Faculté des sciences

Postnatal development of metabolic flexibility and enhanced oxidative capacity after prenatal undernutrition

Norman, Amy M. ; Miles-Chan, Jennifer L. ; Thompson, Nichola M. ; Breier, Bernhard H. ; Huber, Korinna

In: Reproductive Sciences, 2012, vol. 19, no. 6, p. 607-614

Metabolic flexibility is the body’s ability to adapt to changing energy demand and nutrient supply. Maternal undernutrition causes growth restriction at birth and subsequent obesity development. Intriguingly, metabolic flexibility is maintained due to adaptations of muscle tissue. The aim of the present study was to investigate developmental pathways of these adaptive changes. Wistar rats... Plus

Ajouter à la liste personnelle
    Summary
    Metabolic flexibility is the body’s ability to adapt to changing energy demand and nutrient supply. Maternal undernutrition causes growth restriction at birth and subsequent obesity development. Intriguingly, metabolic flexibility is maintained due to adaptations of muscle tissue. The aim of the present study was to investigate developmental pathways of these adaptive changes. Wistar rats received standard chow at either ad libitum (AD) or 30% of ad libitum intake (UN) throughout pregnancy. At all ages, metabolic status indicated similar insulin sensitivity in AD and UN offspring despite the development of adiposity in UN offspring at weaning. Type IIA fiber size was reduced in soleus muscle of UN offspring at weaning and they had a higher percentage of type I fibers in adulthood with a concomitantly higher oxidative capacity. Plasticity of muscle was present during the postnatal period and proposes novel pathways for the dynamic development of metabolic flexibility throughout postnatal life.