Approach and avoidance movements are unaffected by cognitive conflict: A comparison of the Simon effect and stimulus-response compatibility

Kerzel, D. ; Buetti, S.

In: Psychonomic Bulletin & Review, 2012, vol. 19, no. 3, p. 456-461

Ajouter à la liste personnelle
    Summary
    Participants in this study reached from central fixation to a lateral position that either contained or was opposite to the stimulus. Cognitive conflict was induced when the stimulus and response directions did not correspond. In the Simon task, the response direction was cued by the color of the lateral stimulus, and corresponding and noncorresponding trials varied randomly in the same block of trials, resulting in high uncertainty and long reaction times (RTs). In the stimulus-response compatibility (SRC) task, participants reached toward or away from the stimulus in separate blocks of trials, resulting in low uncertainty and short RTs. In the SRC task, cognitive conflict in noncorresponding trials slowed down RTs but hardly affected reach trajectories. In the Simon task, both RTs and reach trajectories were strongly influenced by stimulus-response correspondence. Despite the overall longer RTs in the Simon task, reaches were less direct and deviated toward the stimulus in noncorresponding trials. Thus, cognitive conflict was resolved before movement initiation in the SRC task, whereas it leaked into movement execution in the Simon task. Current theories of the Simon effect, such as the gating of response activation or response code decay, are inconsistent with our results. We propose that the SRC task was decomposed as approaching and avoiding the stimulus, which is sustained by stereotyped visuomotor routines. With complex stimulus-response relationships (Simon task), responses had to be coded as leftward and rightward, with more uncertainty about how to execute the action. This uncertainty permitted cognitive conflict to leak into the movement execution