Plant Photoreceptors: Phylogenetic Overview

Lariguet, Patricia ; Dunand, Christophe

In: Journal of Molecular Evolution, 2005, vol. 61, no. 4, p. 559-569

Ajouter à la liste personnelle
    Summary
    Plants possess photoreceptors to perceive light which controls most aspects of their lives. Three photoreceptor families are well characterized: cryptochromes (crys), phototropins (phots), and phytochromes (phys). Two putative families have been identified more recently: Zeitlupes (ZTLs) and UV-B photoreceptors (ULI). Using Arabidopsis thaliana and Oryza sativa photoreceptor sequences as references, we have searched for photoreceptor encoding genes in the major phyla of plant kingdom. For each photoreceptor family, using a phylogenetic tree based on the alignment of conserved amino acid sequences, we have tried to trace back the evolution and the emergence of the diverse photoreceptor ancestral sequences. The green alga Chlamydomonas contains one cry and one phot sequence, probably close to the corresponding ancestral sequences, and no phy-related sequence. The putative UV-B photoreceptors seem to be restricted to the Brassicacae. Except for mosses and ferns, which contain divergent photoreceptor numbers, the composition of the diverse photoreceptor families is conserved between species. A high conservation of the residues within domains is observed in each photoreceptor family. The complete phylogenic analysis of the photoreceptor families in plants has confirmed the existence of crucial evolutionary nodes between the major phyla. For each photoreceptor class, a major duplication occurred before the separation between Mono- and Eudicotyledons. This allowed postulating on the putative ancestral function of the photoreceptors