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Abstract Data envelopment analysis (DEA) is a nonparametric method from
the area of operations research that measures the relationship of produced out-
puts to assigned inputs and determines an efficiency score. This efficiency score
can be interpreted as a performance measure in investment analysis. Recent
literature contains intensive discussion of using DEA to measure the perfor-
mance of hedge funds, as this approach yields some advantages compared to
classic performance measures. This paper extends the current discussion in three
aspects. First, we present different DEA models and analyze their suitability
for hedge fund performance measurement. Second, we systematize possible
inputs and outputs for DEA and again examine their suitability for hedge fund
performance measurement. Third, two rules are developed to select inputs and
outputs in DEA of hedge funds. Using this framework, we find a completely
new ranking of hedge funds compared to classic performance measures and
compared to previously proposed DEA applications. Thus, we propose that
classic performance measures should be supplemented with DEA based on the
suggested rules to fully capture hedge fund risk and return characteristics.
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1 Introduction

As an alternative to traditional investments in stocks or bonds, hedge funds
have become very popular and have been the subject of controversial discus-
sion in science as well as in practice in the last years (Favre and Galéano 2001;
Banz and de Planta 2002). Hedge fund performance is often evaluated by clas-
sic performance measures such as the Sharpe ratio, under which hedge funds
appear to be very attractive investments. However, recent research has pointed
out some special qualities of hedge fund returns, thus making the suitability of
classic measures to assess hedge fund performance less certain (Malkiel and
Saha 2005; Eling 2006). In particular, when hedge fund returns are compared
to those of traditional investments, they tend to exhibit stronger deviations
from normally distributed returns (Borner 2004; Kassberger and Kiesel 2006).
Consideration of this problem has led to the development of numerous new per-
formance measures including Omega, the Sortino ratio, the Calmar ratio, and
the modified Sharpe ratio. An overview is provided in Lhabitant (2004). These
new measures differ from the classic Sharpe ratio in that the standard devia-
tion is replaced by alternative risk measures, such as lower partial moments,
drawdown, or value at risk.

Both classic and new approaches to hedge fund performance measurement,
however, exhibit one fundamental drawback. As two-dimensional measures,
they allow the integration of only one aspect of risk and one aspect of return
in performance measurement. The Sharpe ratio, for example, takes into con-
sideration the standard deviation as risk, but has no measure that focuses on
the risk of loss, e.g., the lower partial moments. Thus, the use of the Sharpe
ratio ignores the tail risk of hedge funds, which is due to the fact that many
hedge funds pursue dynamic trading strategies and exhibit option-like returns
with unstable exposures to market factors in time (Gregoriou et al. 2005; Fung
and Hsieh 1997). Therefore, hedge fund performance is often reported in a
multitude of separate measures, as two-dimensional performance measures
cannot account for the full complexity of hedge fund returns (Wilkens and Zhu
2005, p. 161; for a typical fund fact sheet see http://www.hedgefundweb.com or
http://www.iasg.com).

In this paper, data envelopment analysis (DEA) is presented as an alterna-
tive method for hedge fund performance measurement that does not exhibit the
drawback discussed above. DEA is a nonparametric approach that uses linear
programming to measure the relationship of produced goods and services (out-
puts) to assigned resources (inputs). In the hedge fund context, different risk
measures might be regarded as inputs and the fund return or related measures as
outputs. As an optimization result, DEA determines an efficiency score, which
can be interpreted as a performance measure. Originally, DEA was developed
to measure efficiency in the public sector, e.g., educational institutions (Banker
et al. 1984) or hospitals (Sherman 1984). However, nowadays it has been used in
a wide variety of settings, including banks (Sherman and Gold 1985), insurance
companies (Fecher and Pestieau 1993), trading companies (Mahajan 1991), and
manufacturing companies (Parkan 1991).
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Since the end of 1990s, DEA has also been used to measure the performance
of financial investments, particularly of mutual funds. The first application of
DEA to mutual funds was performed by Murthi et al. (1997), who examined
the efficiency of 2,083 mutual funds in 1993. Their motivation to use DEA
was to overcome a number of shortcomings of classic two-dimensional per-
formance measures. DEA is very flexible and allows more than one factor
as input and output. Thus, compared to classic two-dimensional performance
measures, DEA offers a multi-dimensional performance analysis. Compared
to other extensions of the classic two-dimensional framework such as higher-
moment extensions of the capital asset pricing model presented by Hwang and
Satchell (1999) or the generalized version of the capital asset pricing model
proposed by Leland (1999), DEA offers further advantages. It is a nonpara-
metric analysis that does not require any theoretical model as a benchmark
such as the capital asset pricing model or the arbitrage pricing theory. Instead,
DEA measures how well a fund performs relative to the best funds. Further-
more, it can address the problem of endogeneity of transaction costs in the
analysis by simultaneously considering expense ratios, turnover, and loads, as
well as returns. Basso and Funari (2001) measured the efficiency of 47 mutual
funds between 1997 and 1999. Their contribution was to develop a generalized
DEA-based performance measure that can integrate both classic performance
measures (as Sharpe, Treynor, and Jensen) and the approach of Murthi et al.
(1997). Additional applications of DEA for measuring mutual fund perfor-
mance are McMullen and Strong (1998), Bowlin (1998), Morey and Morey
(1999), and Choi and Murthi (2001).

To date, there have been to our knowledge four applications of DEA to hedge
funds. Gregoriou (2003), who examined 168 funds of hedge funds for the period
from 1997 to 2001, focused on different downside risk measures in order to cap-
ture the tail risk in asymmetrically distributed hedge fund returns. The study by
Gregoriou (2003) was extended by Gregoriou et al. (2005) in that an additional
446 single hedge funds were examined, using the same inputs and outputs, as
well as the same investigation period. Wilkens and Zhu (2005) considered 271
single hedge funds in the June 2001 to May 2002 period. They introduced the
returns to scale estimation in DEA of hedge funds. Therefore, DEA not only
measures the fund efficiency but also allows subdividing these funds depend-
ing on increasing, constant, or decreasing returns to scale. Nguyen-Thi-Thanh
(2006), who analyzed 38 hedge funds in the period 2000–2004, discussed the use
of DEA in hedge fund portfolio selection when investors face multi-dimensional
objectives and incorporated these by adding several optimization constraints.
However, in the literature to date, there are only a few DEA applications with
various inputs and outputs. What is missing is a common framework of DEA
models and discussion of their use in hedge fund performance measurement.
In particular, there is no rule or standard for the selection of inputs and outputs
when using DEA to evaluate hedge funds.

This study extends previous work on DEA-based hedge fund performance
measurement in three aspects. First, three different DEA models and their suit-
ability for hedge fund performance measurement are analyzed. We consider
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those three models that have been used to date for performance measurement
of mutual funds, which are the DEA models presented by Charnes et al. (1978),
Banker et al. (1984), and Andersen and Petersen (1993). Second, 14 inputs and
8 outputs for DEA are systematized and, again, their suitability for hedge fund
performance measurement is examined. Third, two rules that can be used to
select inputs and outputs in hedge fund performance measurement are devel-
oped. The first rule is based on Spearman’s rank correlation and the second on
principal component analysis. All aspects are first discussed at the theoretical
level and then implemented in an empirical investigation.

An important result of the empirical study is that we find completely new
rankings of hedge funds compared to classic performance measures and previ-
ously proposed DEA applications when using the selection rules.1 Thus, we are
convinced that DEA performance measurement based on these selection rules
is able to capture additional information contained in hedge fund returns and
leads to an improvement in hedge fund performance measurement. For these
purposes, we propose that classic hedge fund performance measurement should
be supplemented with DEA based on the suggested rules to fully capture hedge
fund risk and return characteristics.

The remainder of the paper is organized as follows. Section 2 contains a dis-
cussion of the application of DEA at the theoretical level. The theoretical results
are applied in an empirical investigation in Section 3. Section 4 concludes.

2 Theoretical investigation

2.1 DEA models

2.1.1 Mathematical formulation and interpretation of DEA models

In the literature, several DEA models are proposed that differ, e.g., in regard
to the underlying returns to scale assumption or concerning the range of the
efficiency score. An overview on different models is provided in Cooper et al.
(2006). As mentioned, three approaches have been used to date for performance
measurement of mutual funds: Charnes et al. (1978), Banker et al. (1984), and
Andersen and Petersen (1993). The main features of these models and the
differences between them are explored in Table 1.

DEA was introduced by Charnes et al. (1978). DEA builds upon the method
suggested by Farell (1957) for computation of the technical efficiency. Farell
(1957) developed the concept of “best practice frontier,” which represents
the technical frontier achievable, i.e., it shows for each input level the maxi-
mum attainable output and for each output level the minimum necessary input,

1 This result is of special relevance because Eling and Schuhmacher (2006) found that the two-
dimensional measures recently proposed in the literature (e.g., Omega) do not change rankings of
hedge funds too much.
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Table 1 DEA models

Model Charnes et al. (1978) Banker et al. (1984) Andersen and Petersen
(1993)

Assumption concerning Constant Variable Variable
returns to scale
Range of efficiency score Between 0 and 1 Between 0 and 1 Starts with 0, but larger

than 1 is possible

This table shows two key characteristics (the assumption concerning returns to scale and the range
of the efficiency score) for those DEA models that have been used to date for performance mea-
surement of mutual funds

respectively. The efficiency of a fund can then be determined by the relative
distance between the actually observed output and this efficient frontier. Thus,
a fund is classified as inefficient if its output (e.g., return) and input (e.g., risk)
are below the best practice frontier.

Charnes et al. (1978) presented a solution algorithm for the problem posed
by Farell (1957) based on linear programming. By assuming constant returns
to scale, possible economies of scale are ignored in the model. The starting
point of the model is the formula for calculating the efficiency score ei of fund
i (i = 1, . . . , I). This formula gives the relationship of the weighted sum of the
outputs to the weighted sum of the inputs:

ei =
R∑

r=1

uryri

/
J∑

j=1

vjxji, (1)

with r = 1, . . . , R as outputs, j = 1, . . . , J as inputs, yri as amount of output r
of fund i, xji as amount of input j of fund i, ur as output-weighting factor, and
vj as input-weighting factor. In the optimization, weighting factors are selected
so that the efficiency score is maximized, subject to technical constraints. The
efficiency measure is standardized between 0 and 1, i.e., the most efficient fund
receives the value 1; completely inefficient funds have the value 0. Thus, the
following nonlinear optimization problem results:

Maximize
ur,vj

ei =
R∑

r=1

uryri

/
J∑

j=1

vjxji, subject to
R∑

r=1

uryri

/

J∑

j=1

vjxji � 1, ur � 0, vj � 0. (2)

By setting the denominator of the objective function to 1, this nonlinear opti-
mization problem can be transformed into an equivalent linear optimization
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Fig. 1 DEA with constant and variable returns to scale. This figure shows the DEA efficient fron-
tier with constant returns to scale (left) and with variable returns to scale (right) in the case where
one input is used for the production of one output

problem:

Maximize
ur

R∑

r=1

uryri, subject to
J∑

j=1

vjxji = 1,

R∑

r=1

uryri −
J∑

j=1

vjxji � 0, ur � 0, vj � 0. (3)

The determined efficiency score can be interpreted as savings potential. For
example, a value of 0.8 means that with efficient production the same output
quantity could be achieved with a 20% smaller input. The weighting factors ur
and vj, which are the shadow prices in the optimization, also provide powerful
economic insights. The ratio of the shadow prices corresponds to (1) the mar-
ginal rate of substitution (if the shadow prices of two inputs are compared), (2)
the marginal productivity (if the shadow prices of one input and one output are
compared), and (3) the marginal rate of transformation (if the shadow prices
of two outputs are compared).2 Further economic insights are provided by the
slack variables in the optimization, as they indicate the extent to which each
input can be reduced to achieve an efficiency score of one (Choi and Murthi
2001; Kuosmanen et al. 2006). Thus, DEA not only measures efficiency, but can
provide guidance as to how to improve the efficiency of inefficient funds.

The left part of Fig. 1 clarifies the principle of DEA with constant returns to
scale in the case where one input is used for the production of one output.

The straight line ascending from the origin in the left part of Fig. 1 is called
the efficient frontier. The points A, B, and C represent observed input–output
combinations of different funds. Funds A and B exhibit the best input–output
combinations and thus determine the efficient frontier. Fund C does not work

2 See Steinmann (2002) and Murthi et al. (1997). Take the left part of Fig. 1 as an example: The
slope of the straight line ascending from the origin (the efficient frontier) represents the marginal
productivity and can be calculated as ur divided by vj.
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efficiently; the output it obtains could be achieved with a lower input fund A
employs, and the inputs of fund C are sufficient to achieve the output of fund
B. The case of fund C is a good illustration of the efficiency score calculation.
The efficiency score results from the relationship of the inputs necessary for
efficient production (which is 1 in this case) to the actually used inputs (2 in this
case). In this case the efficiency score is 0.5.

If size differences have an influence on fund efficiency, assuming constant re-
turns to scale would lead to a blending of scale efficiency due to size differences
and technical efficiency. By employing an additional variable ci, the Banker
et al. (1984) approach introduces variable returns to scale:

Maximize
ur

R∑

r=1

uryri + ci, subject to
J∑

j=1

vjxji = 1,
R∑

r=1

uryri

−
J∑

j=1

vjxji−ci � 0, ur � 0, vj � 0. (4)

The addition of variable returns to scale is the only difference between this
model and that of Charnes et al. (1978). The right part of Fig. 1 shows the princi-
ple of DEA with variable returns to scale, again using one input and one output
factor. Assuming variable returns to scale, the efficient frontier ascending from
the origin in the figure runs piecewise linear. Three ranges can be distinguished
within the efficient frontier—increasing (ci < 0), constant (ci = 0), and decreas-
ing (ci > 0) returns to scale. With increasing (decreasing) returns to scale, an
increase of input leads to a disproportionately high (low) increase of output.
With constant returns to scale, the increase of an input corresponds to the
increase of an output.

The approach of super efficiency presented by Andersen and Petersen (1993)
is similar to the Banker et al. (1984) approach. However, in the optimization, the
fund under consideration is excluded from the calculation of the constraints.
Therefore, efficient funds can attain an efficiency score larger than 1. This
procedure makes a ranking of efficient funds possible. For inefficient funds, the
efficiency score measured by Andersen and Petersen (1993) model corresponds
to the value calculated by Banker et al. (1984) model.

2.1.2 Application of DEA models to hedge funds

Regarding the application of DEA for hedge fund performance measurement,
we first discuss the use of constant and variable returns to scale. Especially
with hedge funds, the optimal fund size is an important problem against the
background of different scale effects moving in opposite directions.

On the one hand, hedge funds need a certain minimum capital to implement
their strategies. For example, with the fixed-income arbitrage strategy very
small market inefficiencies can be profitably exploited only if a large amount
of capital is available. Moreover, fixed-cost degression results in larger funds
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working more efficiently. These two effects indicate that hedge funds involve
scale advantages and increasing returns to scale.

On the other hand, hedge funds that are too large experience scale disad-
vantages. First, large hedge funds can create the risk that the funds will affect
market prices by their own trading actions. This is particularly problematic with
illiquid securities because it is possible that closing the position will not be fea-
sible at fair market prices. Second, finding profitable investment opportunities
becomes more difficult with increasing fund size, a situation particularly true
for funds specialized in a very close market segment. Thus, hedge funds are also
subject to scale disadvantages and decreasing returns to scale.

It is unknown how the scale advantages and disadvantages work in sum.
The above discussion implies, however, that small funds may obtain increasing
returns to scale at first, but after attaining a certain size become subjected to
decreasing returns to scale. Therefore, assuming variable returns to scale seems
appropriate in applying DEA to hedge funds, which is in accordance with empir-
ical evidence3 and the procedures employed by Gregoriou (2003); Wilkens and
Zhu (2005), and Gregoriou et al. (2005). Nevertheless, DEA applications to tra-
ditional mutual funds usually use constant returns to scale (Murthi et al. 1997,
p. 411; Basso and Funari 2001, p. 481), even though most of the scale effects
discussed with respect to hedge funds also affect traditional mutual funds.4 In
order to evaluate the impact of model selection, we include applications with
constant and variable returns to scale in our empirical analysis.

2.2 Systematization of inputs and outputs

The selection of input and output factors is of high importance when using
DEA. A basic result of the capital market theory is that there exists a func-
tional relationship between risk and return of an investment—higher risk taking
is rewarded with a higher return. Thus, in principle, risk measures are thought of
as inputs, while return measures are interpreted as outputs. However, Nguyen-
Thi-Thanh (2006) argues that some investors might be more concerned with
central tendencies (mean, standard deviation), while others may care more
about extreme values (skewness, kurtosis). Moreover, McMullen and Strong
(1998) show that investors are concerned about risk and return over various
time-horizons, as this provides more information than the performance of a
single period only. Basso and Funari (2001) suggest that some investors may

3 Ammann and Moerth (2005) found a negative relationship between fund sizes and returns, but
they also show that very small funds underperform on average. The underperformance of very small
funds is explained by their higher total expense ratios. A negative relationship between standard
deviations and fund sizes is also observed. Thus, we conclude that both risk and return are subject
to variable returns to scale with hedge funds. Attributing the underperformance of very small funds
to higher total expense ratios indicates that fund costs are also subject to variable returns to scale,
which is in line with our discussion. Therefore, we conclude that costs are also subject to variable
returns to scale with hedge funds.
4 For example, Ferris and Chance (1987) find a negative relationship between the expense ratio
and the size of mutual funds.
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Table 2 Inputs and outputs considered in the literature

Category Gregoriou (2003), Wilkens and Zhu (2005) Nguyen-Thi-Thanh (2006)
Gregoriou et al. (2005)

Inputs Lower partial Standard deviation Standard deviation
moments of order 1
Lower partial Lower partial moments Excess kurtosis
moments of order 2 of order 0
Lower partial
moments of order 3

Outputs Higher partial Average return Average return
moments of order 1
Higher partial Skewness Skewness
moments of order 2
Higher partial Minimum return
moments of order 3

This table shows the inputs and outputs used in the four papers that applied DEA to measure the
performance of hedge funds. Gregoriou (2003) and Gregoriou et al. (2005) choose lower and higher
partial moments; Wilkens and Zhu (2005) and Nguyen-Thi-Thanh (2006) also include the average
return, the standard deviation of returns, and the higher moments of the return distribution in the
DEA of hedge funds

also include ethical criteria in decision making, and Murthi et al. (1997) report
that investors are interested in transaction costs. In the hedge fund context,
it might also be important to consider hedge-fund-specific characteristics such
as the minimum investment or the lock-up period (Nguyen-Thi-Thanh 2006).
Therefore, the selection of input and output variables is a complex task as the
decision-maker is confronted with a large number of different attributes that
might be of differing importance. However, by the choice of inputs and out-
puts and by setting additional constraints in the optimization, DEA is able to
include all the investor’s financial, risk-aversion, diversification, and investment
horizon constraints. Consequently, DEA can be a tailor-made decision-making
tool that exactly suits the investor’s preferences (Nguyen-Thi-Thanh 2006).

In this section possible inputs and outputs for DEA are presented, systema-
tized, and discussed with respect to their suitability for hedge fund performance
measurement. Table 2 shows the inputs and outputs suggested in Gregoriou
(2003), Gregoriou et al. (2005), Wilkens and Zhu (2005), and Nguyen-Thi-
Thanh (2006).

To capture the tail characteristics of hedge fund returns, Gregoriou (2003)
and Gregoriou et al. (2005) use the lower partial moments (LPM) of order
1–3 as inputs and the higher partial moments (HPM) of order 1–3 as out-
puts. Wilkens and Zhu (2005) choose some measures often employed in hedge
fund analysis. They consider the standard deviation and the portion of neg-
ative returns (which is the lower partial moment of order 0) as inputs and
the average return, the skewness, and the minimum return as outputs. Because
investors might have positive preferences for odd moments and negative prefer-
ences for even moments Nguyen-Thi-Thanh (2006) chooses standard deviation
and excess kurtosis as inputs and average return and skewness as outputs. It
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Table 3 Possible inputs and outputs

This table shows a selection of the most common risk, return, and cost measures that might be
regarded as inputs and outputs in DEA. Inputs include risk measures, cost measures, and higher
moments. Outputs include return measures and higher moments. Eleven inputs and six outputs will
be used in the empirical section of this paper. The formulas for calculating the measures included
in the empirical investigation can be found in Appendix A

seems fair to conclude from the literature that there is no agreement as to which
measures should be used as inputs and outputs for a DEA-based performance
measurement of hedge funds.5

Table 3 sets out a selection of the most common risk, return, and cost mea-
sures that might be regarded as inputs and outputs in DEA. The measures pre-
sented do not necessarily comprise a complete list of all possible risk, return,
and cost measures, as individual investors might consider other measures as
relevant.

There is a wide variety of classic and newer risk measures that can be included
as inputs. The standard deviation measures the total risk of an investment, which
gives both the positive and negative deviations of the returns from the expected
value. However, this is not the general understanding of risk. In contrast, LPMs
only consider negative deviation of returns from a minimal acceptable return,
a situation that most investors view with disfavor. Thus, LPMs might seem a
more appropriate measure of risk. The choice of order n determines the extent
to which the deviation from the minimal acceptable return is weighted.

The drawdown of a fund is the loss incurred over a given investment period.
The three drawdown-based risk measures listed in Table 3 are defined as the

5 The difficulty in selecting inputs and outputs applies not only to hedge funds, but more so to
banks. For a discussion of inputs and outputs of banks see Bessler and Norsworthy (2005).
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largest possible loss (the so-called maximum drawdown), an average of the
largest drawdowns, or a type of standard deviation of the largest drawdowns.

Value at risk describes the possible loss of an investment, which is not
exceeded with a given probability of 1 − α in a certain period. To take into
account the distribution of returns below the value at risk, the literature fre-
quently considers expected loss under the condition that the value at risk is
exceeded (Artzner et al. 1999). This leads to the conditional value at risk.
To include skewness and excess kurtosis in computing value at risk, the Cor-
nish–Fisher expansion can be used, which leads to the modified value at risk
(Gregoriou and Gueyie 2003).

Measures for systematic (beta factor) and unsystematic risk (residual vol-
atility and tracking error) could be integrated into DEA. But these mea-
sures are less suitable for performance measurement of hedge funds in our
context because they require the definition of a benchmark. Usually, hedge
funds attempt to achieve positive returns independent of any market index and
therefore the definition of a standardized benchmark is neither possible nor
meaningful. Therefore, these risk measures are excluded from the empirical
investigation.6

The cost measures that are used as inputs in conducting DEA for mutual
funds are likewise less suitable for performance measurement of hedge funds,
as front-end loads, administration, and management fees are already contained
in the fund returns (all hedge fund returns are net of fees). It is important to note
that one could argue that even if returns are net of all fees, fee consideration
can still provide additional information about the fund manager’s performance
because there is a difference between a fund that has a gross return of 10% and
a net return of 5%, and a fund that has a gross return of 20% and a net return
of 5% (Choi and Murthi 2001). But even if information on returns before fees
was available, a comparison of hedge funds on the basis of cost measures would
not be meaningful due to the complexity and heterogeneity of the fee structure
(Le Moigne and Savaria 2006). An example is the individual high watermark.
Thus, standardized comparisons as used in evaluating mutual funds, e.g., with
front-end loads, are not possible for hedge funds. The same is true for trading-
activity-based measures, also included in mutual fund DEA. Because hedge
fund managers do not publish their trading activity, there is no data available
to make such a comparison between different hedge funds.

6 From a theoretical point of view, the beta factor is not suited if the performance of hedge funds
is evaluated in isolation but it is the right measure if the investor only wants to add a small per-
centage of hedge funds to his existing investment portfolio. See Scholz and Wilkens (2003) for a
related discussion. Therefore, it would be necessary to measure the systematic risk contribution
of the fund under evaluation in relation to the investor’s portfolio. As this goes far beyond the
scope of this contribution, we restrict ourselves to the evaluation of hedge funds in isolation and
exclude this portfolio theoretical investigation. However, in Appendix B we show that our main
results are robust for an evaluation from the portfolio perspective. For this purpose, we measure
the performance of a portfolio of traditional investments and a small portion of hedge funds (1, 5,
and 10%). Detailed results are available upon request.



Performance measurement of hedge funds 453

Compared to the input side, the number of possible return measures on the
output side is small. In most of the literature, only excess return is used as an
output, making it necessary merely to decide whether the average return should
be computed arithmetically or geometrically. The arithmetic case assumes with-
drawal of gains; the geometric case assumes reinvestment of gains. Gregoriou
(2003) and Gregoriou et al. (2005) also use a counterpart of the LPMs as return
measure, that is, the higher partial moments (HPM).

As mentioned, Wilkens and Zhu (2005) and Nguyen-Thi-Thanh (2006) use
skewness and kurtosis in DEA as inputs and outputs. Similar to hedge fund costs,
we will not integrate skewness or kurtosis in DEA because these characteristics
are already displayed by many risk measures on the input side. Skewness and
kurtosis, for example, explicitly enter the computation of the modified value at
risk so that additional consideration of the higher moments is not necessary in
our framework.

2.3 Input and output selection rules

The question now arise which and how many of these input and output measures
should be used for a DEA of hedge funds. Counterintuitively, using too many
inputs and outputs will be less helpful because when the number of inputs and
outputs increases, more decision-making units tend to get an efficiency score of
1 as they become too specialized to be evaluated with respect to other units.7 A
rule of thumb is that there should be a minimum of three funds per input and
output in implementing a DEA model (Bowlin 1998, p. 18). Thus, for practical
reasons, there needs to be some limit on the number of inputs and outputs.

As mentioned, to date there has been no agreement or rule for the selection
of inputs and outputs. From an economic point of view, the input and output
selection should be based on the investor’s preferences because different inves-
tors might consider different measures as relevant. The correct approach would
thus be to evaluate the distribution function of the returns of a particular hedge
fund by using the investor’s utility function.8 The problem with this procedure is
that hedge fund performance is often reported in a multitude of separate mea-
sures, as single measures cannot account for the full complexity of hedge fund
returns. The investor is confronted with a large number of possible measures,
any or all of which might be of particular relevance.

7 Problems related to discrimination and model misspecification arise when there are a relatively
large number of variables compared to the number of funds, which may cause the majority of funds
to be defined as efficient. Thus, the inclusion of more inputs and outputs in the model can artificially
inflate the efficiency scores as the addition of each variable provides an additional dimension in
which the model will seek similar comparison peers. See Pedraja-Chaparro et al. (1999) and Adler
and Golany (2002).
8 There are different ways to integrate investor’s preferences into DEA, see Allen et al. (1997)
and Halme et al. (1999). A simple example would be a scoring approach similar to the proposed
selection rule based on principal components; the only difference is that the input and output
weights are not determined by an optimization but are estimated by the investor.
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We recommend tackling this problem by using DEA, which is capable of
integrating the complexity of hedge fund returns into performance measure-
ment. For this purpose, those inputs and outputs should be selected that differ
as much as possible from each other in order to reach the highest possible
explanatory power in performance measurement.9 We propose two selection
rules that meet this criterion. The first is based on Spearman’s rank correlation;
the second on principal component analysis.10

2.3.1 Selection rule based on Spearman’s rank correlation

The selection rule based on Spearman (1904) consists of selecting those inputs
and outputs that are correlated as little as possible. Here the selection of inputs
and outputs is a three-step procedure: in the first step, all risk and return mea-
sures are computed for all funds. In the second step, the measurement values
are ranked so as to determine an order of the funds. In the third step, this
ranking is used to determine the rank correlation between the measures; those
measures with the smallest rank correlations are selected as inputs and out-
puts. The selection rule based on Spearman’s rank correlation coefficient (rsp)
is stated formally for the inputs as

arg min
1�j1,j2�J

rsp j1,j2 = 1 −
(

6
I∑

i=1

d2
i

)/(
I3 − I

)
, (5)

and for the outputs as

arg min
1�r1,r2�R

rsp r1,r2 = 1 −
(

6
I∑

i=1

d2
i

)/(
I3 − I

)
, (6)

with di as differences in ranking places for fund i. Under this selection rule,
two inputs and two outputs are selected, which are those with the smallest rank
correlation. (For more details on rank correlation analysis see Kendall and
Gibbons 1990).

9 If the investor already knows which measures are relevant and if he knows the relative impor-
tance of each of these measures, there is no further selection rule necessary. Thus, the selection
rules presented in the following are helpful (1) for those investors who cannot decide between the
large number of possible measures, (2) for those investors who have chosen too many inputs and
outputs, and (3) for those investors who cannot identify the relative importance of the inputs and
outputs chosen.
10 The main motivation for the proposed selection rules is that they are helpful in achieving a
high-quality DEA model. The DEA model could be misspecified if relevant factors are omitted or
if irrelevant factors are included (Smith 1997). For example, an input that has a correlation of one
to another input might be considered irrelevant for the DEA analysis, as it cannot provide any new
information (Pedraja-Chaparro et al. 1999). The presented selection rules avoid these problems by
distinguishing relevant from irrelevant factors and thus improve the model quality.
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2.3.2 Selection rule based on principal component analysis

Principal component analysis is a variable reduction procedure. It extracts the
most important information by building a number of artificial variables that
account for most of the variance in the observed variables. These artificial vari-
ables are called principal components. According to the second selection rule,
the principal components should be used in DEA to integrate the variability of
all risk and return measures (Adler and Golany 2002). Technically, a principal
component is a linear combination of optimally-weighted observed variables.
Starting with the observed variables X1 to XN , principal component analysis
provides the following linear system of equations:

CA = γ1A · X1 + γ2A · X2 · · · + γNA · XN ,

CB = γ1B · X1 + γ2B · X2 · · · + γNB · XN , · · · (7)

The first principal component CA is the result of a linear combination of
the observed variables X1 to XN with the factor loadings γ1A to γNA. In the
optimization, the factor loadings are weighted so as to maximize the portion of
variance explained by the principal components. The eigenvector with the larg-
est eigenvalue determines the first principal component, while the eigenvector
with the second largest eigenvalue determines the second principal component
(for more details on principal component analysis see Jackson 2003; Jolliffe
2002). The practical implementation of both selection rules is shown in the
following section.

3 Empirical investigation

3.1 Data and procedure

In the empirical investigation we consider monthly returns for 30 hedge funds
between January 1996 and December 2005. The hedge funds were selected
from the Center for International Securities and Derivatives Markets (CISDM)
hedge fund database.11 To obtain a representative sample of the entire hedge
fund universe, we randomly choose two funds from each of the 15 strategy
groups included in the database.12 The performance of these 30 funds is eval-
uated by 10 DEA applications. The results of the applications are compared

11 The CISDM hedge fund database has been subject of many academic studies. For the properties
of this database, see, e.g., (Edwards and Caglayan 2001; Kouwenberg 2003; Capocci and Hübner
2004).
12 Altogether we analyzed 450 hedge funds. We repeated the investigation 15 times with 30 funds
from each of the strategy groups and found that our main results are robust with regard to these vari-
ations. We also found robust results regarding different time-horizons. The results of all robustness
tests are presented in Appendix B. Detailed results are available upon request.
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Table 4 Overview of the applications

This table shows the inputs, outputs, returns to scale assumption, and underlying modeling approach
for the ten DEA applications considered in the empirical investigation. Applications 1–4 are already
covered in the literature. Applications 5–10 extend the literature by choosing inputs and outputs
following the selection rules presented in Sect. 2.3. The selection of inputs and outputs is based
on Spearman’s rank correlation for Applications 5–7 and on principal component analysis for
Applications 8–10. The abbreviations are explained in Table 3

both among themselves and with classic performance measures. Table 4 gives
an overview of the ten applications.

Application 1 clarifies the connection between classic performance measure-
ment and DEA. Its input is standard deviation and its output is excess return.
Assuming constant returns to scale, Application 1 results in the same rank-
ing and evaluation of the investments as is made by the Sharpe ratio (SRi),
calculated as the arithmetic excess return divided by the standard deviation. In
Application 2, the assumption of constant returns to scale is replaced by vari-
able returns to scale. Applications 3–10 use a multi-dimensional performance
measurement instead of a two-dimensional approach. Application 3 is the one
presented by Gregoriou (2003) and Gregoriou et al. (2005). Application 4 was
analyzed by Wilkens and Zhu (2005).

Applications 5–10 extend the literature by choosing inputs and outputs fol-
lowing the selection rules presented in Sect. 2.3. Applications 5–7 use the selec-
tion rule based on Spearman’s rank correlation, but use various underlying
DEA models: Application 5 is based on Charnes et al. (1978), Application 6
on Banker et al. (1984), and Application 7 on Andersen and Petersen (1993).
Applications 8–10 use the selection rule based on principal component analysis.
Again, these applications differ with respect to the underlying DEA model.

Various comparisons between the applications are possible and meaning-
ful. The results of the classic Sharpe ratio can be compared with the results
of the DEA analysis. Applications 1 and 2 allow a direct comparison of the
Charnes et al. (1978) and Banker et al. (1984) models. This clarifies the influ-
ence of variable economies of scale on fund efficiency. Moreover, applications
already proposed in the literature (Applications 3 and 4) can be contrasted
with applications using the new selection rules (Applications 5–10). Section 3.2
presents the selection of inputs and outputs. Then, in Sect. 3.3, DEA perfor-
mance measurement is performed. To solve the DEA optimization problem, the
efficiency measurement system (EMS) software presented by Scheel (2000) is
employed.



Performance measurement of hedge funds 457

3.2 Selection of inputs and outputs

3.2.1 Selection rule based on Spearman’s rank correlation

Following the selection rule based on Spearman’s rank correlation, we first
calculate all measures for the 30 funds. A constant risk-free interest rate of
rf = 0.35% per month was used. This corresponds to the interest on 10-year US
treasury bonds as of 30 December 2005 (4.28% per annum). For the LPM-based
measures, the minimal acceptable return corresponds to the risk-free monthly
interest rate (τ = 0.35%). For the average drawdown and the standard devi-
ation of drawdown, the five largest drawdowns are considered (K = 5). The
value-at-risk-based performance measures were calculated using a significance
level of α = 0.05. The results for the inputs are presented in Table 5 (panel A).
In the parentheses, the measurement values are ranked in order to determine
the rank correlation in the next step.

The rankings presented in panel A of Table 5 illustrate the complexity of
hedge fund performance measurement. For example, fund 27 has the high-
est standard deviation, but it ranks at tenth place with the modified value at
risk. Fund 24 is in second place with the standard deviation, but at 21st place
with the modified value at risk. These results confirm the significance of a multi-
dimensional approach when assessing hedge fund performance and thus empha-
size the benefit of DEA in performance measurement.

Using the ranking shown in Table 5, the rank correlation between the mea-
sures is derived, as set out in panel B of Table 5. The measures that exhibit the
smallest rank correlations are selected as inputs and outputs. We find the min-
imum rank correlation comparing conditional value at risk and lower partial
moment of order 0. The rank correlation here is 0.23.

The measurement values and rankings for the outputs are presented in
Table 6. The minimum rank correlation is found with the higher partial mo-
ment of order 3 and higher partial moment of order 0. The rank correlation
here is −0.33.

Thus, in Applications 5–7 the conditional value at risk and the lower partial
moment of order 0 will be used as inputs and the higher partial moment of
order 3 and of order 0 will be used as outputs.

3.2.2 Selection rule based on principal component analysis

Principal components are calculated using SPSS. The results obtained for the
inputs and outputs are shown in Table 7.

On the input side, the lower partial moment of order 2 has the highest impact
on component A (factor loading 0.97), while the lower partial moment of order
0 is the most important factor for component B (factor loading 0.86). Com-
ponents A and B together account for 88.20% of the variance in the input
data. On the output side, the higher partial moment of order 2 (factor loading
0.95, component A) and the higher partial moment of order 0 (factor loading
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Table 6 Measurement value and ranking of outputs

Panel A: measurement value and ranking (in parentheses) of outputs
Input fund AER GER HPM0 HPM1 HPM2 HPM3

1 0.45 (17) 0.44 (13) 71.67 (2) 0.83 (19) 0.01 (23) 0.00 (24)
2 0.29 (24) 0.28 (19) 65.83 (9) 0.64 (23) 0.01 (25) 0.00 (26)
3 0.55 (13) 0.16 (24) 65.22 (10) 0.51 (26) 0.01 (24) 0.00 (23)
4 0.17 (26) −0.06 (28) 53.73 (26) 0.26 (30) 0.00 (30) 0.00 (29)
5 1.02 (5) 0.90 (3) 63.79 (12) 1.92 (6) 0.09 (10) 0.00 (13)
6 0.48 (15) 0.29 (18) 62.62 (14) 1.69 (8) 0.09 (8) 0.01 (8)
7 0.39 (20) −0.03 (26) 48.72 (28) 1.66 (9) 0.15 (6) 0.02 (5)
8 1.06 (4) 0.89 (4) 58.82 (16) 2.75 (3) 0.20 (4) 0.02 (4)
9 0.87 (7) 0.83 (5) 66.67 (6) 1.59 (10) 0.06 (12) 0.00 (14)
10 0.35 (22) 0.21 (22) 59.17 (15) 2.08 (5) 0.14 (7) 0.01 (7)
11 1.40 (3) 1.15 (2) 57.63 (18) 3.30 (2) 0.32 (2) 0.04 (3)
12 0.64 (10) 0.60 (8) 66.67 (6) 1.43 (13) 0.05 (15) 0.00 (16)
13 0.25 (25) 0.24 (20) 55.83 (22) 0.77 (21) 0.02 (21) 0.00 (22)
14 −0.14 (30) −0.18 (30) 47.50 (29) 1.06 (15) 0.04 (16) 0.00 (17)
15 0.12 (27) 0.12 (25) 64.17 (11) 0.40 (27) 0.00 (29) 0.00 (30)
16 0.36 (21) 0.33 (16) 58.33 (17) 1.01 (16) 0.04 (17) 0.00 (15)
17 0.10 (28) −0.04 (27) 66.67 (6) 0.40 (28) 0.01 (28) 0.00 (27)
18 0.59 (12) 0.23 (21) 69.33 (4) 0.52 (25) 0.02 (22) 0.00 (20)
19 0.41 (19) 0.21 (23) 56.52 (21) 0.80 (20) 0.03 (18) 0.00 (18)
20 0.51 (14) 0.47 (12) 79.17 (1) 1.00 (17) 0.02 (19) 0.00 (21)
21 0.80 (8) 0.58 (10) 68.00 (5) 0.94 (18) 0.05 (14) 0.01 (9)
22 0.42 (18) 0.42 (14) 70.83 (3) 0.54 (24) 0.01 (26) 0.00 (28)
23 0.73 (9) 0.68 (6) 57.50 (19) 1.50 (11) 0.08 (11) 0.01 (11)
24 1.50 (2) 0.53 (11) 50.77 (27) 1.47 (12) 0.26 (3) 0.07 (2)
25 0.31 (23) 0.30 (17) 55.83 (22) 0.69 (22) 0.02 (20) 0.00 (19)
26 0.94 (6) 0.68 (7) 57.41 (20) 2.48 (4) 0.18 (5) 0.02 (6)
27 1.75 (1) 1.48 (1) 55.00 (24) 3.53 (1) 0.50 (1) 0.13 (1)
28 0.46 (16) 0.38 (15) 55.00 (24) 1.76 (7) 0.09 (9) 0.01 (10)
29 0.05 (29) −0.17 (29) 46.43 (30) 0.32 (29) 0.01 (27) 0.00 (25)
30 0.63 (11) 0.60 (9) 63.33 (13) 1.15 (14) 0.06 (13) 0.01 (12)
Panel B: rank correlation of outputs
AER 1.00 0.88 0.17 0.68 0.72 0.71
GER 0.88 1.00 0.24 0.69 0.64 0.59
HPM0 0.17 0.24 1.00 −0.19 −0.30 −0.33
HPM1 0.68 0.69 −0.19 1.00 0.96 0.90
HPM2 0.72 0.64 −0.30 0.96 1.00 0.98
HPM3 0.71 0.59 −0.33 0.90 0.98 1.00

Panel A of this table shows, for each of the 30 funds, the measurement results for the six outputs
defined in Sect. 2.2. The numbers in parentheses indicate the ranking of the measurement values.
Panel B shows the resulting Spearman’s rank correlation between the outputs. The abbreviations
are explained in Table 3. The formulas for calculation of the measures can be found in Appendix A

0.97, component B) have the highest impact in the principal component analysis.
Components A and B explain 90.15% of the total variance.

Using the principal component analysis results, we calculate inputs and out-
puts for Applications 8–10. On the input side, the first principal component is
the result of a linear combination of the observed variables SD to MVAR with
the factor loadings 0.90–0.91. The second principal component uses the fac-
tor loadings −0.05 to −0.04. On the output side, the first principal component
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Table 7 Results of principal component analysis

Inputs Component A Component B Outputs Component A Component B

Standard 0.90 −0.05 Arithmetic 0.94 0.01
deviation excess return
LPM0 0.45 0.86 Geometric 0.89 0.39

excess return
LPM1 0.95 0.20 HPM0 0.11 0.97
LPM2 0.97 −0.06 HPM1 0.90 0.07
LPM3 0.91 −0.27 HPM2 0.95 −0.24
Maximum drawdown 0.87 −0.05 HPM3 0.86 −0.34
Average drawdown 0.96 0.16
Standard deviation 0.97 0.05
of drawdown
Value at risk 0.93 −0.05
Conditional value 0.82 −0.36
at risk
Modified value 0.91 −0.04
at risk
Total variance 78.94 88.20 Total variance 69.11 90.15
explained (%) explained (%)

The left side of this table shows the principal component analysis results for the 11 inputs defined
in Sect. 2.2. For each of the inputs, two factor loadings are calculated; the first one for component
A and the second one for component B. The last row gives the total variance explained by the prin-
cipal components. The right side of the table shows the corresponding results for the six outputs
defined in Sect. 2.2. The abbreviations are explained in Table 3. The formulas for calculation of the
measures can be found in Appendix A

combines the results of the observed variables AER to HPM3 with the factor
loadings 0.94–0.86, while the second principal component has the loadings 0.01
to −0.34.

3.3 DEA performance measurement

Table 8 (panel A) shows the performance measurement results for the classic
Sharpe ratio and for the ten DEA applications. Furthermore, for each measure
the resulting fund rankings are presented. The Spearman’s rank correlation
coefficients between the performance measures are set out in panel B of Table 8
in order to illustrate the relations between the applications.

We first compare the Sharpe ratio and DEA Application 1. Under the Sharpe
ratio, fund 22 yields the best performance of 0.48. Fund 14 exhibits the lowest
Sharpe ratio of −0.05. By definition, the Sharpe ratio and DEA Application 1
lead to the same ranking of investments and thus to a rank correlation of 1.00.
Fund 22 achieves the highest possible efficiency score of 1.00; fund 14 has the
worst efficiency score of 0.00.

The integration of variable returns to scale (DEA Application 2) leads to
higher efficiency scores than Application 1 with constant returns to scale. On
average, the efficiency score in Application 2 amounts to 0.64 compared to 0.41
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in Application 1. In Application 2, four funds achieve the maximum efficiency
score of 1.00—funds 9, 18, 22, and 27. While funds 9, 18, and 22 were already
among the best funds in Application 1, fund 27 gains ten places. Assuming
decreasing returns to scale this fund seems to be more attractive because it has
the highest return but also the highest standard deviation. Comparing rank cor-
relations between the Applications 1 and 2, we find some changes in rankings;
the rank correlation is 0.81.

The rank correlations are noticeably lower in the applications employing
multi-dimensional performance analysis (Applications 3–10), thus resulting in
a different evaluation of the investments. For example, according to Application
3, fund 15 achieves an efficiency score of only 0.43 and ranks at 27th place. Obvi-
ously, the low rankings with the higher partial moments of order 1–3 lead to a
worse evaluation of this fund compared to Application 2. Fund 21 is now in the
first place, apparently due to its good ranking with the lower partial moments.
Hence, the rank correlation between the Sharpe ratio and Application 3 is 0.76.

The rank correlations are even lower with Applications 5–7. It amounts to
0.52 with Application 5, 0.45 with Application 6, and 0.43 with Application 7.
Therefore, we find a significantly different fund evaluation when using these
proposed applications.13 For example, fund 15, which is in 23rd place with the
Sharpe ratio, is evaluated as efficient in these three applications. This might
be due to its good ranking with the HPM0. Comparing Applications 5–7 with
each other, we find small changes in rankings. Thus, on basis of our data it only
makes a slight difference as to which of the three DEA modeling approaches
(Charnes et al. 1978; Banker et al. 1984; Andersen and Petersen 1993) is used
to assess hedge fund performance.

We also find small differences comparing Applications 8–10. The rank cor-
relations compared to the Sharpe ratio are now 0.55 (Application 9), 0.56
(Application 10), and 0.80 (Application 8). Fund 15 (first place with Applica-
tions 5–7) is now either in 13th or 19th place, but fund 20 is in first place for all
applications. In this context it is striking that Fund 20 has the highest HPM0.
Also of interest is a comparison of Applications 9 and 10. With Application 9,
six funds (9, 17, 18, 20, 22, and 27) achieve the maximum efficiency score of 1.00
and rank at first place. Using the super-efficiency approach of Application 10,
it is possible to provide a ranking of these efficient funds: Fund 9 is sixth, Fund
17 is fifth, Fund 18 is fourth, Fund 27 is third, Fund 22 is second, and Fund 20 is
in first place.

13 The statistical significance of the rank correlation can be checked with the Hotelling–Pabst
statistic. In this test, the hypothesis of independence of the rankings is checked for the correlation
coefficient. The test statistic D has the following form: D = d2

1 + · · · d2
I ; see Hotelling and Pabst

(1936). The null hypothesis H0: “The measurement series are independent” must be rejected at
level α = 0.01 if D < 2, 402 or D > 6, 110. In this example these critical values are attained at a
rank correlation of rsp = |0.47|. Thus, if the rank correlation is smaller than 0.47 and higher than
−0.47 we conclude that we find a significantly different fund evaluation.
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To sum up, using the new DEA applications, we find differences in rankings
compared to the classic Sharpe ratio and compared to previously proposed
DEA applications. This is especially true when the selection rule based on
Spearman’s rank correlation is applied. Therefore, it seems that DEA is able to
capture additional information contained in hedge fund returns and provides a
new evaluation of the hedge funds under consideration.

4 Conclusion

In this paper, data envelopment analysis (DEA) has been suggested as a method
for hedge fund performance measurement. DEA is a linear programming
approach that can be used to model the relationship between inputs and out-
puts and to assess the efficiency of any decision-making unit. The resulting
efficiency score can be interpreted as a performance measure. Recent literature
confirms that using DEA to measure the performance of hedge funds yields
some advantages compared to classic performance measures.

The contribution of this paper is to put the existing literature into a common
framework and to provide rules for the selection of inputs and outputs when
implementing DEA. We first presented the basic principle of DEA, that is, the
general model approach and different model variants. Next, we systematized
possible inputs and outputs and analyzed their eligibility for hedge fund per-
formance measurement. Finally, two rules were developed that investors might
use for their selection of inputs and outputs. The first rule is based on Spear-
man’s rank correlation and the second on principal component analysis. Using
the new DEA applications described in this paper, significant differences in the
rankings of hedge funds have been found compared to the classic Sharpe ratio
and compared to previously proposed DEA applications.

What are the conclusions that can be drawn from these results? We cannot
conclude that DEA based on the suggested rules provides a better evalua-
tion compared to classic performance measures such as the Sharpe ratio or
compared to previously proposed DEA applications, as we do not have any
criteria to evaluate the quality of different performance measures.14 Further-
more, as higher moments in financial returns are very unstable over time, it is
questionable how stable DEA’s ranking results are, as well as those of other per-
formance measures that include higher moments. Given their dynamic trading
strategies, the answer to this question will be particularly important to hedge
funds. Future research should thus evaluate the implications of the instability
of higher moments on performance measurement for hedge funds and other
investments.

14 Moreover, the suitability of different performance measures depends on the preferences of
the investor and on the concrete decision-making situation, which makes a generally accepted
comparison impossible; see, e.g., Scholz and Wilkens (2003)



466 M. Eling

But, as illustrated by the large differences in rankings and the low rank
correlations, our DEA applications provide additional information about the
funds’ risk and return characteristics, especially when the selection rule based
on Spearman’s rank correlation is applied. For an investor, it might be useful
to have this additional information, e.g., for the selection and assessment of
those funds, that provide comparable measurement values with classic two-
dimensional measures. Thus, we propose that classic performance measure-
ments should be supplemented with DEA to achieve a more complete view of
hedge fund performance.

Acknowledgments The author thanks Wolfgang Bessler, Nadine Gatzert, Thomas Parnitzke, Hato
Schmeiser, Denis Toplek, and two anonymous referees for their helpful comments and suggestions.

Appendix A: Formulas

Average drawdown

ADik= 1/K
K∑

k=1

−Dik (A1)

with K: number of drawdowns (k = 1: maximum drawdown, k = 2: second-
largest drawdown, k = 3: third-largest drawdown,. . .)

Dik: drawdown of fund i

Average excess return (computed arithmetically)

AERi = rd
iarithmetic

− rf = 1/T
T∑

t=1

rit − rf (A2)

with rit: discrete return of fund i in month t (t = 1, . . . , T)
rf : (constant) risk-free interest rate
T: number of months

Average excess return (computed geometrically)

GERi = rd
i geometric − rf = T

√√√√
T∏

t=1

(1 + rit) − 1 − rf (A3)
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Conditional value at risk

CVARi = E[−rit|rit ≤ −VARi] (A4)

with VARi: value at risk

Higher partial moments

HPMin =






Pr(rit � τ) for n = 0

1/T
T∑

t=1

max[rit − τ , 0]n for n > 0
(A5)

with n: order of the lower partial moment
τ : minimal acceptable return

Lower partial moments

LPMin =






Pr(rit < τ) for n = 0

1/T
T∑

t=1

max[τ − rit, 0]n for n > 0
(A6)

Modified value at risk

MVARi = −
(

rd
i arithmetic + SDi

(
zα + (z2

α − 1)Si/6

+ (z3
α − 3 · zα)Ei/24 − (2z3

α − 5zα

)
S2

i /36)
)

(A7)

with

Si : skewness

(
=

(
1/T

T∑

t=1

(rit − rd
i arithmetic)

3

)/
SD3

i

)

Ei : excess kurtosis

(
=

(
1/T

T∑

t=1

(rit − rd
i arithmetic)4

)/
SD4

i − 3

)
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Standard deviation

SDi =
√√√√ 1

T − 1

T∑

t=1

(rit − rd
i arithmetic)

2 (A8)

Standard deviation of drawdown (square root of the squared maximum
drawdowns)

SDDik =
√√√√

K∑

k=1

D2
ik

(A9)

Value at risk

VARi = −
(

rd
i arithmetic + zαSDi

)
(A10)

with zα : α-quantile of the standard normal distribution

Appendix B: Robustness of results

Table 9 Robustness of results

Rank correlation compared to the Sharpe ratio
for DEA Application

1 2 3 4 5 6 7 8 9 10

Section 3 1.00 0.81 0.76 0.69 0.52 0.45 0.43 0.80 0.55 0.56
Hedge fund strategy

Convertible arbitrage 1.00 0.72 0.42 0.72 0.47 0.50 0.49 0.80 0.46 0.47
Distressed securities 1.00 0.88 0.52 0.72 0.29 0.34 0.32 0.63 0.55 0.48
Event driven multi strategy 1.00 0.78 0.72 0.79 0.68 0.44 0.43 0.79 0.52 0.52
Equity long only 0.99 0.60 0.73 0.43 0.57 0.42 0.41 0.44 0.30 0.28
Equity long short 1.00 0.88 0.69 0.77 0.48 0.48 0.49 0.80 0.73 0.77
Emerging markets 1.00 0.96 0.30 0.84 0.43 0.44 0.50 0.86 0.45 0.49
Equity market neutral 1.00 0.68 0.85 0.74 0.72 0.73 0.73 0.89 0.68 0.68
Fixed income arbitrage 1.00 0.73 0.72 0.17 0.49 0.42 0.42 0.56 0.34 0.38
Funds of funds 1.00 0.80 0.31 0.59 0.51 0.52 0.52 0.47 0.36 0.28
Global macro 1.00 0.87 0.71 0.68 0.45 0.32 0.32 0.69 0.39 0.41
Merger arbitrage 1.00 0.73 0.61 0.74 0.67 0.57 0.56 0.57 0.15 0.15
Mortgage backed securities 1.00 0.91 0.58 0.89 0.34 0.45 0.42 0.37 0.18 0.21
Multi strategy 1.00 0.88 0.37 0.75 0.39 0.35 0.35 0.32 0.13 0.00
Sector 1.00 0.77 0.15 0.60 0.51 0.50 0.47 0.57 0.17 0.16
Short bias 0.99 0.68 0.45 0.70 0.24 0.22 0.25 0.34 0.20 0.26
Mean 1.00 0.79 0.54 0.68 0.48 0.45 0.45 0.61 0.37 0.37
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Table 9 Continued

Rank correlation compared to the Sharpe ratio
for DEA Application

1 2 3 4 5 6 7 8 9 10

Time horizon
1996–2000 1.00 0.87 0.64 0.84 0.69 0.50 0.52 0.87 0.69 0.72
2001–2005 1.00 0.83 0.86 0.75 0.61 0.62 0.62 0.72 0.60 0.63

Mean 1.00 0.85 0.75 0.80 0.65 0.56 0.57 0.79 0.65 0.68
Portfolio perspective

hedge fund portion 1% 1.00 0.75 0.31 0.14 0.56 0.05 0.09 0.65 0.16 0.18
hedge fund portion 5% 1.00 0.85 0.39 0.09 0.59 0.21 0.19 0.71 0.39 0.39
hedge fund portion 10% 0.98 0.81 0.47 0.66 0.75 0.25 0.22 0.78 0.53 0.52

Mean 0.99 0.80 0.39 0.30 0.63 0.17 0.16 0.72 0.36 0.36

This table shows the Spearman’s rank correlations of the 10 DEA applications defined in Table 4
compared to the Sharpe ratio for 15 different hedge fund strategies, 2 different time horizons, and
3 different decision-making situations from a portfolio perspective. The 15 different hedge fund
strategies are defined by the Center for International Securities and Derivatives Markets (CIS-
DM). To investigate the effect of different time horizons, we broke down the total investigation
period from 1996 to 2005 into two equal time periods. To investigate the portfolio perspective, we
measured the performance of a portfolio comprised of traditional investments and a small portion
of hedge funds (1, 5, and 10%). Detailed results are available upon request
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