
DOI: 10.1007/s00453-007-0037-z

Algorithmica (2007) 49: 69–77 Algorithmica
© 2007 Springer Science+Business Media, Inc.

Sample Complexity for Computational
Classification Problems1

Daniil Ryabko2

Abstract. In a statistical setting of the classification (pattern recognition) problem the number of examples
required to approximate an unknown labelling function is linear in the VC dimension of the target learning class.
In this work we consider the question of whether such bounds exist if we restrict our attention to computable
classification methods, assuming that the unknown labelling function is also computable. We find that in this
case the number of examples required for a computable method to approximate the labelling function not only
is not linear, but grows faster (in the VC dimension of the class) than any computable function. No time or
space constraints are put on the predictors or target functions; the only resource we consider is the training
examples.

The task of classification is considered in conjunction with another learning problem—data compression.
An impossibility result for the task of data compression allows us to estimate the sample complexity for pattern
recognition.

Key Words. Pattern recognition, Classification, Sample complexity, Kolmogorov complexity, Computability
analysis.

1. Introduction. The task of classification (pattern recognition) consists in predicting
an unknown label of some observation (or object). For instance, the object can be an
image of a hand-written letter, in which case the label is the actual letter represented
by this image. Other examples include DNA sequence identification, recognition of an
illness based on a set of symptoms, speech recognition, and many others.

More formally, the objects are drawn independently from the object space X (usually
X = [0, 1]d or Rd) according to some unknown but fixed probability distribution P on
X , and labels are defined according to some function η: X → Y , where Y = {0, 1}.
The task is to construct a function ϕ: X → Y which approximates η, i.e. for which
P{x : η(x) �= ϕ(x)} is small, where P and η are unknown but examples x1, y1, . . . , xn, yn

are given; yi := η(xi). In such a general setting finite-step performance guarantees are
not possible; however, good error estimates can be obtained if η is known to belong
to some (small) class C. Thus, in the framework of statistical learning theory [10] it is
assumed that the function η belongs to some known class of functions C. The number of
examples required to obtain a certain level of accuracy (or the sample complexity of C)
is linear in the VC dimension of C. How to select a class C is left to be specified for each
learning problem separately.

In this work we investigate the question of whether finite-step performance guarantees
can be obtained if we consider the class of computable (on some Turing machine)

1 The main results were reported at ALT ’05 [9]. This research was supported by Swiss NSF Grant 200020-
107610.
2 IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland. daniil@ryabko.net.

Received November 9, 2005; revised April 3, 2006. Communicated by N. Megiddo.
Online publication August 3, 2007.

70 D. Ryabko

classification methods. To make the problem more realistic, we assume that the target
function η is also computable. Two definitions of target functions are considered: they
are either of the form {0, 1}∞ → {0, 1} or {0, 1}t → {0, 1} for some t (which can be
different for different target functions).

We show that there are classes Ck of functions for which the number of examples
needed to approximate the classification problem to a certain accuracy grows faster in
the VC dimension of the class than any computable function (rather than being linear
as in the statistical setting). In particular this holds if Ck is the class of all computable
functions of length not greater than k, in which case k is a (trivial) upper bound of the
VC dimension.

Importantly, the same negative result holds even if we allow the data to be generated
“actively”, e.g. by some algorithm, rather than just by some fixed probability distribution.

To obtain this negative result we consider the task of data compression: an impossibil-
ity result for the task of data compression allows us to estimate the sample complexity for
classification. We also analyse how tight the negative result is, and show that for some
simple computable rule (based on the nearest neighbour estimate) the sample com-
plexity is finite in k, under different definitions of a computational pattern recognition
task.

In comparison with the vast literature on classification relatively little attention had
been paid to the “computable” version of the task. There is a track of research in which
different concepts of computable learnability of functions on countable domains are
studied, see [2]. A link between this framework and statistical learning theory is pro-
posed in [7], where it is shown that for uniform learnability finite VC dimension is
required.

Another approach is to consider classification methods as functions computable in
polynomial time, or under other resource constraints. This approach leads to many inter-
esting results, but it usually considers more specific settings of a learning problem, such
as learning DNFs, finite automata, etc. See [4] for an introduction to this theory and for
references.

It may be interesting to observe the connection of the results for pattern recognition
with another learning problem, sequence prediction. In one of its simplest forms this
task is as follows: it is required to predict the next outcome of a deterministic sequence
of symbols, where the sequence is assumed to be computable (is generated by some
program). There is a predictor which can solve any such problem and the number of
errors it makes is at most linear in the length of the program generating the sequence
(see, e.g. [3], Section 3.2.3). Such a predictor is not computable. Trivially, there is no
computable predictor for all computable sequences, since for any computable predictor a
computable sequence can be constructed on which it errs at every trial, simply by revers-
ing the predictions. Thus we have linear number of errors for non-computable predictor
versus infinitely many errors for any computable one; whereas in pattern recognition,
as we show, it is linear for a non-computable predictor versus growing faster than any
computable function for any computable predictor.

2. Notation and Definitions. A (binary) string is a member of the set {0, 1}∗ =⋃∞
i=0{0, 1}n . The length of a string x will be denoted by |x |, while xi is the i th element

Sample Complexity for Computational Classification Problems 71

of x , 1 ≤ i ≤ |x |. For a set A the symbols |A| and #A are used for the number of
elements in A. We assume the length-lexicographical order on the set of strings, and
when necessary will identify {0, 1}∗ and N via this ordering, where N is the sets of
natural numbers. The symbol log is used for log2. For a real number α the symbol �α� is
the least natural number not smaller than α. By computable functions we mean functions
computable on a Turing machine with an input tape, output tape, and some working tapes,
the number of which is supposed to be fixed throughout the paper.

All computable functions can be encoded (in a canonical way) and thus the set of
computable functions can be effectively enumerated. Fix some canonical enumeration
and define the length of a computable function η as l(η) := |n| where n is the minimal
number of η in such enumeration. For an introduction to the computability theory see,
for example, [8].

From the set of all computable functions we are interested in labelling functions, that
is, in functions which represent pattern recognition problems. In pattern recognition a
labelling function is usually a function from the interval [0, 1] or [0, 1]d (sometimes
more general spaces are considered) to a finite space Y := {0, 1}. As we are interested in
computable functions, we should consider instead total computable functions of the form
{0, 1}∞ → {0, 1}. However, since we require that labelling functions are total (defined on
all inputs) and computable, it can be easily shown (e.g. with König’s lemma [5]) that any
such function never scans its input tape further than a certain position independent of the
input. Thus apparently the smallest meaningful class of computable labelling functions
that we can consider is the class of functions of the form {0, 1}t → {0, 1} for some t .
So, we call a partial recursive function (or program) η a labelling function if there exists
such t =: t (η) ∈ N that η accepts all strings from Xt := {0, 1}t and only such strings. (It
is not essential for this definition that η is not a total function. An equivalent definition
for our purposes would be as follows: a labelling function is any total function which
outputs the string 00 on all inputs except on the strings of some length t =: t (η), on each
of which it outputs either 0 or 1.)

It can be argued that this definition of a labelling function is too restrictive to approx-
imate well the notion of a real function. However, as we are after negative results (for
the class of all labelling functions), it is not a disadvantage. Other possible definitions
are discussed in Section 5, where we are concerned with the tightness of our negative
results. In particular, all the results hold true if a target function is any total computable
function of the form {0, 1}∞ → {0, 1}.

Define the task of computational classification as follows. An (unknown) labelling
function η is fixed. The objects x1, . . . , xn ∈ X are drawn according to some distribution
P on Xt (η). The labels yi are defined according to η, that is, yi := η(xi).

A predictor is a family of functions ϕn(x1, y1, . . . , xn, yn, x) (indexed by n) taking
values in Y , such that for any n and any t ∈ N, if xi ∈ Xt for each i , 1 ≤ i ≤ n, then the
marginal ϕ(x) is a total function on Xt . We will often identify ϕn with its marginal ϕn(x)
when the values of other variables are clear. Thus, given a sample x1, y1, . . . , xn, yn of
labelled objects of the same size t a predictor produces a labelling function on Xt which
is supposed to approximate η.

A computable predictor is a total computable function from Xt×Y×· · ·×Xt×Y×Xt

to {0, 1}, where the arguments are assumed to be encoded into a single input in a certain
fixed (simple canonical) way.

72 D. Ryabko

3. Setup. We are interested in what sample size is required to approximate a labelling
function η.

For a (computable) predictor ϕ, a labelling function η and 0 < ε ∈ R define

δn(ϕ, η, ε) :=sup
Pt

Pt {x1, . . . , xn ∈ Xt : Pt {x ∈ Xt : ϕn(x1, y1, . . . , xn, yn, x) �=η(x)}>ε},

where t = t (η) and Pt ranges over all distributions on Xt (i.i.d. on Xn
t). As usual in

PAC theory we have two probabilities here: consider the Pt -probability over a training
sample of size n that with Pt -probability of error of a predictor ϕ exceeds ε; then take
the supremum over all possible distributions Pt .

For δ ∈ R, δ > 0 define the sample complexity of η with respect to ϕ as

N (ϕ, η, δ, ε) := min{n ∈ N: δn(ϕ, η, ε) ≤ δ}.

The number N (ϕ, η, δ, ε) is the minimal sample size required for a predictor ϕ to achieve
ε-accuracy with probability 1− δ when the (unknown) labelling function is η, under all
probability distributions.

With the use of statistical learning theory [10] we can easily derive the following
statement:

PROPOSITION 1. There exists a predictor ϕ such that

N (ϕ, η, δ, ε) ≤ const

ε
l(η) log

1

δ

for any labelling function η and any ε, δ > 0.

Observe that the bound is linear in the length of η.
In the next section we investigate the question of whether any such bounds exist if

we restrict our attention to computable predictors.

PROOF. The predictorϕ is defined as follows. For each sample x1, y1, . . . , xn, yn it finds
a shortest program η̄ such that η̄(xi) = yi for all i ≤ n. Clearly, l(η̄) ≤ l(η). Observe
that the VC dimension of the class of all computable functions of length not greater
than l(η) is bounded from above by l(η), as there are not more than 2l(η) such functions.
Moreover, ϕ minimizes the empirical risk over this class of functions. It remains to use
the bound (see, e.g., Corollary 12.4 of [1]):

sup
η∈C

N (ϕ, η, δ, ε) ≤ max

(
V (C)8

ε
log

13

δ
,

4

ε
log

2

δ

)
,

where V (C) is the VC dimension of the class C.

4. Main Results. The main result of this work is that for any computable predictor ϕ
there is no computable upper bound in terms of l(η) on the sample complexity of the
function η with respect to ϕ:

Sample Complexity for Computational Classification Problems 73

THEOREM 1. For every computable predictor ϕ and every partial computable function
β: N→ N that has infinite domain and goes to infinity, there are infinitely many functions
η, such that for some n > β(l(η))

P{x ∈ Xt (η): ϕ(x1, y1, . . . , xn, yn, x) �= η(x)} > 0.05,

for any x1, . . . , xn ∈ Xt (η), where yi = η(xi) and P is the uniform distribution on Xt (η).

For example, we can take β(n) = 2n , or 22n
.

COROLLARY 1. For any computable predictorϕ, any total computable functionβ: N→
N, and any δ < 1,

sup
η: l(η)≤k

N (ϕ, η, δ, 0.05) > β(k)

from some k on.

Observe that there is no δ in the formulation of Theorem 1. Moreover, it is not
important how the objects (x1, . . . , xn) are generated—it can be any individual sample.
In fact, we can assume that the sample is chosen in any manner, for example by some
algorithm. This means that no computable upper bound on sample complexity exists
even for active learning algorithms.

It appears that the task of classification is closely related to another learning task—
data compression. Moreover, to prove Theorem 1 we need a similar negative result
for this task. Thus before proceeding with the proof of the theorem, we introduce the
task of data compression and derive a negative result for it. We call a total computable
functionψ : {0, 1}∗ → {0, 1}∗ a data compressor if it is an injection (i.e. x1 �= x2 implies
ψ(x1) �= ψ(x2)). We say that a data compressor compresses the string x if |ψ(x)| < |x |.
Clearly, for any natural n any data compressor compresses not more than half of the
strings of size up to n.

Next we present a definition of Kolmogorov complexity; for fine details see [11]
and [6]. The complexity of a string x ∈ {0, 1}∗ with respect to a Turing machine ζ is
defined as

Cζ (x) = min
p
{l(p): ζ(p) = x},

where p ranges over all binary strings (interpreted as partial computable computable
functions; the minimum over the empty set is defined as∞). There exists such a machine
ζ that Cζ (x) ≤ Cζ ′(x)+cζ ′ for any x and any machine ζ ′ (the constant cζ ′ depends on ζ ′

but not on x). Fix any such ζ and define Kolmogorov complexity of a string x ∈ {0, 1}∗
as

C(x) := Cζ (x).

Clearly, C(x) ≤ |x |+b for any x and for some b depending only on ζ . A string is called
c-incompressible if C(x) ≥ |x | − c. Obviously, any data compressor cannot compress
many c-incompressible strings, for any c. However, highly compressible strings (that is,
strings with the Kolmogorov complexity low relative to their length) might be expected

74 D. Ryabko

to be compressed well by some sensible data compressor. The following lemma shows
that this cannot always be the case, no matter what we mean by “relatively low”.

The lemma is proven using the fact that there are no non-trivial computable lower
bounds on Kolmogorov complexity; the lemma itself can be considered as a different
formulation of this statement. The proof of the lemma is followed by the proof of
Theorem 1.

LEMMA 1. For every data compressorψ and every partial computable functionγ : N→
N which has an infinite domain and goes to infinity there exist infinitely many strings x
such that C(x) ≤ γ (|x |) and |ψ(x)| ≥ |x |.

For example, we can take γ (n) = log log n.

PROOF. Suppose the contrary, i.e. that there exist a data compressorψ and some function
γ : N→ Nmonotonically increasing to infinity such that if C(x) ≤ γ (|x |) thenψ(x) <
|x | except for finitely many x . Let T be the set of all strings which are not compressed
by ψ :

T := {x : |ψ(x)| ≥ |x |}.
Define the function τ on the set T as follows: τ(x) is the number of the element x

in T ,

τ(x) := #{x ′ ∈ T : x ′ ≤ x}
for each x ∈ T . Obviously, the set T is infinite. Moreover, τ(x) ≤ x for any x ∈ T
(recall that we identify {0, 1}∗ and N via length-lexicographical ordering). Observe that
τ is a total computable function on T and onto N. Thus τ−1: N → {0, 1}∗ is a total
computable function on N. Hence, for any x ∈ T for which γ (|x |) is defined we have,
except for finitely many x ,

C(τ (x)) ≥ C(τ−1(τ (x)))− c = C(x)− c > γ (|x |)− c,(1)

for a constant c depending only on τ , where the first inequality follows from the com-
putability of τ−1 and the last from the definition of T . Since τ is computable we also
have C(τ (x)) ≤ C(x)+ c′ for some constant c′.

It is a well-known result (see, e.g. [11]) that for any unbounded partial computable
function δ with infinite domain there are infinitely many x ∈ {0, 1}∗ such that C(x) ≤
δ(|x |). In particular, allowing δ(|x |) = γ (|x |) − c′ − 2c, we conclude that there are
infinitely many x ∈ T such that

C(τ (x)) ≤ C(x)+ c′ ≤ γ (|τ(x)|)− 2c ≤ γ (|x |)− 2c,

which contradicts (1).

PROOF OF THEOREM 1. Suppose the contrary, that is, that there exists such a com-
putable predictor ϕ and a partial computable function β: N→ N such that for any except
finitely many labelling functions η for which β(l(η)) is defined and all n > β(l(η)) we
have

P{x : ϕ(x1, y1, . . . , xn, yn, x) �= η(x)} ≤ 0.05,

for some xi ∈ Xt (η), yi = η(xi), i ∈ N, where P is the uniform distribution on Xt (η).

Sample Complexity for Computational Classification Problems 75

Define ε := 0.05. We will construct a data compressorψ which contradicts Lemma 1.
For each y ∈ {0, 1}∗ define m := |y|, t := �log m�. Generate (lexicographically) first m
strings of length t and denote them by xi , 1 ≤ i ≤ m. Define the labelling function ηy as
follows: ηy(x) = yi , if x starts with xi , where 1 ≤ i ≤ m. Clearly, C(ηy) ≥ C(y)− c,
where c is some universal constant capturing the above description. Let the distribution
P be uniform on Xt .

Set n := √m. Next we run the predictor ϕ on all possible tuples x = (x1, . . . , xn) ∈
X n

t and each time count the errors that ϕ makes on all elements of Xt :

E(x) := {x ∈ Xt : ϕ(x1, y1, . . . , xn, yn, x) �= ηy(x)}.
Thus E(x) is the set of all objects on which ϕ errs after being trained on x. If |E(x)| > εm
for all x ∈ Xt then ψ(y) := 0y.

Otherwise proceed as follows. Fix some tuple x = (x ′1, . . . , x ′n) such that |E(x)| ≤
εm, and let H := {x ′1, . . . , x ′n} be the unordered tuple x. Define

κ i :=

e if xi ∈ E(x)\H,
c0 if xi ∈ H, yi = 0,
c1 if xi ∈ H, yi = 1,

∗ otherwise.

for 1 ≤ i ≤ m. Thus, each κ i is a member of a five-letter alphabet (a four-element set)
{e, c0, c1, ∗}. Denote the string κ1 · · · κm by K .

So K contains the information about the (unordered) training set and the elements on
which ϕ errs after being trained on this training set. Hence the string K , the predictor ϕ,
and the order of (x ′1, . . . , x ′n) (which is not contained in K) are sufficient to restore the
string y. Furthermore, the n-tuple (x ′1, . . . , x ′n) can be obtained from H (the unordered
tuple) by the appropriate permutation; let r be the number of this permutation in some
fixed ordering of all n! such permutations. Using Stirling’s formula, we have |r | ≤
2n log n = √m log m; moreover, to encode r with some self-delimiting code we need
not more than 2

√
m log m symbols (for m > 3). Denote such an encoding of r by ρ.

Next, as there are at least (1 − ε − 1/
√

m)m symbols ∗ in the m-element string K
(at most εm symbols e, and n = √m symbols c0 and c1), it can be encoded by some
simple binary code σ in such a way that

|σ(K)| ≤ 1
2 m + 8(εm + n).(2)

Indeed, construct σ as follows. First replace all occurrences of the string ∗∗ with 0.
Encode the rest of the symbols with any fixed 3-bit encoding such that the code of each
letter starts with 1. Clearly, σ(K) is uniquely decodable. Moreover, it is easy to check
that (2) is satisfied, as there are not less than 1

2 (m − 2(εm + n)) occurrences of the
string ∗∗. We also need to write m in a self-delimiting way (denote it by s); clearly,
|s| ≤ 2 log m.

We can define a monotone increasing function β ′ with an infinite domain on which
it coincides with β. Indeed, this can be done by executing in a quasi-parallel fashion β
on all inputs and defining β ′(k) = β(k) if β(k) was found and β ′(l) < β ′(k) for all l on
which β ′ is already defined. Next we can define a function β−1(n) with infinite domain

76 D. Ryabko

such that β−1 goes monotonically to infinity and such that β−1(β ′(n)) = n. This can
be done by running in a quasi-parallel fashion β on all inputs m and stopping when
β(m) = n with m as an output.

Finally, ψ(y) = 1sρσ(K) and |ψ(y)| ≤ |y|, for m > 210. Thus, ψ compresses any
(except finitely many) y such that n > β ′(C(ηy)); i.e. such that

√
m > β ′(C(ηy)) ≥

β ′(C(y)− c). This contradicts Lemma 1 with γ (k) := β−1(
√

k)+ c.

5. Different Settings and Tightness of the Negative Results. In this section we
discuss how tight the conditions of the statements are and to what extend they depend
on the definitions.

We consider the question of whether there exists some (not necessarily computable)
total sample-complexity function

Nϕ(k, δ, ε) := sup
η: l(η)≤k

N (ϕ, η, δ, ε),

at least for some predictor ϕ.

PROPOSITION 2. There exists a predictor ϕ such thatNϕ(k, δ, ε) <∞ for any ε, δ > 0
and any k ∈ N.

Indeed it is easy to see that the “pointwise” predictor

ϕ(x1, y1, . . . , xn, yn, x) =
{

yi if x = xi , 1 ≤ i ≤ n,

0 x /∈ {x1, . . . , xn}
(3)

satisfies the conditions of the proposition.
It can be argued that probably this statement is due to our definition of a labelling

function. Next we discuss some other variants of this definition.
First, observe that if we define a labelling function as any total computable function on

{0, 1}∗, then some labelling functions will not approximate any function on [0, 1]; for ex-
ample, the function η+ which counts bitwise sums of its input: η+(x) :=∑|x |i=1 xi mod 2.
That is why we require a labelling function to be defined only on Xt for some t .

Another way to define a labelling function (which perhaps makes labelling functions
most close to real functions) is as a function which accepts any infinite binary string. We
call any total recursive function η: {0, 1}∞ → {0, 1} an i -labelling function. That is, η
is computable on a Turing machine with an input tape on which a one way infinite input
is written, an output tape and possibly some working tapes. The program η is required to
halt on any input. As it was mentioned earlier, in this case the situation essentially does
not change, since (as it is easy to show) for any i-labelling function η there exist nη ∈ N
such that η does not scan its input tape beyond position nη. In particular, η(x) = η(x ′)
as soon as xi = x ′i for any i ≤ nη. Moreover, it is easy to check that Theorem 1 holds for
i-labelling functions as well. Finally, it can be easily verified that Proposition 2 holds
true if we consider i-labelling functions instead of labelling functions, constructing the
required predictor based on the nearest neighbour predictor. Indeed, it suffices to replace
the “pointwise” predictor in the proof of Proposition 2 by the predictor ϕ, which assigns

Sample Complexity for Computational Classification Problems 77

to the object x the label of that object among x1, . . . , xn with whom x has longest mutual
prefix (where the prefixes are compared up to some growing horizon).

6. Discussion. The main result of the paper can be interpreted as that the task of
computational classification is not feasible if the target labelling function is (only) known
to be computable. In fact this means that the task of finding such a function η in a (finite)
class C that η fits the given data can be algorithmically a very complex problem. It
is also important to note here that we did not impose any resource constraints on the
computation.

Perhaps the proposed approach, that is, the analysis of complexity of a computable
learning problem as related to the complexity of the solution, can be applied to learn-
ing problems other than classification and data compression. In the present paper the
complexity of a learning problem means sample size complexity, whereas complexity of
the solution is the length (or Kolmogorov complexity) of the program which describes
it. It can be conjectured that whatever a learning problem is, its complexity in terms of
the complexity of a solution is very high, if both complexities are reasonably defined.
This further supports the view that “universal” learners are not feasible and each specific
learning problem should be solved by a specially designed algorithm.

References

[1] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition. New York:
Springer, 1996.

[2] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems That Learn: An Introduction to Learning Theory,
2nd edition. The MIT Press, Cambridge, MA, 1999.

[3] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability.
Springer, 2004.

[4] M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. The MIT Press,
Cambridge, MA, 1994.

[5] S. Kleene. Mathematical Logic. Wiley, New York, 1967.
[6] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications, Second edition.

Springer, New York, 1997.
[7] W. Menzel and F. Stephan. Inductive versus approximative learning. In: Perspectives of Adaptivity and

Learning, edited by R. Kuehn et al., pp. 187–209. Springer, Ne York, 2003.
[8] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
[9] D. Ryabko. On the computability of pattern recognition problems. In: Proceedings of the 16th Interna-

tional Conference on Algorithmic Learning Theory Singapore, pp. 148–156, 2005.
[10] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998
[11] N. Vereshchagin, A. Shen and V. Uspensky. Lecture Notes on Kolmogorov Complexity, 2004, Unpub-

lished, http://lpcs.math.msu.su/∼ver/kolm-book.

