R

3

u(Tn)[Tn] = ( f n
c , gn

c )

which satisfies u(Tn) = uc on K Tn
t0,c. Furthermore,

‖u(Tn)[t0]‖Ḣ1×L2(R3\Bt0−c)
→ 0

as t0, c → ∞, uniformly in n.

Proof Recall that, given data in Ḣ1 × L2(R3), the Cauchy problem for the quintic
wave equation can be solved locally in time. Furthermore, if the data are small in Ḣ1 ×
L2(R3), the corresponding solution exists globally in time, see [37] or [43], p. 142,
Theorem 3.1. Given any δ > 0, we have ‖( f n

c , gn
c )‖Ḣ1(R3)×L2(R3) ≤ ‖W‖Ḣ1(R3) + δ

for all n ∈ N if we assume t0 and c to be sufficiently large (see Lemma 6.1). Thus, we
infer the existence of u(Tn) on (T ∗

n , Tn] × R
3 with some T ∗

n < Tn and we assume T ∗
n

to be minimal with this property. Furthermore, the map

t �→ ‖u(Tn)[t]‖Ḣ1×L2(R3) : (T ∗
n , Tn] → R

is continuous ([43], p. 142, Theorem 3.1). If T ∗
n ≤ t0 we are done. Thus, assume

that T ∗
n > t0. By causality it is clear that u(Tn) = uc on (K Tn

T ∗
n ,c
)◦, the interior of the

truncated lightcone. Furthermore, by Lemma 6.1 and Corollary 6.3, the data satisfy

‖( f n
c , gn

c )− (Wλ(Tn), 0)‖Ḣ1×L2(R3) � δ

‖ f n
c − Wλ(t)‖L6(R3) � δ

and, by using that ‖∇Wλ(t)‖L2(R3) = ‖∇W‖L2(R3) and analogously for ‖Wλ(t)‖L6(R3),
this implies |ER3( f n

c , gn
c )− ER3(W, 0)| � δ2 + δ6 � δ2 for the total energy. In other

words, the bulk of the total energy is concentrated on the soliton. By conservation of
energy we infer that this has to hold for all times, i.e., |ER3(u(Tn)[t])−ER3(W, 0)| � δ2
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for all t ∈ (T ∗
n , Tn]. Since u(Tn) = uc on (K Tn

T ∗
n ,c
)◦, we infer from Lemma 6.1 and

Corollary 6.3 the bounds

‖u(Tn)[t] − (Wλ(t), 0)‖Ḣ1×L2(Bt−c)
� δ

‖u(Tn)(t, ·)− Wλ(t)‖L6(Bt−c)
� δ

which imply |EBt−c(u
(Tn)[t]) − EBt−c (Wλ(t), 0)| � δ2. Moreover, by Lemma 6.2 and

Corollary 6.3 we have |ER3\Bt−c
(W, 0)| � δ2 and thus, |ER3\Bt−c

(u(Tn)[t])| � δ2

which shows that the total energy of the solution u(Tn) outside the truncated lightcone
stays small for all times. By a (slight modification of) the Sobolev inequality we infer
‖u(Tn)(t, ·)‖L6(R3\Bt−c)

� ‖∇u(Tn)(t, ·)‖L2(R3\Bt−c)
with an implicit constant that is

independent of t . This estimate implies

δ2 � ER3\Bt−c
(u(Tn)[t]) = 1

2‖u(Tn)[t]‖2
Ḣ1×L2(R3\Bt−c)

− 1
6‖u(Tn)(t, ·)‖6

L6(R3\Bt−c)

≥ 1
2‖u(Tn)[t]‖2

Ḣ1×L2(R3\Bt−c)

[
1 − C‖u(Tn)[t]‖4

Ḣ1×L2(R3\Bt−c)

]

for all t ∈ (T ∗
n , Tn]. Initially, at t = Tn , we have

‖u(Tn)[Tn]‖Ḣ1×L2(R3\Bt−c)
= ‖( f n

c , gn
c )‖Ḣ1×L2(R3\Bt−c)

≤ δ

by Lemma 6.2 and therefore, we must have

‖u(Tn)[t]‖2
Ḣ1×L2(R3\Bt−c)

� δ2

for all t ∈ (T ∗
n , Tn] (provided δ > 0 is sufficiently small) since the map t �→ u(Tn)[t]

is continuous from (T ∗
n , Tn] to Ḣ1 × L2(R3\Bt−c) by a classical ε

2 argument. We
conclude that not only the total energy but also the kinetic energy of u(Tn) stays small
outside the truncated cone. Consequently, the small data global existence result allows
us to extend the solution beyond time T ∗

n which contradicts the minimality of T ∗
n . Thus,

we must have T ∗
n ≤ t0 and the Lemma is proved. ��

6.3 The Bahouri-Gérard decomposition

Our idea now is to consider the sequence of data u(Tn)[t0] and attempt to extract a limit
as n → ∞. In effect, we shall not be able to do so, but we shall nonetheless be able to
construct new initial data u∗[t0] resulting in an energy class solution u∗(t, x) defined
on all of [t0,∞)× R

3 with the property that

u∗ = uc on K ∞
t0,c.

In order to achieve this, we apply the celebrated Bahouri-Gérard decomposition [1].
From now on we always assume t0 and c to be sufficiently large with t0 ≥ 2c. Note
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also that no space translations are necessary in the following lemma since all functions
are in fact radial. Furthermore, it is convenient to introduce the notation

uλ,t0(t, x) := λ− 1
2 u

(
t − t0
λ

,
x

λ

)
.

Lemma 6.5 (Linear profile decomposition) Consider the sequence (u(Tn)[t0])n∈N of
Cauchy data for the solutions constructed in Lemma 6.4. Then, upon passing to a
subsequence, there exists a sequence (Vi )i∈N of (fixed) radial free waves7, such that

u(Tn)[t0] =
A∑

i=1

V
λi

n ,t
i
n

i [t0] + W n A[t0] (6.3)

for all n, A ∈ N where (t i
n)n∈N and (λi

n)n∈N are suitable sequences of times and
positive scaling factors, respectively, that satisfy

∣∣∣∣
∣
log

(
λi

n

λ
j
n

)∣∣∣∣
∣
+ |t i

n − t j
n |

λi
n

→ ∞, i �= j (6.4)

as n → ∞, and W n A is a free wave with the property

lim
A→∞ lim sup

n→∞
‖W n A‖L∞(R)L6(R3) = 0.

Furthermore, for any A ∈ N, we have asymptotic orthogonality in the sense that

(
V
λi

n ,t
i
n

i [t0]
∣
∣∣∣ V

λ
j
n ,t

j
n

j [t0]
)

Ḣ1×L2(R3)

→ 0, 1 ≤ i, j ≤ A, i �= j

(
V
λi

n ,t
i
n

i [t0]
∣
∣∣∣W

n A[t0]
)

Ḣ1×L2(R3)

→ 0, 1 ≤ i ≤ A

as n → ∞.

Proof From Lemma 6.1 we deduce

‖u(Tn)[t0]‖Ḣ1×L2(Bt0−c)
= ‖uc[t0]‖Ḣ1×L2(Bt0−c)

� 1

and in the proof of Lemma 6.4 above we had

‖u(Tn)[t0]‖Ḣ1×L2(R3\Bt0−c)
� δ

7 A “free wave” is a function v : R × R
3 → R such that the map t �→ ‖v[t]‖Ḣ1×L2(R3) is continuous (in

particular, ‖v[t]‖Ḣ1×L2(R3) � 1 for any t ∈ R) and v(t, ·) = cos(t |∇|)v(0, ·)+|∇|−1 sin(t |∇|)∂1v(0, ·),
i.e., �v = 0 in the weak sense.
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for all n ∈ N. Thus, we infer

sup
n∈N

‖u(Tn)[t0]‖Ḣ1×L2(R3) � 1

and everything follows by the main theorem in [1] and the remark on p. 159.

Remark 6.6 We will also use a kind of “localized” orthogonality which can be derived
as follows. Suppose (vn[t0]|wn[t0])Ḣ1×L2(R3) = o(1) as n → ∞ and the energy of

vn[t0] concentrates in U ⊂ R
3 as n → ∞, i.e.,

‖vn[t0]‖Ḣ1×L2(R3) = ‖vn[t0]‖Ḣ1×L2(U ) + o(1)

as n → ∞, or, in other words,

‖vn[t0]‖Ḣ1×L2(R3\U ) → 0 (n → ∞).

Of course, we also assume that ‖vn[t0]‖Ḣ1×L2(R3), ‖wn[t0]‖Ḣ1×L2(R3) � 1 for all n.
Then we have the localized orthogonality

(vn[t0]|wn[t0])Ḣ1×L2(U ) = (vn[t0]|wn[t0])Ḣ1×L2(R3) − (vn[t0]|wn[t0])Ḣ1×L2(R3\U )

= o(1)

since

∥
∥∥(vn[t0]|wn[t0])Ḣ1×L2(R3\U )

∥
∥∥ ≤ ‖vn[t0]‖Ḣ1×L2(R3\U )‖wn[t0]‖Ḣ1×L2(R3\U ) → 0

as n → ∞.

A triple (Vi , (λ
i
n), (t

i
n)) like in Lemma 6.5 is called a (concentration) profile. As

a first step we now show that certain profiles with scaling factors tending to zero
cannot exist. Heuristically speaking, such profiles are excluded by the fact that they
would concentrate at the origin as n → ∞ but near x = 0, u(Tn)[t0] equals uc[t0] and
is thus independent of n. In order to make the argument rigorous, one has to show
that the concentration effect cannot be “cancelled” by the error term W n A. This is a
consequence of the asymptotic orthogonality of the profiles. Before coming to that,
however, we introduce another notion. We call a profile (Vi , (λ

i
n), (t

i
n)) bounded, if

λi
n � 1 and |t0 − t i

n| � 1 for all n ∈ N. Otherwise, the profile is called unbounded.
Note that by condition (6.4) there exists at most one (nonzero) bounded profile in the
decomposition Eq. (6.3).

Lemma 6.7 Consider the decomposition given in Lemma 6.5 and suppose there exists

a profile (Vi , (λ
i
n), (t

i
n)) with λi

n → 0 as n → ∞ and |t0−t i
n |

λi
n

� 1 for all n ∈ N. Then

Vi = 0.
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Proof Fix A ∈ N and let Vb be the unique bounded profile (Vb might be zero in which
case we set λb

n = 1 and tb
n = 0 for all n ∈ N). First, we claim that for any given ε > 0

we can find a δ > 0 such that

∥∥∥
∥u

(Tn)[t0] − V
λb

n ,t
b
n

b [t0]
∥∥∥
∥

Ḣ1×L2(Bδ)
< ε (6.5)

for all n ∈ N. Indeed, u(Tn)[t0]|Bδ is independent of n for small enough δ since by
construction we have u(Tn)[t0] = uc[t0] on Bt0−c, see Lemma 6.4. This shows that
‖u(Tn)[t0]‖Ḣ1×L2(Bδ) → 0 as δ → 0, uniformly in n. Furthermore, by scaling and
energy conservation we have

‖V
λi

n ,t
i
n

i [t0]‖Ḣ1×L2(R3) = ‖Vi [t0]‖Ḣ1×L2(R3)

for any profile Vi (bounded or unbounded). Since λb
n � 1 and |tb

n | � 1 for all n ∈ N, we

obtain by the continuity of t �→ ‖Vb[t]‖Ḣ1×L2(R3) the bound ‖V
λb

n ,t
b
n

b [t0]‖Ḣ1×L2(Bδ) <
ε
2 for all n ∈ N provided δ > 0 is sufficiently small. Consequently, the triangle
inequality yields the claim (6.5).

Note that by Eq. (6.3), Eq. (6.5) is equivalent to

∥∥
∥∥∥∥

A∑

i=1,i �=b

V
λi

n ,t
i
n

i [t0] + W n A[t0]
∥∥
∥∥∥∥

Ḣ1×L2(Bδ)

< ε.

We write i ∈ Z A iff λi
n → 0 as n → ∞ and |t0−t i

n |
λi

n
� 1 for all n ∈ N. Now observe

that, for i ∈ Z A,

‖V
λi

n ,t
i
n

i [t0]‖Ḣ1×L2(R3\Bδ) �
∥
∥∥∥∂1Vi

(
t0 − t i

n

λi
n

, ·
)∥∥∥∥

L2(R3\B
δ/λi

n
)

+
∥∥∥∥∇Vi

(
t0 − t i

n

λi
n

, ·
)∥∥∥∥

L2(R3\B
δ/λi

n
)

→ 0

as n → ∞ by the continuity of t �→ ‖Vi [t]‖Ḣ1×L2(R3). For brevity we write

vn[t0] :=
∑

i∈Z A

V
λi

n ,t
i
n

i [t0], wn[t0] :=
∑

i /∈Z A,i �=b

V
λi

n ,t
i
n

i [t0] + W n A[t0].
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By the pairwise orthogonality of the profiles and the triangle inequality we obtain

ε >

∥∥∥∥∥∥

A∑

i=1,i �=b

V
λi

n ,t
i
n

i [t0] + W n A[t0]
∥∥∥∥∥∥

2

Ḣ1×L2(Bδ)

= ‖vn[t0] + wn[t0]‖2
Ḣ1×L2(Bδ)

= ‖vn[t0] + wn[t0]‖2
Ḣ1×L2(R3)

− ‖vn[t0] + wn[t0]‖2
Ḣ1×L2(R3\Bδ)

≥ ‖vn[t0]‖2
Ḣ1×L2(R3)

+ ‖wn[t0]‖2
Ḣ1×L2(R3)

−‖vn[t0]‖2
Ḣ1×L2(R3\Bδ)

−‖wn[t0]‖2
Ḣ1×L2(R3\Bδ)

− 2‖vn[t0]‖Ḣ1×L2(R3\Bδ)‖wn[t0]‖Ḣ1×L2(R3\Bδ) + o(1)

=
∑

i∈Z A

‖Vi [t0]‖2
Ḣ1×L2(R3)

+
∥∥∥∥
∥∥

∑

i /∈Z A,i �=b

V
λi

n ,t
i
n

i [t0] + W n A[t0]
∥∥∥∥
∥∥

2

Ḣ1×L2(Bδ)

+ o(1)

as n → ∞. Consequently, ‖Vi [t0]‖Ḣ1×L2(R3) < ε for all i ∈ Z A provided n is
sufficiently large and, since ε > 0 and A ∈ N were arbitrary, this yields the claim. ��

Our next goal is to prove that the energy of all unbounded profiles is small. As a
preparation for this we need the following elementary observation which is just an
instance of the strong Huygens’ principle. As always, it suffices to consider the radial
case for our purposes.

Lemma 6.8 (Strong Huygens’ principle) Let v : R×R
3 → R be a (radial) free wave

and set

A(R1, R2) := {x ∈ R
3 : R1 < |x | < R2}.

Then we have the estimate

‖v[t]‖Ḣ1×L2(BR)
� ‖v[0]‖Ḣ1×L2(A(|t |−R,|t |+R)) + ‖v(0, ·)‖L6(A(|t |−R,|t |+R))

for all t ∈ R and all R > 0 provided |t | ≥ R.

Proof Note first that by the Sobolev embedding Ḣ1(R3) ↪→ L6(R3) we may assume
v(t, ·) ∈ L6(R3) for all t ∈ R. Furthermore, by the time reflection symmetry it suffices
to consider the case t ≥ R. Since v is radial, it is given explicitly by d’Alembert’s
formula

v(t, r) = 1

2r

⎡

⎣(t + r) f (t + r)− (t − r) f (t − r)+
t+r∫

t−r

sg(s)ds

⎤

⎦

for 0 ≤ r ≤ t where ( f, g) = v[0]. Based on this formula it is straightforward to
prove the claimed estimate by using Hardy’s and Hölder’s inequalities.

We obtain a simple corollary which applies to certain concentration profiles in the
Bahouri-Gérard decomposition.
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Corollary 6.9 Suppose v : R × R
3 → R is a (radial) free wave and let (λn)n∈N,

(tn)n∈N be sequences of (positive) scaling factors and times, respectively. If

• λn → ∞
• or |t0−tn |−R

λn
→ ∞ as n → ∞

then

‖vλn ,tn [t0]‖Ḣ1×L2(BR)
→ 0

as n → ∞ for any (fixed) R > 0.

Proof Note that by scaling we have

‖vλn ,tn [t0]‖2
Ḣ1×L2(BR)

=
∥∥∥∥∂1v

(
t0 − tn
λn

, ·
)∥∥∥∥

2

L2(BR/λn )

+
∥∥∥∥∇v
(

t0 − tn
λn

, ·
)∥∥∥∥

2

L2(BR/λn )

.

(6.6)

First, we consider the case λn → ∞. If |t0−tn |
λn

� 1 for all n ∈ N then the continuity

of t �→ ‖v[t]‖Ḣ1×L2(R3) and Eq. (6.6) show that ‖vλn ,tn [t0]‖Ḣ1×L2(BR)
→ 0 as

n → ∞. On the other hand, if |t0−tn |
λn

→ ∞, we must have |t0 − tn| → ∞ and thus,
|t0 − tn|/λn ≥ R/λn for large n. Consequently, Lemma 6.8 yields the claim. The
second case is a direct consequence of Lemma 6.8.

Now we can show the aforementioned smallness of the unbounded profiles.

Lemma 6.10 Let ε > 0. For the energy of any unbounded profile (Vi , (λ
i
n), (t

i
n)) in

the decomposition Eq. (6.3) we have the bound

‖Vi [t0]‖Ḣ1×L2(R3) ≤ ‖u(Tn)[t0]‖Ḣ1×L2(R3\Bt0−c)
+ ε

as n → ∞.

Remark 6.11 By Lemma 6.4 we see that the energy of the unbounded profiles can be
assumed to be arbitrarily small provided t0 and c are chosen large enough.

Proof of Lemma 6.10 By Lemma 6.7 the claim holds trivially for those unbounded

profiles Vi where λi
n → 0 as n → ∞ and |t0−t i

n |
λi

n
� 1 for all n ∈ N. Furthermore, if

the sequences (λi
n) and (t i

n) satisfy the hypothesis of Corollary 6.9, we infer

‖Vi [t0]‖Ḣ1×L2(R3) = ‖Vi [t0]‖Ḣ1×L2(R3\Bt0−c)
+ o(1)

as n → ∞ and the claim follows by the orthogonality of the profiles stated in Lemma
6.5 and Remark 6.6.

It remains to study those profiles where |t0−t i
n |−(t0−c)
λi

n
� 1 and λi

n � 1. Since the

profiles in question are unbounded, we must have λi
n → 0. Consequently, |t0 − t i

n| is
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bounded and after selecting a subsequence, we may assume that t i
n → t i . Let ε > 0

be given. Then we can find an R > 0 such that

‖Vi [0]‖Ḣ1×L2(R3) = ‖Vi [0]‖Ḣ1×L2(BR)
+ ε,

i.e., the energy of Vi [0] is essentially contained in BR . Taking into account the fact
that V is a free wave, we infer by the strong Huygens’ principle that the energy of V

at time t0−t i
n

λi
n

(for large enough n) is essentially contained in


n :=
{

x ∈ R
3 : |t0−t i

n |
λi

n
− R ≤ |x | ≤ |t0−t i

n |
λi

n
+ R
}
,

cf. Lemma 6.8. More precisely, we have

∥∥∥
∥Vi

[
t0 − t i

n

λi
n

]∥∥∥
∥

Ḣ1×L2(R3)

=
∥∥∥
∥Vi

[
t0 − t i

n

λi
n

]∥∥∥
∥

Ḣ1×L2(
n)

+ ε

as n → ∞. By rescaling this is equivalent to

‖V
λi

n ,t
i
n

i [t0]‖Ḣ1×L2(R3) = ‖V
λi

n ,t
i
n

i [t0]‖Ḣ1×L2(
̃n)
+ ε

where 
̃n = {x ∈ R
3 : |t0 − tn| − λi

n R ≤ |x | ≤ |t0 − tn| + λi
n R}. Thus, as n → ∞,

V
λi

n ,t
i
n

i [t0] concentrates at r i = |t0 − t i |. If r i < t0 − c, we apply the argument from

Lemma 6.7 to conclude that Vi = 0 (the logic being that V
λi

n ,t
i
n

i [t0] cannot concentrate
inside of Bt0−c because there, u(Tn)[t0] equals uc[t0]). If r i ≥ t0 − c, it follows from
Lemma 6.4 and the orthogonality of Lemma 6.5, see also Remark 6.6, that the energy
of the profile Vi is small. In any case, we arrive at the desired conclusion. ��

An immediate consequence of Lemma 6.10 is the fact that the bulk of the energy
of u(Tn)[t0] is concentrated on the bounded profile Vb (in particular, Vb is nonzero).

6.4 The nonlinear profile decomposition

After extracting a subsequence we have λb
n → λb, tb

n → tb as n → ∞ where λb and
tb are some finite numbers. Now we define new initial data by

( f, g) := lim
n→∞ V

λb
n ,t

b
n

b [t0] = V λb,tb

b [t0]

with convergence in Ḣ1 × L2(R3). By the local existence theory [43] we obtain a time
t∗ > t0 and an energy class solution u∗ satisfying
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{
�u∗(t, x)+ u∗(t, x)5 = 0, (t, x) ∈ (t0, t∗)× R

3

u∗[t0] = ( f, g)
(6.7)

where we assume t∗ to be maximal.
To each profile (Vi , (λ

i
n), (t

i
n)) in the decomposition of Lemma 6.5 there is associ-

ated a nonlinear profile (Ui , (λ
i
n), (t

i
n)) which is characterized by �Ui + U 5

i = 0 and
either

‖Vi [t] − Ui [t]‖Ḣ1×L2(R3) → 0 as t → ±∞

if t0−t i
n

λi
n

→ ±∞ in the limit n → ∞ or

Ui [t0] = Vi [t0]

in the case |t0−t i
n |

λi
n

� 1 for all n ∈ N. The existence of the nonlinear profiles is a

consequence of the small data scattering theory [37], cf. also [21]. Moreover, since
the energy of all unbounded profiles Vi is small, it follows that the Ui exist globally
(and scatter) provided i �= b and by a continuity argument as in the proof of Lemma
6.4 we may assume ‖Ui [t]‖Ḣ1×L2(R3) to be small for all t ∈ R. In the case of Ub we
have at least existence for small times. By the symmetries of the equation we see that,

for all n ∈ N, U
λb

n ,t
b
n

b is a solution with data U
λb

n ,t
b
n

b [t0] = V
λb

n ,t
b
n

b [t0] and thus, by the
local well-posedness we infer

‖U
λb

n ,t
b
n

b [t] − u∗[t]‖Ḣ1×L2(R3) → 0 (n → ∞) (6.8)

for any t ∈ [t0, t∗). Now we want to compare the solution u∗ with u(Tn). The follow-
ing lemma yields a representation of the nonlinear evolution of the decomposition
Eq. (6.3).

Lemma 6.12 Let t1 ∈ [t0, t∗). Then there exists an n0 ∈ N such that, for all n ≥ n0,

the nonlinear profiles U
λi

n ,t
i
n

i associated to the decomposition in Lemma 6.5 exist on
[t0, t1] × R

3 and

u(Tn)(t, x) =
A∑

i=1

U
λi

n ,t
i
n

i (t, x)+ W n A(t, x)+ Rn A(t, x)

for all A ∈ N and t ∈ [t0, t1] where W n A is the free wave from Lemma 6.5. Further-
more, the error Rn A satisfies

lim
A→∞ lim sup

n→∞
‖Rn A[·]‖L∞([t0,t1])Ḣ1×L2(R3) = 0.

Proof This is (the second part of) the main theorem in [1]. Note that in [1] the result is
actually proved for the defocusing critical wave equation. However, once the existence
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of the nonlinear profiles Ui is established, one checks that the argument in Section
IV of [1] is in fact insensitive to the sign of the nonlinearity. As already mentioned,
the Ui for i �= b exist globally and scatter since the energy of the corresponding Vi is
small (in fact, arbitrarily small if we choose t0 and c large enough). In the case of Ub

it follows from Eq. (6.8) that we may assume the existence of U
λb

n ,t
b
n

b on [t0, t1] × R
3

provided n is sufficiently large. ��
The final step in the construction consists of showing that u∗ = uc on (K t∗

t0,c)
◦. In

particular, we thereby obtain that u∗ can be extended beyond time t∗ and thus extends
globally.

Lemma 6.13 The solution u∗ extends to all of [t0,∞)× R
3 and satisfies

u∗ = uc on K ∞
t0,c.

Proof Let t ∈ [t0, t∗) and choose n so large that Lemma 6.12 applies. For N ∈ N

denote by P<N the Littlewood-Paley projector to frequencies {ξ ∈ R
3 : |ξ | ≤ N }.

Given ε > 0 we choose N so large that

‖u∗(t, ·)− P<N u∗(t, ·)‖L6(Bt−c)
< ε.

Consider the decomposition in Lemma 6.12. For an unbounded profile (Ui , (λ
i
n), (t

i
n))

with λi
n → 0 as n → ∞ we clearly have ‖P<N U

λi
n ,t

i
n

i (t, ·)‖L6(Bt−c)
→ 0 as

n → ∞. Furthermore, for a profile (Ui , (λ
i
n), (t

i
n)) with λi

n → ∞ we obtain

‖U
λi

n ,t
i
n

i (t, ·)‖L6(Bt−c)
→ 0 as n → ∞. Finally, if λi

n � 1 and |t i
n| → ∞ we infer

‖U
λi

n ,t
i
n

i (t, ·)‖L6(Bt−c)
→ 0 as n → ∞ by the small data scattering theory and Huy-

gens’ principle (recall that the Ḣ1 × L2(R3) norm of all unbounded profiles is small).
By choosing A sufficiently large we can also achieve

‖W n A(t, ·)‖L6(R3) + ‖Rn A(t, ·)‖L6(R3) < ε

by Lemma 6.12. These estimates and the decomposition from Lemma 6.12 imply

‖u∗(t, ·)− u(Tn)(t, ·)‖L6(Bt−c)
� ε

provided n is chosen large enough. Since ε > 0 was arbitrary and u(Tn) = uc on
K t

t0,c by Lemma 6.4, we obtain u∗ = uc on K t
t0,c. Furthermore, the solution can

be continued since outside of K t
t0,c the kinetic energy stays small for all times by a

continuity argument as in the proof of Lemma 6.4 and inside of K t
t0,c the solution u∗

equals uc which exists on K ∞
t0,c. ��
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