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Abstract A novel parameterization concept for the opti-
mization of truss structures by means of evolutionary al-
gorithms is presented. The main idea is to represent truss
structures as mathematical graphs and directly apply genetic
operators, i.e., mutation and crossover, on them. For this
purpose, new genetic graph operators are introduced, which
are combined with graph algorithms, e.g., Cuthill–McKee
reordering, to raise their efficiency. This parameterization
concept allows for the concurrent optimization of topology,
geometry, and sizing of the truss structures. Furthermore, it
is absolutely independent from any kind of ground struc-
ture normally reducing the number of possible topologies
and sometimes preventing innovative design solutions. A fur-
ther advantage of this parameterization concept compared to
traditional encoding of evolutionary algorithms is the pos-
sibility of handling individuals of variable size. Finally, the
effectiveness of the concept is demonstrated by examining
three numerical examples.

Keywords Truss topology optimization · Mathematical
graph · Structural optimization · Parameterization ·

Evolutionary algorithms

1 Introduction

In the field of truss topology optimization, a variety of meth-
ods have been developed in the last decades. A lot of research
has been done on the ground structure approach initiated by
Dorn et al. (1964) where the members and the nodes are se-
lected from a highly connected ground structure. The cross-
sectional areas of the members are considered as continuous
design variables, whereas the nodal locations are fixed (e.g.,
Gou et al. 2001) or can be moved (e.g., Wang et al. 2002
or Gou et al. 2003) to minimize the mass or the compliance
of the truss structure. Most often, the optimization objective
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is restricted to comply with stress and eigen-frequency con-
straints as well as local and global stability requirements as
can be seen, for example, in Pedersen and Nielsen (2003).
These types of constraints extremely complicate the search
for the global optimum due to the phenomenon of singular
topologies. A thorough summary of many methods dealing
with design-dependent constraints, e.g. the ε-relaxation ap-
proach by Cheng and Guo (1997), can be found in Rozvany
(2003). Furthermore, stress ratio and compliance based meth-
ods, e.g., fully stressed design (FSD) or uniform energy distri-
bution (UED), have been thoroughly investigated. A critical
review of these and further popular methods, e.g., evolution-
ary structural optimization (ESO, see Xie and Steven 1997) or
adaptive biological growth (ABG), can be found in Rozvany
(2001).

Beneath all the above-mentioned methods, the appli-
cation of genetic algorithms (GA) to truss topology opti-
mization has been investigated in several publications. The
well-known basic concept of GA was introduced by Holland
(1975), and the basic terminology of genetic search and its
principal components are discussed by Goldberg (1989). The
traditional binary encoding is presented by Hajela (1992),
whereas a more modern overview of applications of evolu-
tionary algorithms (EA) to design optimization can be found
in Bentley (1999). Hajela and Lee (1995) use GA to develop
near-optimal topologies by subdividing the optimization task
into two stages. The first stage generates a number of kine-
matically stable truss topologies, whereas the second stage is
dedicated to the member sizing to get a minimum weight
structure. Azid et al. (2002) employ evolutionary genetic
search in combination with a slightly modified ground
structure approach for the layout optimization of a three-
dimensional truss and Lingyun et al. (2004) successfully ap-
ply a niche hybrid genetic algorithm to truss optimization
with frequency constraints. Kawamura et al. (2002) present
an interesting representation approach by using triangular
elements as basic design entity. The topologies produced by
this method are guaranteed to have neither needless members
nor undesirable overlaps between members and only stable
structures can occur. All these examples show that GAs are
also well-suited for the optimization of truss structures, al-
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though a global optimum solution can hardly be found. Also,
all these examples are based on binary or real-valued encod-
ing, i.e., the design variables are organized in vectors, which
are manipulated by genetic operators (crossover and muta-
tion) according to the basic theory of EA.

Basically, the topology of a truss structure can also be con-
sidered and modeled as a mathematical graph (West 2001).
The nodes of the truss structure can be regarded as vertices,
whereas the members correspond to the edges of the graph.
Kawamoto et al. (2004) have used the graph representation in
combination with the ground structure approach to perform
topology optimization of symmetric mechanisms. Their idea
is to embed some topological graphs into the ground structure
to reduce the complexity of the optimization problem.

In this paper, a novel combination of evolutionary al-
gorithms and mathematical graph theory is applied to truss
topology optimization. The complete truss topology is rep-
resented by a graph, whereas each vertex corresponds to a
node and each member is described by an edge. In other
words, instead of holding the information of the truss struc-
ture in a conventional one-dimensional genotype, the graph
itself is considered as the genotype, and special operators are
directly applied on it. Additionally, some typical graph al-
gorithms, e.g., Cuthill–McKee reordering and connectivity
analysis, are used to improve the optimization efficiency or
filter out globally unstable solutions. The main motivation to
investigate this combination of methods is the independence
of any kind of ground structure. Furthermore, this approach
overcomes the ordinary restriction of having constant length
genotypes for genetic search, i.e., the number of design enti-
ties must remain unchanged. The only way to remove mem-
bers from the truss structure is to let the cross-sectional area
be null or to use a kind of a binary gene determining whether
the member exists or not. Only Ryoo and Hajela (2004) have
investigated a binary-encoded representation concept based
on variable length genotypes. The graph representation ap-
proach shows much more flexibility, as the size of the graphs
can arbitrarily change during the optimization process and it
is absolutely not a problem to mate graphs of unequal size.

A basic introduction to mathematical graph theory is
given in Section 2 and in Section 3 the graph genotype as rep-
resentation concept for EA is defined. Section 4 deals with
genetic graph operators required for mutating and mating
graph individuals. Finally, the Section 5 presents three pla-
nar numerical examples to demonstrate the strength of the
concept at hand.

2 Basic notions of graph theory

It would be immoderate to give a thorough introduction to
the mathematical graph theory at this point, as it is a field of
research of inconceivable complexity. Thus, this section only
covers the most important notions and concepts that are used
in the scope of this publication.
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Fig. 1 Graph G(V, E)

In literature, graphs are defined in slightly different
ways, e.g., Foulds (1994), Chen (1997), or Balakrishnan and
Ranganathan (2000). A brief definition is given here.

Definition 1 A graph G(V, E) is an ordered pair, where V is
a finite, nonempty set whose elements are termed vertices,
and where E is a set of unordered pairs of distinct vertices of
V. Each element e=(u,v) ∈ E (where u, v ∈ V), is called an
edge and is said to be incident with its vertices u and v. Also,
the vertices u and v are then incident with e.

There are some other important notions that will be ex-
plained with an example. Consider the graph G(V, E) in Fig. 1
in which

V = {v1, v2, v3, v4, v5}

E = {(v1, v2), (v1, v3), (v2, v2), (v2, v3),

(v3, v4)1, (v3, v4)2} (1)

Basically, vertices u and v in V are adjacent to each other
if, and only if, there is an edge in E with u and v as its
endpoints. For example, the vertices v1 and v2 are adjacent,
as they are connected by the edge e1. A vertex having no
incident edges, i.e., it is not connected to any other vertex
in V, is called an isolated vertex (e.g., v5). Two edges of a
graph are termed a set of parallel edges, if they have the same
endpoints, e.g., e5 = (v3, v4)1 and e6 = (v3, v4)2. An edge
for which the two endpoints are the same, e.g., e3 = (v2, v2),
is called a loop at the common vertex. Finally, the number
of vertices and edges in the graph G(V, E) are denoted the
order and the size, respectively. The graph G(V, E) in Fig. 1
has order n(G(V, E)) = 5 and size m(G(V, E)) = 6.

Moreover, it is possible to assign properties to graphs, i.e.,
to its vertices and edges. A graph is said to be labeled, if its
n(G), vertices are distinguished from one another by labels
v1, v2, . . . , vn as it is done in the example. Furthermore, ar-
bitrary additional properties can be attached to each vertex as
it is for example done for the so-called graph coloring prob-
lem, where each vertex is colored. Analogously, the concept
of a weighted graph associates a nonnegative number w(e)
to each edge that is called edge weight. The sum of all edge
weights is, therefore, the total weight of the graph.
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Fig. 2 Simple truss structure and the schematic illustration of its corre-
sponding graph genotype

3 The graph genotype

The graph genotype has to comply with some requirements to
make it usable as representation concept for the optimization
of truss structures. It must represent the position of all nodes
as well as the location and the cross-sectional area of all
members to explicitly define its corresponding truss structure.

3.1 Parameterization requirements

In Fig. 2 a classic two-dimensional truss structure is depicted
with its corresponding graph genotype. For each node of the
structure, three different data types need to be known:

– a unique identifier,
– the planar or spatial coordinates,
– and a boolean parameter determining whether the node can

be moved during the optimization process or not. Clamped
or loaded nodes must not be relocated.

Additionally, some information about each member is
required:

– the two unique identifiers of the member’s nodes, and
– the cross-sectional area.

All the above-mentioned information is required to un-
ambiguously define the truss structure and, therefore, has
to be represented by the graph genotype. According to
Balakrishnan and Ranganathan (2000) a simple graph has
no loops and no multiple, i.e., parallel edges. Loops do not
make sense in a truss structure, as they only contribute to the
overall mass but not to the structural stiffness. Parallel edges
are undesired because they would unnecessarily increase the
complexity of the structure, and they could easily be replaced
by single edges. Furthermore, the requirement of a unique
identifier for each node can be realized by using a labeled
graph, whereas it is reasonable to choose integers as labels.
The coordinates of the nodes and the boolean parameter are
assigned to the graph genotype’s vertices by introducing or-
dinary vertex properties. As already stated in Definition 1,
each edge is defined by an unordered pair of incident ver-
tices. In practice, these vertices are identified by their labels;
hence, each edge can be represented as a pair of labels. Fi-
nally, the cross-sectional area of each member can easily be

Table 1 Node/vertex and member/edge properties

Vertex Label x y Movable Edge Label
1

Label
2

Weight
/area

v1 1 0 0 False e1 1 2 1
v2 2 0 1 False e2 1 4 1
v3 3 1 1 False e3 2 3 1
v4 4 [0,1] [0,1] True e4 2 4 1

e5 3 4 1

mapped to the graph genotype by interpreting it as an edge
weight. In summary, the graph genotype needs to be a simple,
labeled, and weighted graph supplemented with additional
vertex properties. Each vertex holds properties defining its
label (unique integer), the position (three floating-point num-
bers for the spatial coordinates), and whether it is allowed to
move or not (boolean variable), whereas every edge holds the
information about its endpoints (labels of respective nodes)
and its cross-sectional area.

Recalling the example illustrated in Fig. 2, the Table 1
lists all required information. The members should all have
a cross-sectional area of unity. Only vertex v4 is neither
clamped nor loaded; thus, its position can be anywhere in
the square design space.

Rozvany (1997) defines layout optimization as the simul-
taneous selection of the optimal topology (spatial sequence
or connectivity of members), geometry (location of intersec-
tions), and cross-sectional dimensions (sizing). The graph
genotype allows for the concurrent optimization of all these
aspects of structural optimization, although this leads to a
tremendous complexity of the optimization task. The topol-
ogy of a truss structure is defined by the endpoints of each
member, which are represented by the labels in the graph
genotype. By either changing label 1 or label 2 of an edge
(or both) or adding and removing members, the topology can
easily be modified. The coordinates of the nodes define the
geometry of the truss structure. It is important to strictly dis-
tinguish between clamped or loaded nodes—they must not
be moved—and free nodes, which can be placed anywhere
in the design space. Consequently, only the coordinates of
movable nodes are subject to changes during the optimization
process. Finally, the sizing optimization is realized by modi-
fying the edge weights of the respective members. Needless
to say, separate optimization of the above-mentioned proper-
ties is possible, but not recommended, as a separately opti-
mized topology may no longer be optimal if the geometry is
changed.

3.2 Graph genotype analysis

Each graph genotype produced during the optimization
process has to be mapped to a finite element (FE) model
for the evaluation of its fitness composed of objective and
constraint values. Unfortunately, not each graph genotype
(or individual in terms of evolutionary optimization) can be
successfully mapped to a running FE model. After applying
genetic operators, as they will be presented in Section 4, indi-
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Fig. 3 Two undesired topologies filtered out due to violation of precon-
dition 1 (left) and 2 (right), respectively

viduals can occur representing novel truss topologies, which
would fail in the evaluation step. Thus, there are several obvi-
ous preconditions a graph genotype has to fulfill to guarantee
feasibility of the truss structure:

1. no non-connected subgraphs1 may occur,
2. all the clamped and loaded vertices (nodes) must be con-

nected, and
3. the represented truss topology must be statically

determinate.

It would be absolutely useless to start the mapping and
evaluation process for individuals not complying with these
requirements; the optimization efficiency would be deci-
sively decreased. Such individuals as depicted, for example,
in Fig. 3 need to be filtered out before by applying graph
analysis algorithms.

Connected components A path is a sequence of vertices
where each vertex is connected by an edge to the subse-
quent vertex in the path. If there exists a path from vertex
u to v, then vertex v is said to be reachable from u. A con-
nected component is a group of vertices in an undirected2

graph, which are all reachable from one another, whereas
a single vertex is considered to form the smallest possible
component. The connected-components algorithm (based on
the depth-first search algorithm; for details, see Siek et al.
2002) is able to quickly determine such connected compo-
nents. Not only is the total number of connected components
given, but also the grouping of the vertices is provided. Thus,
the connected-components algorithm is perfectly suited to
check the first and the second precondition. To comply with
the first precondition, the number of connected components
must be either exactly equal to one or, if there are more con-
nected components, only one of them may contain more than
one vertex. Furthermore, the second precondition says that no
clamped or loaded nodes may be represented by an isolated
vertex. Consequently, all the corresponding vertices must be
contained in the same connected component.

Statical determinacy The statical determinacy of a truss
structure can be estimated by applying Maxwell’s algebraic

1 A graph H is called a subgraph of G, if V (H) ⊆ V (G) and E(H) ⊆

E(G)
2 All edges are unordered pairs of vertices, i.e., they do not have an

orientation.

rule (see, e.g., Fowler and Guest 2000 and references therein).
Generally, the rule can be formulated as

f = d · n(G(V, E)) − m(G(V, E)) − s, (2)

where d is the dimensionality and s is the number of supports.
If f = 0, at least a necessary but not in general sufficient
condition for establishing statical determinacy is fulfilled.
Individuals for which it holds f < 0 are statically overde-
termined and can also be considered as feasible solutions.
However, each individual is checked for compliance with (2),
and the FE evaluation of individuals not fulfilling the condi-
tion is omitted. Nevertheless, all these individuals violating at
least one precondition are consciously kept in the optimiza-
tion process and the population, respectively, as their “genetic
material” is not necessarily useless. It would be a possibility
to repair individuals not complying with the preconditions
by applying further graph algorithms and inserting edges to
stabilize the truss structures, but practice has shown that in
an optimization run only a low percentage of individuals are
infeasible.

3.3 Implementation

The entire code is implemented in C++ and is based on four
powerful libraries. As an optimization engine the evolving
objects3 (EO) library is employed providing the basic func-
tionalities required for evolutionary computation. This library
allows for optimizing any kind of data structure such as the
graph genotype. The implementation of the graph genotype
itself is a combination of the Boost Graph Library4 (BGL)
and the eoUniGene concept introduced by König (2004). The
BGL provides a standardized generic interface for manipulat-
ing and traversing general purpose graphs. The graph geno-
type is based on such a basic graph and enhanced with the
functionalities of the eoUniGene concept. Actually, the ba-
sic idea of eoUniGene is to provide a variety of gene types
that can be combined to a heterogeneous list for parameter
optimization with EA. Instead of using such a list, the appro-
priate gene types are integrated into the graph. For example,
the vertex labels are represented by integer type genes, the
so-called int_genes, providing lower and upper limits as well
as basic operator functionalities to change the genes’ values
within these limits. Analogously, the vertex coordinates and
the edge weights are described by float_genes having basi-
cally the same properties as the int_genes but for floating-
point numbers.

Due to the huge number of evaluations typically required
for evolutionary optimizations, FELyX5, an object-oriented
FE code written in C++, is utilized allowing for extremely
fast mapping and evaluation procedures (no commercial soft-
ware is required). The graph genotype properties are mapped
to 3D-spar uniaxial tension-compression elements with three
degrees of freedom at each node. For any computation, the

3 http://eodev.sourceforge.net
4 http://boost.org, Siek et al. (2002)
5 http://felyx.sourceforge.net

http://eodev.sourceforge.net
http://boost.org
http://felyx.sourceforge.net
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self-weight of the truss members is not taken into considera-
tion. The build-up of the FE model is completed by inserting
the boundary conditions of clamped and loaded nodes. Fi-
nally, parallel computing is made possible by including the
Parallel Virtual Machine6 (PVM) library.

4 Genetic graph operators

When using evolutionary algorithms as optimization strategy,
two different kinds of genetic operators need to be imple-
mented. The mutation operators only act on a single individ-
ual at a time, whereas only few parameter values of the design
variables are changed, i.e., mutated. The crossover operators
take two individuals and create two new individuals out of
them by mixing the properties of the original individuals. It
is crucial that the genetic operators cover all aspects of layout
optimization, i.e., they have to allow for changes concerning
the topology, the geometry, and the sizing of the truss struc-
tures, otherwise, a concurrent optimization is not realistic.
There are a lot of possible operators acting on vertices and
edges and their properties, respectively. The only restriction
is to keep the number of vertices (connected or unconnected)
constant, otherwise, some graph algorithms cannot be applied
anymore. Most of the genetic operators are briefly explained,
as they are the core of any efficient evolutionary optimiza-
tion process. For the illustration of the effect of mutation and
crossover operators, it is worth introducing first the adjacency
matrix.

4.1 Adjacency matrix

The adjacency matrix is a storage format of mathematical
graphs. Additionally, it serves the purpose of visualizing the
structure of a graph, i.e., the adjacency matrix shows which
vertices are connected by edges. The effect of genetic topol-
ogy and sizing operators can be shown by means of the adja-
cency matrix; only the effect of genetic geometry operators
changing the node locations cannot be visualized.

In Foulds (1994), the traditional adjacency matrix is de-
fined in the following way.

Definition 2 The adjacency matrix A = (ai j )n×n , of a vertex-
labeled graph G, with n(G) vertices, is the matrix in which
ai j = 1 if vertex vi is adjacent to v j in G and ai j = 0 other-
wise, where vi and v j are vertices of G.

In some cases, it is reasonable to replace ai j = 1 by the
edge weights ai j = wi j of the respective edge to insert more
information into the adjacency matrix of the graph. For ex-

6 http://www.csm.ornl.gov/pvm

ample, the traditional and the weighted adjacency matrices
of the simple graph shown in Fig. 1 are

A =

 0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 , Aw =

 0 w12 0 w14
w21 0 w23 w24
0 w32 0 w34

w41 w42 w43 0

 . (3)

It is quite obvious that A and Aw, respectively, must be
symmetric, i.e., wi j = w j i . Furthermore, the entries on the
leading diagonal equal zero due to the simplicity of the graphs
not allowing loops. A lot more information is contained in
this kind of graph description, e.g., a block diagonal matrix
indicates a non-connected graph (subgraphs exist), but in the
scope of this paper the given definition is sufficient.

4.2 Mutation operators

Generally, mutation can be considered as a transformation
M : Ao → Amut of the respective graph adjacency matrix.

4.2.1 Topology mutation operators

Random removal or insertion of edges Probably the simplest
possible mutation operator concerning topology optimization
is the random insertion or removal of edges. A random num-
ber generator (RNG) is used to determine an edge to be re-
moved. Analogously, two vertices are chosen by RNG, which
are newly connected with an edge, whereas the edge weight,
i.e., the cross-sectional area of the newly created member, is
also determined by chance. In the example, below the edge
(v2, v3) is removed while another edge (v1, v3) is inserted.

Ao =

 0 w12 0 w14
w12 0 w23 w24
0 w23 0 w34

w14 w24 w34 0

→ Amut =

 0 w12 w13 w14
w12 0 0 w24
w13 0 0 w34
w14 w24 w34 0


Removal or connection of free edges Individuals might hap-
pen to occur having vertices with only one incident edge.
Obviously, such edges are not reasonable and do not con-
tribute to an optimum truss structure. Consequently, such ver-
tices need to be completely isolated (if they are not loaded or
clamped) or a second edge (or also a third edge in the three-
dimensional case) needs to be inserted to stabilize the truss
structure. Newly inserted edges are initialized with random
edge weights.

Flipping edges This operator changes the topology by flip-
ping edges, i.e., one endpoint of an existing edge is re-
connected to another vertex, whereas the new endpoint is

http://www.csm.ornl.gov/pvm
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determined by chance. The edge weight of flipped edges is
not changed as can be seen in the example below:

Ao =

 0 w12 0 w24
w12 0 w23 w24
0 w23 0 w34

w14 w24 w34 0

→ Amut =

 0 w12 w13 w14
w12 0 w23 w24
w13 w23 0 0
w14 w24 0 0

 ,

where w13 = w34.

Merging or disconnection of vertices A general problem,
when applying genetic operators, is that the structure can
hardly become simpler with ordinary removal of edges. If a
truss structure is statically determinate, one cannot simplify
it by removing a single edge, as this transforms the truss
topology to a mechanism. Therefore, two similar strategies
are implemented as mutation operators. Either a vertex is
completely disconnected from the remaining structure, i.e.,
all the edge weights in one row and its corresponding column
in the adjacency matrix are deleted, or the incident edges of
two vertices are merged as can be seen in the example below
(v3 and v4 are merged):

Ao =

 0 w12 0 w14
w12 0 w23 w24
0 w23 0 w24

w14 w24 w34 0

 → Amut =

 0 w12 w13 0
w12 0 w23 0
w13 w23 0 0
0 0 0 0

 ,

where w13 = w14. If both involved vertices are movable, the
new vertex lies exactly in-between the two original vertices.

4.2.2 Geometry mutation operators

The geometry of the truss structure can only be influenced
by the vertex locations. Thus, mutating the vertex locations
leads to a direct geometric variation of the original individ-
ual. There are two types of mutation, i.e., the uniform and the
Gaussian mutation strategies, which are applied to all vertex
location coordinates with a certain probability. For uniform
mutation, a new value is computed by randomly selecting a
value within the given limits, where in the majority of cases
the limits are given by the boundaries of the design space.
The Gaussian mutation is well-suited for the fine tuning of
a structure, as the new value of the respective coordinate is
determined by means of a rather narrow Gaussian distribu-
tion (N (0, σ )) with mean value equal to zero and standard
deviation σ that is added to the actual value (g)

g = g +N (0, σ ), (4)
where the standard deviation is a predefined parameter for
each component of the vertex coordinate vector. The stan-
dard deviation remains constant until the stopping criterion
is reached. Changes of the standard deviation values can only
be made by restarting the optimization with modified values.

4.2.3 Sizing mutation operators

The sizing mutation operators work very similar to the
geometry mutation operators. Analogously, a uniform and
a Gaussian mutation strategy (see (4)) is implemented for
mutating the edge weights of the truss structure.

4.3 Crossover operators

First, the Cuthill–McKee reordering is discussed, because
this graph algorithm is extremely important for the im-
plementation of efficient crossover operators. Subsequently,
some crossover operators are presented, which can be consid-
ered as transformations C : Ap1, Ap2 → Ao1, Ao2 of parent
to offspring individuals.

4.3.1 Cuthill–McKee reordering

The basic purpose of the Cuthill–McKee reordering algo-
rithm (Cuthill and Mckee 1969) is to reduce the bandwidth
of a sparse symmetric matrix, e.g., the adjacency matrix. The
bandwidth of an undirected graph and its adjacency matrix,
respectively, is the maximum labeling distance between two
adjacent vertices. In case of a graph G(V, E) with labeled
vertices from 1 to n(G) the bandwidth B(G) is defined as

B(G) = max{| label[u] − label[v] | | u, v ∈ V }. (5)

The bandwidth of the adjacency matrix can, thus, be
minimized by reordering the labels assigned to each vertex,
whereas a starting vertex needs to be provided.

In Fig. 4, a sample truss topology is presented with arbi-
trary vertex labeling on the left and reordered labeling on the
right. The corresponding adjacency matrices are given below.
The zeros beneath the leading diagonal are omitted for better
perceptibility.

Aarb =



0 1 1
0 1 1

1 0 1 1
1 1 0 1 1

1 1 0 1 1
1 1 0 1
1 1 1 1 0


→ Areordered =



0 1 1
1 0 1 1
1 1 0 1 1

1 1 0 1 1
1 1 0 1 1

1 1 0 1
1 1 0


The bandwidth of the first adjacency matrix is B(Aarb) =

5 and the bandwidth of the reordered adjacency matrix is
B(Areordered) = 2.

Crossover operators, as will be presented in subse-
quent sections, work most efficiently if they exchange sub-
structures of the original trusses. The purpose of applying
Cuthill–McKee reordering is to precondition the graphs rep-
resenting truss structures in terms of similarity. To achieve
maximum similarity, the starting vertices of the reordering al-
gorithm of both original graphs have to be the same, i.e., they
should have the same coordinates. It is, therefore, most rea-
sonable to choose a non-movable vertex (clamped or loaded)

v1

v2

v3

v4

v5

v6 v7

v1

v2v3

v7v4

v6v5

Fig. 4 Truss topologies with arbitrary (left) and reordered (right) vertex
labeling (starting vertex v1)
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at the boundary of the design space as a starting vertex. A
similar vertex labeling of the original graphs guarantees that
the truss structures can be split at similar positions; hence,
more realistic structures occur after the crossover operations.

4.3.2 Topology crossover operators

Proportional edge crossover This crossover type is very
similar to an ordinary 1-point crossover for traditional
one-dimensional list genotypes, but it also works for
graphs of unequal edge numbers (m(G p1) 6= m(G p2)). After
Cuthill–McKee reordering of both parent individuals and de-
termining a random number r ∈ [0, 1], the number of edges
of the parent graph genotypes (Ap1 and Ap2) are multiplied
by r and rounded to integer numbers to get the split positions
in the adjacency matrices. Two offspring graph genotypes
(Ao1 and Ao2) are then created by exchanging all edges fol-
lowing after the respective split positions as can be seen in
the example below. The value of r is set to 0.52 and the edge
weights of parent Ap1 are of equal unity and the edge weights
of Ap2 are equal to two for simpler identification of parents
and their offspring. The subscripts indicate the number of the
respective edge.

Ap1 =


0 11 12 13
11 0 14
12 14 0 15 16
13 15 0 17

16 17 0
0

 Ap2 =


0 21 22
21 0 23 24
22 23 0 25 26 27

24 25 0 28 29
26 28 0 210
27 29 210 0


The split position for the first parent is after the fourth

edge and the second parent is split after the fifth edge. Con-
sequently, this leads to offspring of the following topology.

Ao1 =


0 11 12 13
11 0 14
12 14 0 26 27
13 0 28 29

26 28 0 210
27 29 210 0

 Ao2 =


0 21 22
21 0 23 24
22 23 0 25 16

24 25 0 17
16 17 0

0


In Fig. 5, the parents and their offspring are depicted.

Uniform edge exchange The second genetic topology op-
erator exchanges incident edges of some randomly chosen

v2 v3 v5

v6v4v1

v2 v3 v5

v6v4v1

v2 v3 v5

v6v4v1

v2 v3 v5

v6v4v1

C

A

A A

p1

o1

Ap2

o2

Fig. 5 Parents and offspring of a proportional edge crossover

vertices. After the Cuthill–McKee reordering is executed, an
equally labeled vertex is chosen from each parent genotype.
The respective rows and columns of these vertices are then
simply exchanged leading to topologically novel offspring
individuals. The edge weights of all incident edges of both
vertices remain unchanged. As an example, the incident edges
of vertices v6 of the parent individuals Ap1 and Ap2 in Fig. 5
are exchanged.

Ao1 =


0 11 12 13
11 0 1
12 14 0 14 15 27
13 14 0 1 29

15 1 0 210
27 29 210 0

 Ao2 =


0 21 22
21 0 23 24
22 23 0 25 26

24 25 0 28
26 28 0

0


4.3.3 Geometry crossover operators

The aim of crossovers altering the geometry of some indi-
viduals is to average two parent individuals regarding their
vertex coordinates. In other words, after the Curhill–McKee
reordering is executed, the operator iterates over all vertices
vi of both parent individuals and geometrically mates them
with a certain probability. Provided that their vertex coor-
dinates are allowed to be changed, each component of the
vertex coordinates is modified. Let xp1vi be the vector of pla-
nar or spatial coordinates of a given vertex of the first parent
and xp2vi the coordinates of the corresponding vertex of the
second parent, then the new coordinates of two offspring in-
dividuals xo1vi and xo2vi are calculated as

xo1vi = c · xp1vi + (1 − c) · xp2vi

xo2vi = (1 − c) · xp1vi + c · xp2vi ,
(6)

where the constant c ∈ [0, 1] is randomly determined. This
operator is implemented in two slightly different implemen-
tations. When using the segment type operator, the constant
c is determined only once and remains constant until two
parents are completely processed. In contrast, the hypercube
type operator always determines a new value for c each time
two vertices of the parent individuals are mated.

4.3.4 Sizing crossover operators

The sizing crossover operators work very similarly to
the geometry crossover operators. Analogously, a segment
crossover strategy and a hypercube crossover strategy are
implemented for mating the edge weights of the parent indi-
viduals (wp1ei and wp2ei ). The Cuthill–McKee reordering is
also applied for the preconditioning of the parent individuals
and the new edge weights are calculated as

wo1ei = c · wp1ei + (1 − c) · wp2ei

wo2ei = (1 − c) · wp1ei + c · wp2ei

. (7)

Again, it holds c ∈ [0, 1].
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5 Numerical examples

Three numerical examples are presented in this section. The
first example is a variation of the ten-bar truss problem known
from several publications (e.g., Gou et al. 2001; Stolpe and
Svanberg 2003, and Pyrz 2004), which is examined for val-
idation purposes. The second example is very similar, but
the size of the structure is increased and it illustrates the in-
dependence from any kind of ground structure. Finally, the
third example discusses the optimization of a 52-bar planar
truss known from several publications (Wu and Chow 1995;
Lemonge 1999, and Lemonge and Barbosa 2004). The full
capacity of the graph representation is demonstrated by re-
formulating this example in a much freer way allowing ar-
bitrary topologies and geometries of the structure. For all
presented truss structures circular cross-sections are used, but
the concept is absolutely not limited to such simple geome-
tries. These examples are chosen to demonstrate the applica-
bility of the graph representation to simple examples, but it
is not intended to compete with other algorithms in terms of
efficiency yet. Performance tests will be subject to further
research.

5.1 The modified ten-bar truss optimization

Most often, the ten members of the ground structure indi-
cated by solid lines in Fig. 6 are optimized by mathematical
programming methods. However, this example can also be
treated by using the graph genotype concept. In the first step,
the positions of the nodes are fixed and only the optimum
number of members m and their sizes aT

= [a1, a2, . . . , am],
i.e., their cross-sectional areas, should be optimized. In con-
trast to the traditional problem formulation, all of the nodes
may be connected to each other, hence, a total number
of mmax = n · (n − 1)/2 = 15 members is possible, where
n = 6 is the total number of nodes. A minimum number of
mmin = 4 is required to form the simplest possible statically
determinant truss topology. As the optimum number of mem-
bers is not known in advance, the graph genotype is allowed
to contain between 4 and 15 edges. The formulation of the

h
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h h
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y
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v5
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Fig. 6 The ground structure of the ten-bar truss problem (solid lines)
with five additional members indicated by dashed lines

optimization problem is, therefore, formulated as follows,
where the subscript i refers to the i-th member.

minimize O(a) =

m∑
i=1

liρi ai

subject to σ min
i ≤ σi (ai ) ≤ σ max

i ,

σi (ai ) ≥ σ cr
i (ai ),

ai ≥ 0,

mmin ≤ m ≤ mmax , (8)

where li is the length, ρi is the density, and ai is the cross-
sectional area of the i-th member. Furthermore, the stress
limit in tension σ max

i ≥ 0 and the stress limit in compression
σ min

i ≤ 0 need to be observed in each member i . All mem-
bers have a circular cross-sectional areas, hence, the Euler
buckling stress can be calculated as

σ cr
i (ai ) = −aiπ Ei/(2li )

2 (9)

and the margin of safety against buckling can be defined as

ms =
σ cr

i (ai )

σi (ai )
− 1, (10)

where ms < 0 indicates buckling of the respective member.
Due to the academic nature of this optimization problem, the
effect of initial imperfections is neglected.

An EA-based optimization requires the definition of a fit-
ness function or value, respectively, assessing the quality of
each individual. For that purpose, the fitness formulations in-
troduced by König (2004) are employed, defining the fitness
value as a weighted sum of ratings for the optimization objec-
tive and the constraints in (8). An illustrative example of the
application of this fitness formulation concept can be found
in Giger and Ermanni (2005). The detailed implementation
is based on lots of experience and would go beyond the scope
of this paper.

Results The optimization results are compared to the results
of Gou et al. (2001) and Stolpe and Svanberg (2003). Thus,
the same data are used for material and geometrical parame-
ters, i.e., the height of the structure is h = 360, the external
load is given by F = 100, and for the material data and the
stress limits it holds σ min

i = −20, σ max
i = 20, Ei = 104, and

ρi = 0.1 for all i .
The optimization was randomly initialized, i.e., no prior

knowledge was introduced, and run with a population size
of 50 individuals over 1,600 generations, which is a mod-
erate number of evaluations for genetic search and such a
simple model. The extremely fast computation, processing
some hundred individuals per second, led to very short opti-
mization times. The crossover operators were applied with a
general probability of 0.7, whereas the general mutation rate
was set to 0.25. The probabilities of application of the single
mutation and crossover operators as explained in Section 4
were relatively weighted but kept constant during the entire
optimization process.
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The final result of the optimization using the graph geno-
type concept is extremely convincing. In Table 2, the result
is compared to the published results of Gou et al. (2001)
and Stolpe and Svanberg (2003). Obviously, the optimiza-
tion converges to the same at least local optimum as in Stolpe
and Svanberg (2003), whereas they solved the problem with
the sequential quadratic programming package SNOPT (Gill
et al. 2002). The difference in weight is approximately 4 g
only! A further optimization is almost impossible using EA
because the constraint values cannot exactly be reached,
i.e., the tension members show tension values of 19.90 ≤

σi (ai ) < 20.00 and the compression members very closely
reach the Euler buckling value (0 < ms ≤ 8.4455 · 10−4).
Thus, the solution is almost fully stressed.

It is absolutely obvious that EAs are ill-suited for the fine
tuning at the end of the optimization process, as the topol-
ogy can hardly be changed and only geometric and sizing
parameters are adjusted. Additionally, it would be useful to
alter the optimization process variables as the optimization
runs, because some genetic operators are more useful at the
beginning when the topology is determined and some others
should be forced in the end for the fine tuning. It is a mat-
ter of fact that adaptive (with regard to optimization process
variables) as well as hybrid (combination of different opti-
mization methods like stochastic search and mathematical
programming) strategies could be very helpful here. How-
ever, the graph genotype concept proves to be working.

Optimization including movable nodes This example com-
pletely excludes geometry optimization, as all the node posi-
tions are fixed. A further optimization was executed enabling
the nodes without supports or loading, i.e., vertices v4 and
v5, to move. The result is depicted in Fig. 7, and the cross-
sectional areas ǎ of the members are presented in Table 2.

The most obvious difference between this and the first so-
lution without moving nodes is the topology. One may expect
that the topology would remain the same and only the geom-
etry would be changed, but although lots of optimization runs
were performed, it was impossible to find a lighter result hav-
ing the same topology as the original result with static nodes.

Table 2 Resulting area vectors: ā from Gou et al. (2001), â from Stolpe
and Svanberg (2003), ã from the graph genotype optimization, and ǎ
from the optimization with movable nodes

Member ā â ã ǎ

a1 5.00000 5.00000 5.00139 12.8538
a2 0 5.00000 5.00139 9.48097
a3 70.35876 70.35876 70.3595 72.6613
a4 40.62165 0 – 27.0939
a5 57.44769 40.62165 40.6388 26.4674
a6 40.62165 0 – 49.7662
a7 14.14214 14.14214 14.14214 2.53085
a8 0 0 – –
a9 7.07107 0 – 2.13747
a10 0 68.31720 68.3187 –
a11 − a14 – – – –
Weight 8785.79 8553.44 8557.45 5898.23
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Fig. 7 Optimization result with movable nodes. Final coordinates are
v4: (299.62/172.99) and v5: (453.59/219.50)

Obviously, the concurrent optimization of topology, geom-
etry, and sizing led to a convincing result that could hardly
be reached with sequential optimization of topology, geom-
etry, and sizing. Again, the solution is almost fully stressed,
i.e., the stresses in tension bars are 19.99 ≤ σi (ai ) < 20.00
and the compression members are very close to the Euler
buckling value (0 < ms ≤ 2.7633 · 10−4).

5.2 Extended planar truss optimization

The purpose of this example is to increase the complexity of
the optimization problem by introducing more loaded nodes.
In particular, there is no need to assume a ground structure
and, thus, the variety of different topologies is not limited
in advance. The problem formulation is exactly the same as
shown in (8) except for the maximum number of vertices
n and the number of edges m. For this problem it holds
n = 14, whereas the vertices v1, v2, . . . , v7 cannot move,
and 10 ≤ m ≤ 25 is considered to be sufficient to allow for all
reasonable topologies. The external load F = 100 is applied
five times, and the loaded nodes are equidistantly distributed
over the length of the structure (h = 360). The optimization
was randomly initialized independent of any kind of ground
structure, and all seven movable vertices could be placed any-
where in the design space indicated by dashed lines in Fig. 8.

Result The optimization revealed that the number of poten-
tial vertices chosen was too high, as only three vertices incor-
porated into the optimum structure are also depicted in Fig. 8,

F F F FF
v2 v3 v4 v5 v6 v7
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14
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Fig. 8 Optimum result for the extended planar truss optimization. Fi-
nal coordinates are v8: (381.58/188.12), v9: (673.41/144.95), and v10:
(981.52/188.72)
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and the remaining four movable vertices were isolated. In
Table 3, a summary of the optimization result is given. For
the tension members, the axial stresses are listed, and for the
compression members, the margins of safety according to
(10) are stated.

The structure consists of 16 members and has an overall
weight of 36,704 g. The optimization process is totally con-
verged to at least a local optimum solution with almost fully
stressed members. The axial stresses in the tension mem-
bers are extremely close to the limit, and also the compres-
sion members have only a minor Euler buckling reserve of
approximately 5%. The similarity of these values is caused
by the fitness function definition. The compression mem-
bers could definitely be pushed closer to the limit, but this
would require a restart of the optimization with adjusted fit-
ness function definition and decreased standard deviations for
Gaussian mutation according to (4). Instead of using EAs for
this purpose, a mathematical programming method should be
used for the final fine tuning of the structure. Finally, it has
to be noted that this optimization result would not have been
possible with a ground structure approach only connecting
neighboring nodes as in the traditional ten-bar truss prob-
lem. The triangle structure v1, v8, v9 could not have been
generated. This result clearly shows that the graph genotype
concept proves to be working for larger problems and may
lead to innovative topologies.

5.3 Planar 52-bar truss optimization problem

The planar 52-bar truss problem shown in Fig. 9 is inves-
tigated to demonstrate the applicability of the graph repre-
sentation to more complex optimization tasks and the results
are compared to the results presented in other publications.
The total mass of the structure should be minimized for the
given load case, i.e., the nodes v1 to v4 are simply supported
and each of the nodes from v17 to v20 is subjected to loads
Fx = 100 kN and Fy = 200 kN. The maximum allowable
stresses in tension as well as in compression members are

Table 3 Results of the extended planar optimization example

Member ȧ σi (ai ) ms

a1 146.131 – 4.7825 · 10−2

a2 153.063 – 4.7832 · 10−2

a3 60.0126 19.9958 –
a4 24.1227 – 4.7978 · 10−2

a5 62.7303 19.9975 –
a6 73.5705 – 4.7876 · 10−2

a7 74.5349 – 4.7884 · 10−2

a8 16.4156 19.9974 –
a9 33.3882 19.9970 –
a10 58.7885 – 4.8156 · 10−2

a11 77.4532 – 4.7868 · 10−2

a12 8.17042 19.9961 –
a13 18.3648 19.9949 –
a14 33.1583 – 4.8027 · 10−2

a15 95.5592 – 4.7816 · 10−2

a16 13.3872 19.9947 –
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Fig. 9 The planar 52-bar truss ground structure

restricted to 180 MPa. Furthermore, the member areas are
linked into 12 groups according to Table 4, and the values
of the cross-sectional areas have to be chosen from Table 5.
The Young’s modulus and the density are equal for all mem-
bers and their values are 2.07×105 MPa and 7,860 kg/m3,
respectively.

Results All the presented solutions (see Table 6) satisfy the
constraints, hence, the total mass can directly be compared
as a solution quality measure. Benchmark 1 from Wu and

Table 4 Member grouping for the
52-bar truss optimization problem Group Members

A1 1, 2, 3, 4
A2 5, 6, 7, 8, 9, 10
A3 11, 12, 13
A4 14, 15, 16, 17
A5 18, 19, 20, 21, 22, 23
A6 24, 25, 26
A7 27, 28, 29, 30
A8 31, 32, 33, 34, 35, 36
A9 37, 38, 39
A10 40, 41, 42, 43
A11 44, 45, 46, 47, 48, 49
A12 50, 51, 52
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Table 5 The available cross-sectional areas

No. mm2 No. mm2

1 71.613 33 2,477.414
2 90.968 34 2,496.769
3 126.451 35 2,503.221
4 161.290 36 2,696.769
5 198.064 37 2,722.575
6 252.258 38 2,896.768
7 285.161 39 2,961.284
8 363.225 40 3,096.768
9 388.386 41 3,206.445

10 494.193 42 3,303.219
11 506.451 43 3,703.218
12 641.289 44 4,658.055
13 645.160 45 5,141.925
14 792.256 46 5,503.215
15 816.773 47 5,999.998
16 940.000 48 6,999.986
17 1,008.385 49 7,419.340
18 1,045.159 50 8,709.660
19 1,161.288 51 8,967.724
20 1,283.868 52 9,161.272
21 1,374.191 53 9,999.980
22 1,535.481 54 10,322.560
23 1,690.319 55 10,903.204
24 1,696.771 56 12,129.008
25 1,858.061 57 12,838.684
26 1,890.319 58 14,193.520
27 1,993.544 59 14,774.164
28 2,019.351 60 15,806.420
29 2,180.641 61 17,096.740
30 2,238.705 62 18,064.480
31 2,290.318 63 19,354.800
32 2,341.191 64 21,612.860

Chow (1995) produced the worst result after 60,000 eval-
uations and was found by using a steady-state GA apply-
ing two-point crossovers. The results of benchmark 2 from
Lemonge (1999) (20,000 evaluations) and benchmark 3 from

Lemonge and Barbosa (2004) (population size 70,250 gen-
erations in 20 independent runs) both were obtained by ap-
plying a generational GA, whereas benchmark 3 additionally
included an adaptive penalty scheme. According to Lemonge
and Barbosa (2004), the resulting masses are essentially equal
(1,903.366392 kg vs 1,903.366416 kg) with distinct values
for some design variables. In fact, the masses are exactly
equal, as only the order of the design variables for groups
A3, A6, A9, and A12 is exchanged.

The graph-based truss optimization leads to a set of six
very similar design solutions (see Table 6), all of them hav-
ing exactly the same mass. The first two solutions are already
known from benchmarks 2 and 3, but four further solutions
(variations 1 to 4) having the same mass could be found re-
specting the stress constraint. As already mentioned, the only
difference of these solutions is the order of the cross-sectional
areas of the horizontal members. These results are obtained
by running 20 independent and random initialized runs with
a population size of 100 graph individuals over 5,000 gen-
erations. This inefficiency can probably be explained with
the fact that only sizing mutation operators (Section 4.2.3)
and sizing crossover operators (Section 4.3.4) are applied
because of the fact that the topology and the geometry of the
structure must remain unchanged. The graph representation is
definitely not suited to only perform sizing optimization; the
binary representation obviously outperforms the presented
concept when applied to such optimization tasks in terms of
efficiency. Nevertheless, the graph representation is able to
cope with this optimization task and finds a set of at least
six local optimum solutions. However, the six presented so-
lutions are not exactly identical as the maximum stresses in
their members are different. All solutions are very close to
the upper limit regarding the tension members, but there are
slight differences considering the compression members. For
variation 2, the absolute value of the maximum compression
stress is lower than for all other solutions and, therefore, this
solution has to be considered as being superior to the others.

Table 6 Comparison of the 52-bar planar truss optimization results

Group Benchmark 1 Benchmark 2 Benchmark 3 Variation 1 Variation 2 Variation 3 Variation 4 Buckling

A1 4,658.055 4,658.055 4,658.055 4,658.055 4,658.055 4,658.055 4,658.055 5,999.998
A2 1,161.288 1,161.288 1,161.288 1,161.288 1,161.288 1,161.288 1,161.288 3,703.218
A3 645.160 363.225 494.193 494.193 494.193 494.193 363.225 1,993.544
A4 3,303.219 3,303.219 3,303.219 3,303.219 3,303.219 3,303.219 3,303.219 3,703.218
A5 1,045.159 940.000 940.000 940.000 940.000 940.000 940.000 3,703.218
A6 494.193 641.289 641.289 494.193 363.225 363.225 494.193 2,180.641
A7 2,477.414 2,238.705 2,238.705 2,238.705 2,238.705 2,238.705 2,238.705 2,180.641
A8 1,045.159 1,008.385 1,008.385 1,008.385 1,008.385 1,008.385 1,008.385 3,096.768
A9 285.161 494.193 363.225 363.225 494.193 641.289 641.289 1,993.544
A10 1,696.771 1,283.868 1,283.868 1,283.868 1,283.868 1,283.868 1,283.868 792.256
A11 1,045.159 1,161.288 1,161.288 1,161.288 1,161.288 1,161.288 1,161.288 2,477.414
A12 641.289 494.193 494.193 641.289 641.289 494.193 494.193 1,890.319
W 1,970.142 1,903.3664 1,903.3664 1,903.3664 1,903.3664 1,903.3664 1,903.3664 3,782.8242
σtmax 178.924 179.906 179.897 179.783 179.962 179.987 179.963 169.468
σcmin −153.109 −165.81 −165.143 −155.272 −150.432 −165.484 −165.848 −79.296

Benchmark 1: Wu and Chow (1995), benchmark 2: Lemonge (1999), and benchmark 3: Lemonge and Barbosa (2004). The cross-sectional areas
of the horizontal members are printed in italic shape for the six variations of equal mass. For each solution the total mass, the maximum tension
stresses as well as the maximum compression stresses are stated
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Consideration of Euler buckling From an engineering point
of view, it is absolutely mandatory to perform a buckling
analysis, as the truss members are extremely slender. For this
analysis the Euler buckling criterion according to (10) is ap-
plied, which reveals that none of the previously presented
optimum truss structures is stable. Consequently, the follow-
ing truss optimizations are extended by a Euler buckling con-
straint analogously to the examples of Sections 5.1 and 5.2
section. The additional Euler buckling constraint in combina-
tion with the discrete design variables extremely complicates
the optimization task. A lot of individuals violating the buck-
ling constraint are created by the operators, as choosing the
next smaller cross-sectional area from Table 5 often leads to
buckling designs. Therefore, 20 independent optimizations
with population size 100 are run over 10,000 generations
leading to the optimum design with a mass of 3,782.8242 kg;
see Table 6. The solution fulfilling the Euler stability crite-
ria is almost 100% heavier than the results of the previously
presented optimizations.
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Fig. 10 Optimum result for the planar truss optimization. Final co-
ordinates in mm are v5: (0.0/7,665.7), v6: (1,306.4/7,365.3), and v7:
(2,502.4/6088.6), v8: (4,204.0/3,799.1)

Table 7 Results of the free optimization. The final mass is
1,097.7158 kg

Member a σi (ai ) ms (10)

a1 2,341.191 179.91837 –
a2 3,703.218 175.91492 –
a3 494.193 172.49449 –
a4 494.193 176.52827 –
a5 1,045.159 – 4.36602 · 10−2

a6 2,896.768 – 0.12584
a7 4,658.055 – 1.88401 · 10−2

a8 6,999.986 – 1.96118 · 10−2

a9 1,161.288 172.22227 –
a10 1,283.868 171.56366 –
a11 1,374.191 168.33515 –
a12 1,374.191 179.91868 –
a13 198.064 154.17152 –
a14 1,690.319 – 0.16130
a15 1,690.319 – 7.80826 · 10−2

a16 1,535.481 – 4.75843 · 10−2

Free optimzation The planar 52-bar truss optimization prob-
lem is reformulated to demonstrate the full capacity of the
graph representation. So far, the topology as well as the geom-
etry of the 52-bar truss could not be changed and the design
space was further reduced by the prescribed grouping of the
member cross-sectional areas. Actually, these restrictions in-
hibit the optimizer from discovering innovative design solu-
tions. Thus, the optimization task is formulated much freer,
i.e., only the supported and the loaded nodes of the truss
are given. All other nodes are not restricted to any location
and can move through the design domain, i.e., the rectangle
defined by the vertices v1, v4, v12, and v9 in Fig. 10. The
maximum number of nodes is chosen to be 20 and the num-
ber of members must be between 10 and 60. Naturally, the
maximum stress constraint and the buckling constraint have
to be fulfilled, i.e., the optimization formulation is analogous
to the definition in (8).

The complexity of this optimization task is extremely in-
creased and, therefore, requires many more evaluations to
converge to an optimum solution. First, the population size
is set to 500 and the optimization is run over 10,000 genera-
tions. Afterwards, the best solution of the first run is taken as
initial design for a second optimization run (population size
250 over 4,000 generations) with adjusted optimization para-
meters to emphasize the fine tuning of the structure. After six
million evaluations, the solution depicted in Fig. 10 is found
with a final mass of 1,097.7158 kg. The cross-sectional areas,
the maximum tension stress values, and the margins of safety
for buckling of each member are within the limits and can be
found in Table 7. The resulting design consists of 16 mem-
bers nine of which are tension members and seven are under
compression, and none of the compression members reaches
critical stresses close to the limit of 180 MPa. Only two of
the four supported nodes are used and the members are quite
logically arranged. In general, the compression members are
kept rather short to fulfill the buckling constraint with rel-
atively slender members. Furthermore, the sequence of the
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compression members 5 to 8 approximates a parabolic shape
that seems to be optimal to block the rotation of the structure
around the node v1. The resulting design solution is approx-
imately 71% lighter compared to the design solution with
buckling constraint presented in Table 6. This convincing op-
timization result clearly shows that the graph representation
of truss structures is able to fit sophisticated structures into
given boundary conditions, although the computation costs
are still rather high.

6 Conclusion

In the scope of this paper, a novel graph-based parameteri-
zation concept is introduced allowing for the optimization
of truss structures with EA. The concurrent optimization
of topology, geometry, and sizing is a central property of
the presented parameterization approach. The optimization
examples demonstrate the quality of the method leading to in-
novative topologies independent of any kind of ground struc-
ture. Basically, only the loaded and clamped nodes must be
given, and the optimization method itself tries to fit an op-
timum topology with optimum geometry and sizing into the
given design space.

Nevertheless, the concept needs to be further developed
in terms of adaptivity and fine tuning. Practice has shown
that the fitness function definition and single-gene properties
need to be adjusted during the optimization process; other-
wise, it is hardly possible to obtain fully stressed designs. A
self-adaptive fitness definition will be implemented by incor-
porating the degree of constraint violation. If a constraint is
not satisfied from any of the individuals, e.g., the stress con-
straint, the penalty value for this constraint will be increased
to force the optimization to fulfill the respective constraint. In
the same way, it seems to be reasonable to adjust (reduce) the
standard deviation of the Gaussian mutation for nodal coor-
dinates and member cross-sectional areas towards the end of
the optimization to fine tune the near-optimal solution. This
can be realized by analyzing the success of the Gaussian
mutation operators and the location of improved solutions
in the search space. Furthermore, the EA-based optimization
algorithm should be extended with self-adaptive mechanisms
adjusting the probabilities of application of the genetic oper-
ators during the optimization process. For example, genetic
topology operators can hardly produce improved solutions
when the optimization is almost converged to an optimum.
Thus, the probability of the topology operators should be re-
duced to push the genetic geometry and sizing operators. This
can be realized by analyzing the success of the genetic oper-
ators. The probability of application for successful operators
should be moderately increased, whereas the probabilities of
inefficient operators are reduced.

A further extension could be a hybrid optimization algo-
rithm combining the traits of genetic search methods and
mathematical programming to accelerate the optimization
process providing the same result quality.
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