Binomial edge ideals of bipartite graphs

Davide Bolognini a, Antonio Macchia b, Francesco Strazzanti c

a Département de Mathématiques, Université de Fribourg, Chemin du Musée 23, CH-1700 Fribourg, Switzerland
b Dipartimento di Matematica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
c Departamento de Álgebra, Facultad de Matemáticas, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41080 Sevilla, Spain

Binomial edge ideals are a noteworthy class of binomial ideals that can be associated with graphs, generalizing the ideals of 2-minors. For bipartite graphs we prove the converse of Hartshorne’s Connectedness Theorem, according to which if an ideal is Cohen–Macaulay, then its dual graph is connected. This allows us to classify Cohen–Macaulay binomial edge ideals of bipartite graphs, giving an explicit and recursive construction in graph-theoretical terms. This result represents a binomial analogue of the celebrated characterization of (monomial) edge ideals of bipartite graphs due to Herzog and Hibi (2005).

1. Introduction

Binomial edge ideals were introduced independently in [10] and [17]. They are a natural generalization of the ideals of 2-minors of a $(2 \times n)$-generic matrix [3]: their generators are those 2-minors whose column indices correspond to the edges of a graph. In this perspective, the ideals of 2-minors are binomial edge ideals of complete graphs. On the other hand, binomial edge ideals arise naturally in Algebraic Statistics, in the context of conditional independence ideals, see [10, Section 4].

More precisely, given a finite simple graph G on the vertex set $[n] = \{1, \ldots, n\}$, the binomial edge ideal associated with G is the ideal

$$J_G = (x_i x_j - x_j x_i : \{i, j\} \text{ is an edge of } G) \subset R = K[x_i, y_i : i \in [n]].$$

E-mail addresses: davide.bolognini@unifr.ch (D. Bolognini), antonio.macchia@uniba.it (A. Macchia), fstrazzanti@us.es (F. Strazzanti).
Binomial edge ideals have been extensively studied, see e.g. [1,5,6,13–15,18,19]. Yet a number of interesting questions is still unanswered. In particular, many authors have studied classes of Cohen–Macaulay binomial edge ideals in terms of the associated graph, see e.g. [1,5,13,18,19]. Some of these results concern a class of chordal graphs, the so-called closed graphs, introduced in [10], and their generalizations, such as block and generalized block graphs [13].

In the context of squarefree monomial ideals, any graph can be associated with the so-called edge ideal, whose generators are monomials of degree 2 corresponding to the edges of the graph. Herzog and Hibi, in [9, Theorem 3.4], classified Cohen–Macaulay edge ideals of bipartite graphs in purely combinatorial terms. In the same spirit, we provide a combinatorial classification of Cohen–Macaulay binomial edge ideals of bipartite graphs.

To this aim we exploit the dual graph of an ideal. Following the notation used in [2], we recall this terminology about graphs we refer to [4]. First we present a family of bipartite graphs

\[I = K[x_1, \ldots, x_n] \]

and let \(p_1, \ldots, p_r \) be the minimal prime ideals of \(I \). The dual graph \(D(I) \) is a graph with vertex set \([r] \) and edge set

\[\{(i, j) : \text{ht}(p_i + p_j) = \text{ht}(p_i) = \text{ht}(p_j) = \text{ht}(I)\}. \]

This notion was originally studied by Hartshorne in [8] in terms of connectedness in codimension one. By [8, Corollary 2.4], if \(A/I \) is Cohen–Macaulay, then the algebraic variety defined by \(I \) is connected in codimension one, hence \(I \) is unmixed by [8, Remark 2.4.1]. The connectedness of the dual graph translates in combinatorial terms the notion of connectedness in codimension one, see [8, Proposition 1.1]. Thus, if \(A/I \) is Cohen–Macaulay, then \(D(I) \) is connected. The converse does not hold in general, see for instance Remark 5.1. We will show that for binomial edge ideals of connected bipartite graphs this is indeed an equivalence. In geometric terms, this means that the algebraic variety defined by \(\mathcal{J}_C \) is Cohen–Macaulay if and only if it is connected in codimension one.

We now describe the explicit structure of the bipartite graphs in the classification. For the terminology about graphs we refer to [4]. First we present a family of bipartite graphs \(F_m \) whose binomial edge ideal is Cohen–Macaulay, and we prove that, if \(G \) is connected and bipartite, then \(\mathcal{J}_C \) is Cohen–Macaulay if and only if \(G \) can be obtained recursively by gluing a finite number of graphs of the form \(F_m \) via two operations.

Basic blocks: For every \(m \geq 1 \), let \(F_m \) be the graph (see Fig. 1) on the vertex set \([2m]\) and with edge set

\[E(F_m) = \{(2i, 2j) : i = 1, \ldots, m, j = 1, \ldots, m\}. \]

Notice that \(F_1 \) is the single edge \((1, 2)\) and \(F_2 \) is the path of length 3.

Operation \(\ast \): For \(i = 1, 2 \), let \(F_i \) be a graph with at least one vertex \(f_i \) of degree one, i.e., a leaf of \(G_i \). We denote the graph \(G \) obtained by identifying \(f_1 \) and \(f_2 \) by \(G = (G_1, f_1) \ast (G_2, f_2), \) see Fig. 2(a). This is a particular case of an operation studied by Rauh and Rinaldo in [18, Section 2].

Operation \(\circ \): For \(i = 1, 2 \), let \(G_i \) be a graph with at least one leaf \(f_i \), \(v_i \) its neighbour and assume \(\deg_G(v_i) \geq 3 \). We define \(G = (G_1, f_1) \circ (G_2, f_2) \) to be the graph obtained from \(G_1 \) and \(G_2 \) by removing the leaves \(f_1, f_2 \) and identifying \(v_1 \) and \(v_2 \), see Fig. 2(b).

For both operations, if it is not important to specify the vertices \(f_i \) or it is clear from the context, we simply write \(G_1 \ast G_2 \) or \(G_1 \circ G_2 \).
Notice that, we may assume G connected with at least two vertices since the ideal J_G is Cohen–Macaulay if and only if the binomial edge ideal of each connected component of G is Cohen–Macaulay.

Before stating the main result, we recall the notion of cut set, which is central in the study of binomial edge ideals. In fact, there is a bijection between the cut sets of a graph G and the minimal prime ideals of J_G, see [10, Section 3]. For a subset $S \subseteq [n]$, let $c_G(S)$ be the number of connected components of the induced subgraph $G_{[n\setminus S]}$. The set S is called cut set of G if $S = \emptyset$ or $S \neq \emptyset$ and $c_G(S \setminus \{i\}) < c_G(S)$ for every $i \in S$. Moreover, we call cut vertex a cut set of cardinality one. We denote by $\Lambda(G)$ the set of cut sets of G.

We are now ready to state our main result.

Theorem 6.1. Let G be a connected bipartite graph. The following properties are equivalent:

(a) J_G is Cohen–Macaulay;
(b) the dual graph $D(J_G)$ is connected;
(c) $G = A_1 * A_2 * \cdots * A_s$ where $A_i = F_{m_i}$ or $A_i = F_{m_i} \circ \cdots \circ F_{m_k}$, for some $m_i \geq 1$ and $m_i \geq 3$;
(d) J_G is unmixed and for every non-empty $S \in \Lambda(G)$, there exists $s \in S$ such that $S \setminus \{s\} \in \Lambda(G)$.

The paper is structured as follows. In Section 2 we study unmixed binomial edge ideals of bipartite graphs. A combinatorial characterization of unmixedness was already proved in [10] (see also [18, Lemma 2.5]), in terms of the cut sets of the underlying graph.

A first distinguishing fact about bipartite graphs with J_G unmixed is that they have exactly two leaves (Proposition 2.3). This, in particular, means that G has at least two cut vertices. In Proposition 2.8, we present a construction that is useful in the study of the basic blocks and to produce new examples of unmixed binomial edge ideals, which are not Cohen–Macaulay.

In Section 3 we prove that the ideals J_{f_m}, associated with the basic blocks of our construction, are Cohen–Macaulay, see Proposition 3.3. In Section 4 we study the operations \circ and \ast. In [18, Theorem 2.7], Rauf and Rinaldo proved that $J_{D(G)}$ is Cohen–Macaulay if and only if so are J_G and $J_{\bar{G}}$. In Theorem 4.9, we show that J_G is Cohen–Macaulay if $G = F_{m_1} \circ \cdots \circ F_{m_k}$, for every $k \geq 2$ and $m_i \geq 3$. Using these results, we prove the implication (c) \Rightarrow (a) of Theorem 6.1.

Section 5 is devoted to the study of the dual graph of binomial edge ideals. This is one of the main tools in the proof of Theorem 6.1. First of all, given a (not necessarily bipartite) graph G with J_G unmixed, in Theorem 5.2 we provide an explicit description of the edges of the dual graph $D(J_G)$ in terms of the cut sets of G. This allows us to show infinite families of bipartite graphs whose binomial edge ideal is unmixed and not Cohen–Macaulay, see Examples 2.2 and 5.4.

A crucial result concerns a basic, yet elusive, property of cut sets of unmixed binomial edge ideals. In Lemma 5.5, we show that, mostly for bipartite graphs and under some assumption, the intersection of any two cut sets is a cut set. This leads to the proof of the equivalence (b) \iff (d) in Theorem 6.1, see Theorem 5.7. On the other hand, if $G = G_1 \ast G_2$ or $G = G_1 \circ G_2$ is bipartite and $D(J_G)$ is connected, then the dual graphs of G_1 and G_2 are connected, see Theorem 5.8. Thus, we may reduce to consider bipartite graphs with exactly two cut vertices and prove the implication (b) \Rightarrow (c) of Theorem 6.1. This also shows that the converse of Hartshorne’s Connectedness Theorem holds for these ideals.

It is worth noting that, the main theorem gives also a classification of other classes of Cohen–Macaulay binomial ideals associated with bipartite graphs, Corollary 6.2: Lovász–Saks–Schrijver ideals [11], permanental edge ideals [11, Section 3] and parity binomial edge ideals [12].
As an application of the main result, in Corollary 6.3, we show that Cohen–Macaulay binomial edge ideals of bipartite graphs are Hirsch, meaning that the diameter of the dual graph of J_G is bounded above by the height of J_G, verifying [2, Conjecture 1.6].

All the results presented in this paper are independent of the field.

2. Unmixed binomial edge ideals of bipartite graphs

In this paper all graphs are finite and simple (without loops and multiple edges). In what follows, unless otherwise stated, we assume that G is a connected graph with at least two vertices. Given a graph G, we denote by $V(G)$ its vertex set and by $E(G)$ its edge set. If G is a bipartite graph, we denote by $V(G) = V_1 \cup V_2$ the bipartition of the vertex set and call V_1, V_2 the bipartition sets of G.

For a subset $S \subseteq V(G)$, we denote by G_S the subgraph induced in G by S, which is the graph with vertex set S and edge set consisting of all the edges of G with both endpoints in S.

We recall some definitions and results from [10]. Let G be a graph with vertex set $[n]$. We denote by $R = K[x_i, y_i : i \in [n]]$ the polynomial ring in which the ideal J_G is defined and, if $S \subseteq [n]$, we set $S = [n] \setminus S$. Let $c_G(S)$, or simply $c(S)$, be the number of connected components of the induced subgraph G_S and let $G_1, \ldots, G_{c_G(S)}$ be the connected components of G_S. For each G_i, denote by G_i the complete graph on G_i and define the ideal

$$P_i(G) = \left(\bigcup_{i \in S} \langle x_i, y_i \rangle J_{G_1}, \ldots, J_{G_{c_G(S)}} \right).$$

In [10, Section 3], it is shown that $P_i(G)$ is a prime ideal for every $S \subseteq [n]$, ht($P_i(G)$) = $|S| - c_G(S)$ and $J_G = \bigcap S \in [n] P_i(G)$. Moreover, $P_i(G)$ is a minimal prime ideal of J_G if and only if $S = \emptyset$ or $S \neq \emptyset$ and $c_G(S) < c_G(S \setminus \{i\})$ for every $i \in S$. In simple terms the last condition means that, adding a vertex of S to G_T, we connect at least two connected components of G_T. We set

$$\mathcal{M}(G) = \{ S \subseteq [n] : P_i(G) \text{ is a minimal prime ideal of } J_G \}$$

$$= \{ \emptyset \} \cup \{ S \subseteq [n] : S \neq \emptyset, \ c_G(S \setminus \{i\}) < c_G(S) \text{ for every } i \in S \},$$

and we call cut sets of G the elements of $\mathcal{M}(G)$. If $\{v\} \in \mathcal{M}(G)$, we say that v is a cut vertex of G.

We further recall that a clique of a graph G is a subset $C \subseteq V(G)$ such that G_C is complete. A free vertex of G is a vertex that belongs to exactly one maximal clique of G. A vertex of degree 1 in G, which in particular is a free vertex, is called a leaf of G.

Remark 2.1. Notice that a vertex v is free in a graph G if and only if $v \notin S$ for every $S \in \mathcal{M}(G)$, see [18, Proposition 2.1].

Recall that an ideal is unmixed if all its minimal primes have the same height. By [18, Lemma 2.5], J_G is unmixed if and only if for every $S \in \mathcal{M}(G)$,

$$c_G(S) = |S| + 1.$$ (1)

This follows from the equality $\text{ht}(P_i(G)) = n - 1 = \text{ht}(P_j(G)) = n + |S| - c_G(S)$.

Moreover, for every graph G, with J_G unmixed, we have that $\dim(R/J_G) = |V(G)| + c$, where c is the number of connected components of G, see [10, Corollary 3.3].

In this section, we study some properties of unmixed binomial edge ideals of bipartite graphs. It is well-known that if J_G is Cohen–Macaulay, then J_G is unmixed. The converse is, in general, not true, also for binomial edge ideals of bipartite graphs. In fact, in the following example we show two classes of bipartite graphs whose binomial edge ideals are unmixed but not Cohen–Macaulay.

Example 2.2. For every $k \geq 4$, let $M_{2k, k}$ be the graph with vertex set $[2k]$ and edge set

$$E(M_{2k, k}) = \{(1, 2), (2k - 1, 2k)\} \cup \{(2i, 2j - 1) : i = 1, \ldots, k - 1, j = 2, \ldots, k\},$$

see Fig. 3(a), and let $M_{k-1, k}$ be the graph with vertex set $[2k - 1]$ and edge set

$$E(M_{k-1, k}) = \{(1, 2), (2k - 2, 2k - 1)\} \cup \{(2i, 2j - 1) : i = 1, \ldots, k - 1, j = 2, \ldots, k - 1\},$$

see Fig. 3(b).
Notice that the graphs $M_{b,k}$ and $M_{b-1,k}$ are obtained by adding two whiskers to some complete bipartite graph. Recall that adding a whisker to a graph G means adding a new vertex and connect it to one of the vertices of G.

Let $V_1 \cup V_2$ be the bipartition of $M_{b,k}$ and of $M_{b-1,k}$ such that V_1 contains the odd labelled vertices and V_2 contains the even labelled vertices. We claim that

\[\mathcal{M}(M_{b,k}) = \{ \emptyset, \{2\}, \{2k - 1\}, \{2, 2k - 1\}, V_1 \setminus \{1\}, V_2 \setminus \{2k\} \} \]

and

\[\mathcal{M}(M_{b-1,k}) = \{ \emptyset, \{2\}, \{2, 2k-2\}, \{2, 2k-2\}, V_1 \setminus \{1, 2k-1\}, V_2 \}. \]

The inclusion \supseteq is clear. We prove the other inclusion for $M_{b,k}$, the proof is similar for $M_{b-1,k}$. Let $S \in \mathcal{M}(M_{b,k})$. If $S \subseteq \{2, 2k-1\}$, there is nothing to prove. If there exists $v \in S \setminus \{2k-1\}$, then $S = V_1 \setminus \{1\}$ or $S = V_2 \setminus \{2k\}$. In fact, if $v \in V_1 \setminus \{1\}$ and there is $w \in (V_1 \setminus \{1\}) \setminus S$, then $c(S \setminus \{v\}) = c(S)$, a contradiction. Hence, $V_1 \setminus \{1\} \subseteq S$. On the other hand, if $w \notin S$. This shows that $S = V_1 \setminus \{1\}$. The other case is similar.

Moreover, it is easy to check that $J_{M_{b,k}}$ and $J_{M_{b-1,k}}$ are unmixed. In Example 5.4 we will show that these ideals are not Cohen–Macaulay.

A first nice fact about bipartite graphs with unmixed binomial edge ideal is that they have at least two cut vertices.

Proposition 2.3. Let G be a bipartite graph such that J_G is unmixed. Then G has exactly 2 leaves.

Proof. Let $V(G) = V_1 \cup V_2$ be the bipartition of G, with $m_1 = |V_1| \geq 1$ and $m_2 = |V_2| \geq 1$. Assume that G has exactly h leaves, f_1, \ldots, f_h, in V_1 and k leaves, g_1, \ldots, g_k, in V_2. We claim that $S_1 = V_1 \setminus \{f_1, \ldots, f_h\}$ and $S_2 = V_2 \setminus \{g_1, \ldots, g_k\}$ are cut sets of G. Notice that $c_G(S_1) = |V_2| = m_2$ and $c_G(S_2) = |V_1| = m_1$ since the vertex v joins at least two connected components of G. By symmetry, the claim is true for S_2 and, in particular $c_G(S_2) = |V_1| = m_1$. From the unmixedness of J_G it follows that $ht(P_{S_1}(G)) = ht(P_{S_2}(G))$ and $ht(P_{S_1}(G)) = ht(P_{S_2}(G))$. Thus $n - 1 = n + |S_1| - c_G(S_1) = n + m_1 - h - m_2$ and $n - 1 = n + |S_2| - c_G(S_2) = n + m_2 - k - m_1$. Hence $h = m_1 - m_2 + 1$ and $k = m_2 - m_1 + 1$. The sum of the two equations yields $h + k = 2$. \square

Remark 2.4. Assume that G is bipartite and J_G is unmixed. The proof of Proposition 2.3 implies that:

(i) either $h = 2$ and $k = 0$, i.e., the two leaves are in the same bipartition set and in this case $m_1 = m_2 + 1$, or $h = 1$ and $k = 1$, i.e., each bipartition set contains exactly one leaf and in this case $m_1 = m_2$;

(ii) if G has at least 4 vertices, then the leaves cannot be attached to the same vertex v, otherwise $c_G(\{v\}) \geq 3 > 2 = |\{v\}| + 1$, against the unmixedness of J_G, see (1). Hence G has at least two distinct cut vertices, which are the neighbours of the leaves.

Remark 2.5. Notice that Proposition 2.3 does not hold if G is not bipartite. In fact, there are non-bipartite graphs G with an arbitrary number of leaves and such that J_G is Cohen–Macaulay. For $n \geq 2$ the binomial edge ideal J_{K_n} of the complete graph K_n is Cohen–Macaulay, since it is the ideal of 2-minors of a generic $(2 \times n)$-matrix (see [3, Corollary 2.8]). Moreover, for $n \geq 3$, K_n has 0 leaves. Let
$W \subseteq [n]$, with $|W| = k \geq 1$. Adding a whisker to a vertex of W, the resulting graph H has 1 leaf and J_H is Cohen–Macaulay by [18, Theorem 2.7]. Applying the same argument to all vertices of W, we obtain a graph H' with k leaves such that $J_{H'}$ is Cohen–Macaulay.

In the remaining part of the section we present a construction, Proposition 2.8, that produces new examples of unmixed binomial edge ideals. It will also be important in the proof of the main theorem.

If X is a subset of $V(G)$, we define the set of neighbours of the elements of X, denoted $N_G(X)$, or simply $N(X)$, as the set

$$N_G(X) = \{ y \in V(G) \setminus [x,y] \in E(G) \text{ for some } x \in X \}.$$

Lemma 2.6. Let G be a bipartite graph with bipartition $V_1 \cup V_2$, J_G unmixed and let v_1 and v_2 be the neighbours of the leaves.

(a) If $X \subseteq V_i$ for some i, and $v_1, v_2 \notin X$, then $N(X)$ is a cut set of G and $|N(X)| \geq |X|$.

(b) If $[v_1, v_2] \in E(G)$, then $m = |V_1| = |V_2|$ and v_i has degree m, for $i = 1, 2$. Moreover, v_1 and v_2 are the only cut vertices of G.

Proof. (a) We remark that it does not matter in which bipartition sets v_1, v_2 are. First notice that $N(X)$ is a cut set. In fact, every element of X is isolated in $G_{|N(X)|}$. Let $v \in N(X)$. Then $\deg(v) \geq 2$, since $v_1, v_2 \notin X$. Adding v to $G_{|N(X)|}$, it connects at least a vertex of X with some other connected component.

Now, suppose by contradiction that $|N(X)| < |X|$. Then $G_{|N(X)|}$ has at least $|X|$ isolated vertices and another connected component containing a leaf, because $v_1, v_2 \notin X$. Hence, $c_G(N(X)) \geq |X| + 1 > |N(X)| + 1$, a contradiction against the unmixedness of J_G.

(b) Assume that $v_1 \in V_1$. Then $v_2 \in V_2$, since $[v_1, v_2] \in E(G)$. By Remark 2.4(i), it follows that $m = |V_1| = |V_2|$. Define $X = \{ w \in V_2 : [v_1, w] \notin E(G) \}$ and assume that $X \neq \emptyset$. Since $[v_1, v_2] \in E(G)$, $v_2 \notin X$, hence $N(X)$ is a cut set and $|N(X)| \geq |X|$ by (a). We claim that the inequality is strict. Assume $|N(X)| = |X|$. Let f be the leaf of G adjacent to v_1, then $S = V_2 \setminus (X \cup \{f\})$ is a cut set of G and $|S| = m - |X| - 1$. In fact, in $G_{|S|}$ all vertices of $V_1 \setminus N(X)$ are isolated, except for v_1 that is connected only to f. Moreover, by definition of X, if we add an element of S to $G_{|S|}$, we join the connected component of v_1 with some other connected component of $G_{|S|}$. Thus, S is a cut set and $G_{|S|}$ consists of at least $|V_1| - |N(X)| - 1 = m - |X| - 1$ isolated vertices, the single edge $[v_1, f]$, and the connected component containing the vertices of X and $N(X)$. Hence, $c_G(S) \geq m - |X| + 1 > |S| + 1$, a contradiction since J_G is unmixed. This shows that $|N(X)| > |X|$.

Now, the vertices of X are isolated in $G_{|N(X)|}$. Moreover, the remaining vertices belong to the same connected component, because, by definition of X, $[v_1, w] \in E(G)$ for every $w \in V_2 \setminus X$ and all vertices in $V_1 \setminus N(X)$ are adjacent to vertices of X. Hence, $c_G(N(X)) = |X| + 1 < |N(X)| + 1$, which again contradicts the unmixedness of J_G. Hence, $X = \emptyset$ and v_i has degree m. In the same way it follows that v_2 has degree m.

For the last part of the claim, notice that if $v \in V(G) \setminus [v_1, v_2]$, the first part implies that every vertex of $G_{|N(X)|}$ is adjacent to either v_1 or v_2. Hence, $G_{|N(X)|}$ is connected and, thus, v is not a cut vertex of G. □

Remark 2.7. Let G be a bipartite graph such that J_G is unmixed. If G has exactly two cut vertices, they are not necessarily adjacent. Thus, the converse of the last part of Lemma 2.6(b) does not hold. In fact, if $|V_1| = |V_2| + 1$, then v_1 and v_2 belong to the same partition set, hence $[v_1, v_2] \notin E(G)$. On the other hand, if $|V_1| = |V_2|$, let G be the graph in Fig. 4. One can check with Macaulay2 [7] that the ideal J_G is unmixed, and we notice that the vertices 2 and 11 are the only cut vertices, but $[2, 11] \notin E(G)$.

Proposition 2.8. Let H be a bipartite graph with bipartition $V_1 \cup V_2$ and $|V_1| = |V_2|$. Let v and f be two new vertices and let G be the bipartite graph with $V(G) = V(H) \cup \{v, f\}$ and $E(G) = E(H) \cup \{(v, x) : x \in V_1 \cup \{f\}\}$. If J_H is unmixed and the neighbours of the leaves of H are adjacent, then J_G is unmixed and

$$\mathcal{M}(G) = \{ \emptyset, V_1 \} \cup \{ S \cup \{v\} : S \in \mathcal{M}(H) \} \cup \{ T \subseteq V_1, T \in \mathcal{M}(H) \}.$$

Moreover, the converse holds if there exists $w \in V_1$ such that $\deg_G(w) = 2$.
Moreover, connected component of Lemma 2.6(b), that least two components since Corollary 2.9.

Let G be the graph in Proposition 2.8, the existence of a vertex w in V_1 such that $\deg_G(w) = 2$ means that w is a leaf of H. This is not true in general, see for instance the graph $M_{k,4}$ in Example 2.2 for $k \geq 4$. However, if J_H is unmixed, this always holds:

Corollary 2.9. Let H be a bipartite graph with bipartition $V_1 \cup V_2$, $|V_1| = |V_2|$ and such that J_H is unmixed. Let G be the graph in Proposition 2.8. Then J_C is unmixed if and only if the neighbours of the leaves of H are adjacent.
According to Corollary 2.9, \(i = \) shows the result of adding a fan to adjacent. The graph in Fig. 6 is the graph obtained from \(G \) with the construction in Proposition 2.8. According to Corollary 2.9, \(J_G \) is not unmixed: in fact \(S = N(11) = \{8, 10, 12\} \) is a cut set and \(c_G(S) = 3 \neq |S| + 1. \)

3. Basic blocks

In this section we study the basic blocks \(F_m \) of our classification, proving that \(J_{F_m} \) is Cohen–Macaulay.

In what follows we will use several times the following argument.

Example 2.10. The graph \(H \) of Fig. 4 is such that \(J_H \) is unmixed, but the two cut vertices 2 and 11 are not adjacent. The graph in Fig. 6 is the graph obtained from \(H \) with the construction in Proposition 2.8. According to Corollary 2.9, \(J_G \) is not unmixed: in fact \(S = N(11) = \{8, 10, 12\} \) is a cut set and \(c_G(S) = 3 \neq |S| + 1. \)

Remark 3.1. Let \(G \) be a graph, \(v \) be a vertex of \(G \), \(H' = G \setminus \{v\} \) and assume that \(\mathcal{M}(H') = \{S \setminus \{v\} : S \in \mathcal{M}(G), v \in S\} \), in particular \(v \) is a cut vertex of \(G \) since \(\emptyset \in \mathcal{M}(H') \). Let \(J_G = \bigcap_{S \in \mathcal{M}(G); v \in S} P_S(G) \) be the primary decomposition of \(J_G \) and set \(A = \bigcap_{S \in \mathcal{M}(G); v \notin S} P_S(G) \) and \(B = \bigcap_{S \in \mathcal{M}(G); v \notin S} P_S(G) \). Then \(J_G = A \cap B \) and we have the short exact sequence

\[
0 \longrightarrow R/J_G \longrightarrow R/A \oplus R/B \longrightarrow R/(A + B) \longrightarrow 0. \tag{2}
\]

Notice that

(i) \(A = J_H \), where \(H \) is the graph obtained from \(G \) by adding all possible edges between the vertices of \(N_G(v) \). In other words, \(V(H) = V(G) \) and \(E(H) = E(G) \cup \{\{k, \ell\} : k, \ell \in N_G(v), k \neq \ell}\) . In fact, notice that \(v \notin S \) for every \(S \in \mathcal{M}(H) \) by Remark 2.1 and all cut sets of \(G \) not containing \(v \) are cut sets of \(H \) as well. Thus, \(\mathcal{M}(H) = \{S \in \mathcal{M}(G) : v \notin S\} \). Moreover, for every \(S \in \mathcal{M}(H) \), the connected components of \(G_T \) and \(H_T \) are the same, except for the component containing \(v \), which is \(G_v, G_T \) and \(H_v, H_T \). Nevertheless, \(G_v = H_v \), hence \(P_{S}(G) = P_{S}(H) \) for every \(S \in \mathcal{M}(H) \).

(ii) \(B = (x_v, y_v) + J_{H'}, \) where \(H' = G \setminus \{v\} \). In fact, if \(S \in \mathcal{M}(G) \) with \(v \in S \), then \(S \setminus \{v\} \in \mathcal{M}(H') \) by assumption and we have that \(P_S(G) = (x_v, y_v) + P_{S \setminus \{v\}}(H') \). Thus,

\[
B = (x_v, y_v) + \bigcup_{S \in \mathcal{M}(G); v \in S} P_S(G) = (x_v, y_v) + \bigcup_{T \in \mathcal{M}(H')} P_T(H') = (x_v, y_v) + J_{H'}.
\]

(iii) \(A + B = (x_v, y_v) + J_{H'} \), where \(H'' = H \setminus \{v\} \).

We now describe a new family of Cohen–Macaulay binomial edge ideals associated with non-bipartite graphs, which will be useful in what follows. Let \(K_n \) be the complete graph on the vertex set \([n]\) and \(W = \{v_1, \ldots, v_r\} \subseteq [n] \). Let \(H \) be the graph obtained from \(K_n \) by attaching, for every \(i = 1, \ldots, r \), a complete graph \(K_{h_i} \) to \(K_{h_i} \) in such a way that \(V(K_{h_i}) \cap V(K_{h_i}) = \{v_1, \ldots, v_r\} \), for some \(h_i > i \). We say that the graph \(H \) is obtained by adding a fan to \(K_n \) on the set \(W \). For example, Fig. 7 shows the result of adding a fan to \(K_n \) on a set \(W \) of three vertices.

Lemma 3.2. Let \(K_n \) be the complete graph on \([n]\) and \(W_1 \cup \cdots \cup W_k \) be a partition of a subset \(W \subseteq [n] \). Let \(G \) be the graph obtained from \(K_n \) by adding a fan on each set \(W_i \). Then \(J_G \) is Cohen–Macaulay.
Assume that
\[\text{simplicity, let } A = k \text{ maximal clique of } M. \]

First we show that \(Jc \) is Cohen–Macaulay. For every \(i = 1, \ldots, k \), set \(W_i = \{ v_{i1}, \ldots, v_{ih} \} \) and \(M_i = \{ \emptyset \} \cup \{ v_{i1}, \ldots, v_{ih} \} \). We claim that
\[M(G) = \{ T_1 \cup \cdots \cup T_k : T_i \in M_i, T_1 \cup \cdots \cup T_k \subseteq [n] \}. \tag{3} \]

Let \(T = T_1 \cup \cdots \cup T_k \neq \emptyset \), with \(T_i \in M_i \) for \(i = 1, \ldots, k \) and \(T \subseteq [n] \). Let \(v \in T \). Then \(v \in T_j \) for some \(j \), say \(v = v_{ij} \), with \(1 \leq \ell \leq r_j \). Hence, if we add \(v \) to the graph \(G_\ell \), it joins the connected component containing \(K_{\ell} \setminus T \) (which is non-empty since \(T \subseteq [n] \)) with \(K_{\ell} \setminus T \), where
\[V(K_{\ell}) \cap V(G) = \{ v_{11}, \ldots, v_{ij} \}. \]

This shows that \(c_G(T) > c_G(T \setminus \{ v \}) \) for every \(v \in T \), thus \(T \in M(G) \).

Conversely, let \(T \in M(G) \). First notice that \(T \neq [n] \), since \(c_G([n]) = c_G([n] \setminus \{ v_{ij} \}) \) for every \(i \).

Moreover, \(T \) does not contain any vertex \(v \in V(G) \setminus \bigcup_{i=1}^n W_i \), otherwise \(v \) belongs to exactly one maximal clique of \(G \), see Remark 2.1. Then \(c_G(T) = c_G(T \setminus \{ v \}) \), hence \(T \subseteq \bigcup_{i=1}^n W_i \) and \(T \subseteq [n] \). Let \(T = \bigcup_{i=1}^k T_i \), where \(T_i \subseteq W_i \). We want to show that, if \(v_{ij} \in T_i \subseteq T \), then \(v_{ih} \in T \) for every \(1 \leq h < j \). Assume \(v_{ih} \notin T_i \) for some \(h < j \). Then \(c_G(T) = c_G(T \setminus \{ v_{ij} \}) \) because all maximal cliques of \(G \) containing \(v_{ij} \) contain \(v_{ih} \) as well, since \(h < j \). This shows that \(T_i \in M_i \) for every \(i \).

Finally, for every \(T \in M(G) \), since \(G_\ell \) consists of \(|T| \) connected components that are complete graphs \((K_{\ell})_T \) for every \(j = 1, \ldots, k \) and \(\ell = 1, \ldots, |T_j| \) and a graph obtained from \(K_n \setminus T \) by adding a fan on each \(W_i \setminus T_i \) it follows that \(c_G(T) = |T| + 1 \). This means that \(Jc \) is unmixed and \(\dim(R/Jc) = |V(G)| + 1 \).

In order to prove that \(Jc \) is Cohen–Macaulay, we need to prove that, \(Jc \) is Cohen–Macaulay by induction on \(k \geq 1 \) and \(|W_i| \geq 1 \). Let \(k = 1 \) and set \(W_1 = \{ 1, \ldots, r \} \). If \(|W_1| = 1 \), then the claim follows by [18, Theorem 2.7]. Assume that \(|W_i| = r \geq 2 \) and the claim true for \(r - 1 \). Notice that \(G = \text{cone}(1, G_1 \cup G_2) \), where \(G_1 \cong K_{n-1} \) (graph isomorphism) and \(G_2 \) is the graph obtained from \(K_n \setminus \{ 1 \} \) by adding a fan on the clique \(\{ 2, \ldots, r \} \). We know that \(Jc \) is Cohen–Macaulay by [3, Corollary 2.8] and \(Jc_2 \) is Cohen–Macaulay by induction. Hence, the claim follows by [18, Theorem 3.8].

Now, let \(k \geq 2 \) and assume the claim true for \(k - 1 \). Again, if \(|W_i| = 1 \), the claim follows by induction and by [18, Theorem 2.7]. Assume that \(|W_i| = r_k \geq 2 \) and the claim true for \(r_k - 1 \). For simplicity, let \(W_k = \{ 1, \ldots, r_k \} \). Let \(J_k = \bigcap_{G \in \mathcal{M}(G)} P(G) \) be the primary decomposition of \(J_k \) and set \(A = \bigcap_{G \in \mathcal{M}(G)} 1_{\leq 5}P(G) \) and \(B = \bigcap_{G \in \mathcal{M}(G)} 1_{\leq 5}P(G) \). Then \(J_k = A \cap B \).

By Remark 3.1, \(A = J_0 \), where \(H \) is a complete graph on the vertices of \(\{ 1 \} \cup N_G(1) \) to which we add a fan on the cliques \(W_1, \ldots, W_{k-1} \). Hence \(A \) is Cohen–Macaulay by induction on \(k \) and depth \((R/A) = |V(G)| + 1 \).

Notice that \(Jc \) is Cohen–Macaulay by induction on \(k \) and depth \((R/A) = |V(G)| + 1 \).

Notice that \(H' = G' \setminus \{ 1 \} \) is the disjoint union of a complete graph and a graph \(K' \), which is obtained by adding a fan to \(K_n \setminus \{ 1 \} \) on the cliques \(W_1, \ldots, W_k - 1 \) and \(W_k \setminus \{ 1 \} \). From (3), it follows that \(\mathcal{M}(H') = \{ S \setminus \{ 1 \} : S \in \mathcal{M}(G), 1 \in S \} \), thus \(B = (x_1, y_1) + Jc_2 \) by Remark 3.1. By induction on \(|W_k| \), \(Jc_2 \) is Cohen–Macaulay, hence \(Jc_2 \) is Cohen–Macaulay since it is the sum of Cohen–Macaulay ideals on disjoint sets of variables. In particular, depth \((R/B) = |V(H')| + 2 = |V(G)| + 1 \) (it follows from the formula for the dimension [10, Corollary 3.4]).
Finally, by Remark 3.1, \(A + B = (x_1, y_1) + J_{H''} \), where \(H'' = H \setminus \{1\} \). Hence \(R/(A + B) \) is Cohen–Macaulay by induction on \(k \) and \(\text{depth}(R/(A + B)) = |V(G)| \).

The Depth Lemma [20, Lemma 3.1.4] applied to the short exact sequence (2) yields \(\text{depth}(R/J_c) = |V(G)| + 1 \). The claim follows from the first part, since \(\dim(R/J_c) = |V(G)| + 1 \). \(\square \)

Notice that the graphs produced by Lemma 3.2 are not generalized block graphs (see [13]) nor closed graphs if \(k \geq 2 \) (studied in [5]). Hence they form a new family of non-bipartite graphs whose binomial edge ideal is Cohen–Macaulay.

Now we prove that the binomial edge ideals of the graphs \(F_m \) (see Fig. 1) are Cohen–Macaulay. The graphs \(F_m \) are the basic blocks in our classification, Theorem 6.1.

Recall that, for every \(m \geq 1 \), if \(n = 2m \), \(F_m \) is the graph on the vertex set \([n]\) and with edge set

\[
E(F_m) = \{(2i, 2j) \mid i = 1, \ldots, m; j = i, \ldots, m\}.
\]

Notice that \(F_m \), with \(m \geq 1 \), can be obtained from \(F_{m-1} \) using the construction of Proposition 2.8.

Proposition 3.3. For every \(m \geq 1 \), \(J_{F_m} \) is Cohen–Macaulay.

Proof. First we show that \(J_{F_m} \) is unmixed. We proceed by induction on \(m \geq 1 \). If \(m = 1 \), then \(J_{F_m} \) is a principal ideal, hence it is prime and unmixed of height 1. Let \(m \geq 2 \) and assume the claim true for \(m - 1 \). Then \(F_m \) is obtained from \(F_{m-1} \) by adding the vertices \(n - 1 \) and \(n \) and connecting \(n - 1 \) to the vertices \(2, 4, \ldots, n \). Since \(J_{F_{m-1}} \) is unmixed by induction and \((2, n-3) \in E(F_{m-1}) \), by Proposition 2.8, it follows that \(J_{F_m} \) is unmixed and

\[
\mathcal{M}(F_m) = \emptyset \cup \{(2, 4, \ldots, 2i) \mid 1 \leq i \leq m - 1\} \cup \{(n-1) \cup S \mid S \in \mathcal{M}(F_{m-1})\}.
\]

Now we prove that \(J_{F_m} \) is Cohen–Macaulay by induction on \(m \geq 1 \). The graphs \(F_1 \) and \(F_2 \) are paths, hence the ideals \(J_{F_1} \) and \(J_{F_2} \) are complete intersections, by [5, Corollary 1.2], thus Cohen–Macaulay.

Let \(m \geq 3 \) and assume that \(J_{F_{m-1}} \) is Cohen–Macaulay. Let \(J_{F_m} = \bigcap_{S \in \mathcal{M}(F_{m-1})} P_S(F_m) \) be the primary decomposition of \(J_{F_m} \), and define \(A = \bigcap_{S \in \mathcal{M}(F_{m-1})} P_S(F_m) \) and \(B = \bigcap_{S \in \mathcal{M}(F_m), n-1 \in S} P_S(F_m) \). Then \(J_{F_m} = A \cap B \).

By Remark 3.1, \(A = J_{H} \), where \(H \) is obtained by adding a fan to the complete graph with vertex set \(N_m(n-1) = \{2, 4, \ldots, n\} \) on the set \(N_m(n-1) \), hence it is Cohen–Macaulay by Lemma 3.2 and \(\text{depth}(R/A) = n + 1 \).

Since \(F_m \setminus \{n-1\} = F_{m-1} \cup \{n\} \), by (4), \(\mathcal{M}(F_{m-1} \cup \{n\}) = \{S \setminus \{n-1\} \mid S \in \mathcal{M}(F_m), n-1 \in S\} \).

Thus, \(B = (x_{n-1}, y_{n-1}) + J_{F_{m-1} \cup \{n\}} = (x_{n-1}, y_{n-1}) + J_{F_{m-1}} \), hence it is Cohen–Macaulay by induction and \(\text{depth}(R/B) = n + 1 \).

Finally, \(A + B = (x_{n-1}, y_{n-1}) + J_{H''} \), where \(H'' = H \setminus \{n-1\} \), which is Cohen–Macaulay again by Lemma 3.2 and \(\text{depth}(R/(A + B)) = n \).

The Depth Lemma applied to the exact sequence (2) yields \(\text{depth}(R/J_{F_n}) = n + 1 \). Moreover, since \(J_{F_m} \) is unmixed, it follows that \(\dim(R/J_{F_m}) = n + 1 \) and, therefore, \(J_{F_m} \) is Cohen–Macaulay. \(\square \)

4. Gluing graphs: operations \(\ast \) and \(\circ \)

In this section we consider two operations that, together with the graphs \(F_m \), are the main ingredients of Theorem 6.1. Given two (not necessarily bipartite) graphs \(G_1 \) and \(G_2 \), we glue them to obtain a new graph \(G \). If \(G_1 \) and \(G_2 \) are bipartite, both constructions preserve the Cohen–Macaulayness of the associated binomial edge ideal. The first operation is a particular case of the one studied by Rauf and Rinaldo in [18, Section 2].

Definition 4.1. For \(i = 1, 2 \), let \(G_i \) be a graph with at least one leaf \(f_i \). We define the graph \(G = (G_1, f_1) \ast (G_2, f_2) \) obtained by identifying \(f_1 \) and \(f_2 \) (see Fig. 8). If it is not important to specify the vertices \(f_i \) or it is clear from the context, we simply write \(G_1 \ast G_2 \).

In the next Theorem we recall some results about the operation \(\ast \), see [18, Lemma 2.3, Proposition 2.6, Theorem 2.7].
Theorem 4.2. For $i = 1, 2$, consider a graph G_i with at least one leaf f_i and $G = (G_1, f_1) \ast (G_2, f_2)$. Let v_1 and v_2 be the neighbours of the leaves and let v be the vertex obtained by identifying f_1 and f_2. If

$$A = \{S_1 \cup \{v\} : S_i \in \mathcal{M}(G_i), i = 1, 2\}$$

and

$$B = \{S_1 \cup S_2 : S_i \in \mathcal{M}(G_i)\},$$

the following properties hold:

(a) $\mathcal{M}(G) = A \cup B$;
(b) J_G is unmixed if and only if J_{G_1} and J_{G_2} are unmixed;
(c) J_G is Cohen–Macaulay if and only if J_{G_1} and J_{G_2} are Cohen–Macaulay.

We now introduce the second operation.

Definition 4.3. For $i = 1, 2$, let G_i be a graph with at least one leaf f_i, v_i its neighbour and assume $\deg_{G_i}(v_i) \geq 3$. We define $G = (G_1, f_1) \circ (G_2, f_2)$ to be the graph obtained from G_1 and G_2 by removing the leaves f_1, f_2 and identifying v_1 and v_2 (see Fig. 9). If it is not important to specify the leaves f_i or it is clear from the context, then we simply write $G_1 \circ G_2$.

We denote by v the vertex of G resulting from the identification of v_1 and v_2 and, with abuse of notation, we write $V(G_1) \cap V(G_2) = \{v\}$.

Notice that, if $\deg_{G_i}(v_i) = 2$ for $i = 1, 2$, then $(G_1, f_1) \circ (G_2, f_2) = (G_1 \setminus \{f_1, v_1\}) \ast (G_2 \setminus \{f_2, v_2\})$. On the other hand, we do not allow $\deg_{G_1}(v_1) = 2$ and $\deg_{G_2}(v_2) \geq 3$ (or vice versa), since in this case the operation \circ does not preserve unmixedness, see Remark 4.7(ii).

Remark 4.4. Unlike the operation \ast (cf. Theorem 4.2), if one of J_{G_1} and J_{G_2} is not Cohen–Macaulay, then $J_{G_1 \circ G_2}$ may not be unmixed, even if G_1 and G_2 are bipartite. For example, let G_1 and G_2 be the graphs in Figs. 9(a) and 9(b). Then $J_{G_1 \circ G_2}$ is not unmixed even if $J_{G_1} = J_{G_2}$ is Cohen–Macaulay (by Proposition 3.3) and $J_{G_2} = J_{M_{4,4}}$ is unmixed (by Example 2.2). In fact, $S = \{5, 7, 8, 10, 12\} \in \mathcal{M}(G)$, but $c_G(S) = 5 \neq |S| + 1$.

We describe the structure of the cut sets of $G_1 \circ G_2$ under some extra assumption on G_1 and G_2. In this case, \circ preserves unmixedness.
Theorem 4.5. Let $G = G_1 \circ G_2$ and set $V(G_1) \cap V(G_2) = \{v\}$, where $\deg_G(v) \geq 3$ for $i = 1, 2$. If for $i = 1, 2$ there exists $u_i \in N_G(v)$ with $\deg_G(u_i) = 2$, then

$$\mathcal{M}(G) = \mathcal{A} \cup \mathcal{B},$$

(5)

where

$$\mathcal{A} = \{S_1 \cup S_2 : S_1 \in \mathcal{M}(G_1), i = 1, 2, v \notin S_1 \cup S_2\}$$

and

$$\mathcal{B} = \{S_1 \cup S_2 : S_1 \in \mathcal{M}(G), i = 1, 2, S_1 \cap S_2 = \{v\}\}.$$

If J_{G_1} and J_{G_2} are unmixed and for $i = 1, 2$ there exists $u_i \in N_G(v)$ with $\deg_G(u_i) = 2$, then J_G is unmixed. The converse holds if G is bipartite. In particular, if G is bipartite and J_G is unmixed, the cut sets of G are described in (5).

Proof. Let $S = S_1 \cup S_2 \subset V(G)$, where $S_1 = S \cap V(G_1)$ and $S_2 = S \cap V(G_2)$. Notice that

$$c_G(S) = c_{G_1}(S_1) + c_{G_2}(S_2) - 1, \text{ if } v \notin S,$$

(6)

and

$$c_G(S) = c_{G_1}(S_1) + c_{G_2}(S_2) - 2, \text{ if } v \in S.$$

(7)

In fact, if $v \notin S$, the connected components of G_v are those of $(G_1)_v$ and $(G_2)_v$, where the component containing v is counted once. On the other hand, if $v \in S$, clearly $v \in S_1 \cap S_2$ and the connected components of G_v are those of $(G_1)_v$ and $(G_2)_v$, except for the two leaves f_1 and f_2.

In order to prove (5), we show the two inclusions.

\subseteq: Let $S \in \mathcal{M}(G)$ and define S_1 and S_2 as before. Suppose by contradiction that $S_1 \not\in \mathcal{M}(G_1)$, i.e., there exists $w \in S_1$ such that $c_{G_1}(S_1) = c_{G_1}(S_1 \setminus \{w\})$. If $v \notin S$, then by (6)

$$c_G(S \setminus \{w\}) = c_{G_1}(S_1 \setminus \{w\}) + c_{G_2}(S_2) - 1 = c_{G_1}(S_1) + c_{G_2}(S_2) - 1 = c_G(S),$$

a contradiction. On the other hand, if $v \in S$ and $w \neq v$, by (7) we have

$$c_G(S \setminus \{w\}) = c_{G_1}(S_1 \setminus \{w\}) + c_{G_2}(S_2) - 2 = c_{G_1}(S_1) + c_{G_2}(S_2) - 2 = c_G(S),$$

again a contradiction. We show that the case $w = v$ cannot occur. In fact, by assumption, there exists $u_1 \in N_G(v)$ such that $\deg_G(u_1) = 2$. Since $v \in S$, we have that $c_G(S) = c_G(S \setminus \{u_1\})$, hence $u_1 \not\in S$. Thus $c_G(S_1) > c_G(S_1 \setminus \{v\})$, because by adding v to $(G_1)_v$, we join the connected component of u_1 and the isolated vertex f_1, which is a leaf in G_1. Hence $w \neq v$. The same argument also shows that $S_2 \in \mathcal{M}(G_2)$.

\supseteq: Let $S = S_1 \cup S_2$, with $S_1 \in \mathcal{M}(G_1)$, for $i = 1, 2$. Assume first $S_1 \cap S_2 = \{v\}$. By the equalities (6) and (7) we have

$$c_G(S \setminus \{v\}) = c_{G_1}(S_1 \setminus \{v\}) + c_{G_2}(S_2 \setminus \{v\}) - 1 \leq c_{G_1}(S_1) + c_{G_2}(S_2) - 3 = c_G(S) - 1 < c_G(S).$$

Let $w \in S$, $w \neq v$. Without loss of generality, we may assume $w \in S_1$. Then

$$c_G(S \setminus \{w\}) = c_{G_1}(S_1 \setminus \{w\}) + c_{G_2}(S_2) - 2 \leq c_{G_1}(S_1) + c_{G_2}(S_2) - 3 = c_G(S) - 1 < c_G(S).$$

Assume now that $v \notin S_1 \cup S_2$. Let $w \in S$, and without loss of generality $w \in S_1$. Then

$$c_G(S \setminus \{w\}) = c_{G_1}(S_1 \setminus \{w\}) + c_{G_2}(S_2) - 1 \leq c_{G_1}(S_1) + c_{G_2}(S_2) - 2 = c_G(S) - 1 < c_G(S).$$

Let now J_{G_1} and J_{G_2} be unmixed and for $i = 1, 2$ there exists $u_i \in N_G(v)$ with $\deg_G(u_i) = 2$. By the last assumption, the cut sets of G are described in (5). Let $S \not\in \mathcal{M}(G)$ and $S_i = S \cap V(G_i)$ for $i = 1, 2$. Thus, by (6) and (7),

(i) if $v \notin S$, $c_G(S) = c_{G_1}(S_1) + c_{G_2}(S_2) - 1 = |S_1| + 1 + |S_2| + 1 - 1 = |S_1| + |S_2| + 1 = |S| + 1,$

(ii) if $v \in S$, $c_G(S) = c_{G_1}(S_1) + c_{G_2}(S_2) - 2 = |S_1| + 1 + |S_2| + 1 - 2 = |S_1| + |S_2| = |S| + 1.$

It follows that J_G is unmixed.

Conversely, let J_G be unmixed and G bipartite. If S is a cut set of G, then it is also a cut set of G and clearly $c_G(S) = c_G(S)$; therefore J_{G_1} is unmixed and the same holds for J_{G_2}. By Proposition 2.3, the
graphs G, G_1 and G_2 have exactly two leaves. Let f_i be the leaf of G_i adjacent to v and g_i be the other leaf of G_i. Thus, g_1 and g_2 are the leaves of G.

By symmetry, it is enough to prove that there exists $u_1 \in N_{cG}(v)$ such that $\deg_{cG}(u_1) = 2$. For $i = 1, 2$, let $V(G_i) = V_i \cup W_i$ and assume $|V_i| \leq |W_i|$. By Remark 2.4, we have one of the following two cases:

(a) if $|V_1| = |W_1|$, we may assume $f_1 \in W_1$ and $g_1 \in V_1$. Set $S = (W_1 \setminus \{f_1\}) \cup \{v\}$. Hence, $cG(S) = |V_1| = |W_1| = |S|$.

(b) if $|W_1| = |V_1| + 1$, then $f_1, g_1 \in W_1$. Hence $v \in V_1$. Set $S = (W_1 \setminus \{f_1, g_1\}) \cup \{v\}$. Thus, $cG(S) = |V_1| = |W_1| - 1 = |S|$.

First suppose $|V(G_2)|$ even and assume $f_2 \in W_2$. Hence, $v, g_2 \in V_2$ and $T = V_2 \setminus \{g_2\}$ is a cut set of G_2.

Now, let $|V(G_2)|$ be odd and assume $f_2 \in W_2$. Hence, $g_2 \in W_2, v \in V_2$ and $|W_2| = |V_2| + 1$. Then $T = V_2$ is a cut set of G_2.

In both cases, notice that $S \cup T$ is not a cut set of G, since $S \cap T = \{v\}$ and, by (7),

$$cG(S \cup T) = cG(S) + cG(T) - 2 = |S| + |T| - 1 = |S \cup T|,$$

which contradicts the unmixedness of J_G. Let $u \in S \cup T$ such that $cG((S \cup T) \setminus \{u\}) = cG(S \cup T) = |S \cup T|$. We show that $u \in S$ and $u \neq v$. If $u \neq S$, then $u \in T$ and $u \neq v$. By (7),

$$cG((S \cup T) \setminus \{u\}) = cG(S) + cG(T \setminus \{u\}) - 2 < |S| + cG(T) - 2 = |S| + |T| - 1$$

against our assumption (the inequality holds since T is a cut set of G_2 and the second equality follows from the unmixedness of J_{G_2}). Thus, $u \in S$. Moreover, in both cases, $cG(S \setminus \{v\}) = cG(S) = |S|$ (since v is a leaf of $(G_1)_{|S|\setminus\{v\}}$) and, by (6),

$$cG((S \cup T) \setminus \{v\}) = cG(S \setminus \{v\}) + cG(T \setminus \{v\}) - 1 = |S| + |T| - |N_{cG}(v)| + 2 - 1 < |S| + |T| - 1$$

where the inequality holds since $\deg_{cG}(v) \geq 3$. This contradicts our assumption, thus $u \neq v$.

We conclude that $u \in S \setminus \{v\}$. Since $u \neq f_1, g_1$, we have $\deg_{cG}(u) \geq 2$. On the other hand, since $cG((S \cup T) \setminus \{u\}) = cG(S \cup T)$, it follows that $u \in N_{cG}(v)$ and $\deg_{cG}(u) = 2$. □

Corollary 4.6. Let $G = F_{m_1} \circ \cdots \circ F_{m_k}$, where $m_i \geq 3$ for $i = 1, \ldots, k$. Then J_G is unmixed.

Proof. Set $G_1 = F_{m_1} \circ \cdots \circ F_{m_{i-1}}, G_2 = F_{m_i}$ and let v be the only vertex of $V(G_1) \cap V(G_2)$. We proceed by induction on $k \geq 2$. If $k = 2$, the claim follows by Theorem 4.5, because J_{G_1} and J_{G_2} are unmixed by Proposition 3.3 and for $i = 1, 2$, there exists $u_i \in N_{cG}(v)$ such that $\deg_{cG}(u_i) = 2$, by definition of F_{m_i}.

Now let $k > 2$ and assume the claim true for $k - 1$. By induction, $J_{G_{k-1}}$ is unmixed. Since $m_{k-1} \geq 3$, there exists $u_{k-1} \in N_{cG}(v)$ such that $\deg_{cG}(u_{k-1}) = 2$. The claim follows again by Theorem 4.5. □

Remark 4.7. In Corollary 4.6 the condition $m_i \geq 3$, for $i = 2, \ldots, k - 1$, cannot be omitted. For instance, the binomial edge ideal $J_F = F_3 \circ F_2 \circ F_3$ is not unmixed: in fact $S = [3, 5, 6, 8]$ is a cut set and $c_{F_3 \circ F_2 \circ F_3}(S) = 4 \neq |S| + 1$, see Fig. 10.

On the other hand, we may allow $m_1 = m_2 = 2$, since, in this case, the graph $G = F_{m_1} \circ \cdots \circ F_{m_k} = F_1 \circ F_2 \circ \cdots \circ F_{m_{k-1}} \circ F_1$. Hence, J_G is unmixed by Theorem 4.2 and Corollary 4.6.

Let $n \geq 3, W_1 \cup \cdots \cup W_k$ be a partition of a subset of $[n]$ and $W_i = \{v_{i,1}, \ldots, v_{i,r_i}\}$ for some $r_i \geq 1$ and $i = 1, \ldots, k$. Let G be the graph obtained from K_n by adding a fan on each set W_i in such a way that we attach a complete graph K_{r_i+1} to K_n with $V(K_{r_i+1}) = \{v_{i,1}, \ldots, v_{i,r_i}\}$, for $i = 1, \ldots, k$ and $r_i = 1, \ldots, r_i$, see Fig. 11 (cf. Fig. 7). By Lemma 3.2, J_G is Cohen–Macaulay.

Lemma 4.8. Let $G = F_{m_1} \circ \cdots \circ F_{m_k} \circ E$, where E is the graph defined above, $m_i \geq 3$ for every $i = 2, \ldots, k$ and $V(F_{m_1} \circ \cdots \circ F_{m_k}) \cap V(E) = \{v\}$. Assume that $v \in W_i$ and $|W_i| \geq 2$. Then J_G is unmixed.
Proof. Set $G_1 = F_{m_1} \circ \cdots \circ F_{m_k}$ and $G_2 = E$. Then J_{G_1} is unmixed by Corollary 4.6 and J_{G_2} is Cohen–Macaulay by Lemma 3.2, hence it is unmixed.

Notice that, since $m_k \geq 3$, there exists $u_1 \in N_{G_2}(v)$ such that $\deg_{G_2}(u_1) = 2$. Moreover, since $|W_1| \geq 2$ and by definition of $G_2 = E$, we attach K_3 to K_0 in such a way that $|V(K_2) \cap V(K_1)| = 2$ and $v \in V(K_2) \cap V(K_3)$. Thus, there exists $u_2 \in K_1$, hence $u_2 \in N_{G_2}(v)$, such that $\deg_{G_2}(u_2) = 2$. The statement follows by Theorem 4.5.

In Lemma 4.8 we assume $|W_1| \geq 2$, since this is the only case we need in the following theorem. Moreover, in the next statement the case $F = E$ is useful to prove that the binomial edge ideal associated with $F_{m_1} \circ \cdots \circ F_{m_k} \circ F_n$ is Cohen–Macaulay.

Theorem 4.9. Let $G = F_{m_1} \circ \cdots \circ F_{m_k} \circ F_n$, where $m_i \geq 3$ for every $i = 1, \ldots, k$ and $F = F_n$ for some $n \geq 3$ or $F = E$ is the same graph of Lemma 4.8. Then J_G is Cohen–Macaulay.

Proof. Let $V(F_{m_1} \circ \cdots \circ F_{m_k} \circ F_n) \cap V(F) = \{w\}$ and call f_0 and f the leaves that we remove from $F_{m_1} \circ \cdots \circ F_{m_k}$ and F. Let $J_G = \bigcap_{i \in [1, \ldots, m]} P_i(G)$ be the primary decomposition of J_G and set $A = \bigcap_{i \in [1, \ldots, m]} P_i(G)$ and $B = \bigcap_{i \in [1, \ldots, m]} P_i(G)$.

We proceed by induction on $k \geq 1$. First assume $k = 1$ and, for simplicity, let $m = m_1$. By Remark 3.1, the ideal A is the binomial edge ideal of the graph H, obtained by adding a fan to the complete graph with vertex set $\{w\} \cup N_G(w)$ on the sets $N_{F_{m_1}}(w) \setminus \{f_0\}$ and $N_p(w) \setminus \{f\}$. Hence R/A is Cohen–Macaulay and depth$(R/A) = |V(G)| + 1$ by Lemma 3.2.

Notice that $G \setminus \{w\} = (F_{m_1} \setminus \{w, f_0\}) \cup (F \setminus \{w, f\})$. By Theorem 4.5 and Remark 3.1, $B = (x_{w, y_{w}} + J_{F_n \setminus \{w, f_0\}} + J_{F \setminus \{w, f\}})^{[1]}$, where $F_{m_1} \setminus \{w, f_0\} \cong F_{m_n-1}$. Moreover, if $F = E$, $E \setminus \{w, f\}$ is of the same form as E, otherwise $F = F_n$ and $F \setminus \{w, f\} \cong F_{m_n-1}$. In any case, $J_{F_n \setminus \{w, f\}}$ and $J_{F \setminus \{w, f\}}$ are Cohen–Macaulay (by Lemma 3.2 and Proposition 3.3), hence B is Cohen–Macaulay since it is the sum of Cohen–Macaulay ideals on disjoint sets of variables. In particular, it follows from the formula for the dimension [10, Corollary 3.4] that depth$(R/B) = |V(F_{m_n-1})| + 1 + |V(F \setminus \{w, f\})| + 1 = |V(G)| + 1$.

Finally, $A + B = (x_w, y_w) + J_{H''}$, where $H'' = H \setminus \{w\}$ is the binomial edge ideal of the graph obtained by adding a fan to the complete graph with vertex set $N_G(w)$ on the sets $N_{F_{m_1}}(w) \setminus \{f_0\}$ and $N_p(w) \setminus \{f\}$. Hence $R/(A + B)$ is Cohen–Macaulay and depth$(R/(A + B)) = |V(G)|$ by Lemma 3.2.
The Depth Lemma applied to the short exact sequence (2) yields \(\text{depth}(R/J_G) = |V(G)| + 1 \). The claim follows by Lemma 4.8 (resp. Corollary 4.6), since \(\text{dim}(R/J_G) = |V(G)| + 1 \).

Now let \(k > 1 \) and assume the claim true for \(k - 1 \). By Remark 3.1, the ideal \(A \) is the binomial edge ideal of the graph \(H = F_1 \circ \cdots \circ F_{m-1} \circ F \), where \(F \) is obtained by adding a fan to the complete graph with vertex set \(\{w\} \cup N_G(w) \) on the sets \(N_{m-1}(w) \setminus \{f\} \) and \(N_F(w) \setminus \{f\} \). Notice that, since \(m_k \geq 3 \), \(|N_{m-1}(w) \setminus \{f\}| \geq 2 \) and we are in the assumption of Lemma 4.8. Hence, \(R/A \) is Cohen–Macaulay by induction and \(\text{depth}(R/A) = |V(G)| + 1 \).

Similarly to the case \(k = 1 \), the ideal \(B \) equals \((x_u, y_u) + J_{F_{m-1}} + J_F(\{f\}) \), where \((F_{m-1} \circ \cdots \circ F) \setminus \{w, f\} \cong F_{m-1} \circ \cdots \circ F_1 \) and \(J_{F_{m-1}} + J_F(\{f\}) \) is Cohen–Macaulay by induction (notice that, if \(m_k = 3 \), then \(F_{m-1} \circ \cdots \circ F_1 = F_{m-1} \circ \cdots \circ F_1 + J_1 \) and the corresponding binomial edge ideal is Cohen–Macaulay by induction and Theorem 4.2). Moreover, if \(F = E \), then \(E \) is of the same form as \(E \), otherwise \(F = F_1 \) and \(F \setminus \{w, f\} \cong F_{m-1} \). Thus \(J_{F_{m-1}}(\{f\}) \) is Cohen–Macaulay (by Lemma 3.2 and Proposition 3.3), hence \(B \) is Cohen–Macaulay since it is the sum of Cohen–Macaulay ideals on disjoint sets of variables. In particular, \(\text{depth}(R/B) = |V(F_{m-1})| + 1 + |V(F \setminus \{w, f\})| + 1 = |V(G)| + 1 \) (it follows from the formula for the dimension [10, Corollary 3.4]).

Finally, if \(A + B = (x_u, y_u) + J_{F_{m-1}} \), where \(H' = H \setminus \{w\} \) (again, since \(m_k \geq 3 \), we have \(|N_{m-1}(w) \setminus \{f\}| \geq 2 \)). Hence \(R/(A + B) \) is Cohen–Macaulay by induction and \(\text{depth}(R/(A + B)) = |V(G)| \).

The Depth Lemma applied to the short exact sequence (2) yields \(\text{depth}(R/J_{J_G}) = |V(G)| + 1 \). Notice that, if \(F = E \), the ideal \(J_G \) is unmixed by Lemma 4.8, whereas, if \(F = F_0 \), it is unmixed by Corollary 4.6. This implies that \(\text{dim}(R/J_{J_G}) = |V(G)| + 1 \) and the claim follows. \(\square \)

5. The dual graph of binomial edge ideals

In this section we study the dual graph of binomial edge ideals. This is one of the main tools to prove that, if \(G \) is bipartite and \(J_G \) is Cohen–Macaulay, then \(G \) can be obtained recursively via a sequence of operations \(\ast \) and \(o \) on a finite set of graphs of the form \(F_m \). Theorem 6.1(c).

Let \(I \) be an ideal in a polynomial ring \(A = K[x_1, \ldots, x_n] \) and let \(p_1, \ldots, p_r \) be the minimal prime ideals of \(I \). Following [2], the dual graph \(D(I) \) of \(I \) is a graph with vertex set \(\{1, \ldots, r\} \) and edge set

\[
\{i, j\} : \text{ht}(p_i + p_j - 1) = \text{ht}(p_i) = \text{ht}(p_j) = \text{ht}(I).
\]

Notice that, if \(D(I) \) is connected, then \(I \) is unmixed. In [8], Hartshorne proved that if \(A/I \) is Cohen–Macaulay, then \(D(I) \) is connected. We will show that this is indeed an equivalence for binomial edge ideals of bipartite graphs. Nevertheless, this does not hold when \(G \) is not bipartite, see Remark 5.1.

To ease the notation, we denote by \(D(G) \) the dual graph of the binomial edge ideal \(J_G \) of a graph \(G \). Moreover, we denote by \(P_k(G) \) or \(P_t \) both the minimal primes of \(J_G \) and the vertices of \(D(G) \).

Remark 5.1. The dual graph of the non-bipartite graph \(G \) in Fig. 12(a) is connected, see Fig. 12(b), but using Macaulay2 [7] one can check that \(J_G \) is not Cohen–Macaulay.

We now describe the edges of the dual graph of \(J_G \), when \(J_G \) is unmixed. This result holds for non-bipartite graphs as well.

Theorem 5.2. Let \(G \) be a graph such that \(J_G \) is unmixed and let \(S, T \in \mathcal{M}(G) \), with \(|T| \leq |S| \). Denote by \(P_t \) the minimal primes of \(J_G \). Then the following properties hold:

(a) if \(|T \setminus S| > 1 \), then \(\{P_t, P_t\} \) is not an edge of \(D(G) \);
(b) if \(|T \setminus S| = 1 \) and \(S \subseteq T \), then \(\{P_t, P_t\} \) is an edge of \(D(G) \);
(c) if \(|T \setminus S| = |T| \) and \(S \subseteq T \), then \(\{P_t, P_t\} \) is an edge of \(D(G) \) if and only if \(t \) is not a cut vertex of \(G_T \).

Proof. Let \(E_1, E_2, \ldots, E_{|S|} \) be the connected components of \(G_T \).

(a) Let \(v, w \in T \setminus S \). Then \(P_v + P_w \supseteq P_v + \{x_v, y_v, x_u, y_u\} \). If \(E_1 \) and \(E_k \) are the connected components of \(G_v \) containing \(v \) and \(w \) respectively (possibly \(j = k \)), it follows that

\[
P_v + (x_v, y_v, x_u, y_u) = \bigcup_{i \in S \cup \{v, w\}} \{x_i, y_i, J_{E_1}, \ldots, J_{E_k} \}.
\]
The dual graph of components is the same because components of \(G_k \) and the connected components of \(\mathcal{H}(G) \).

Thus, \(\text{ht}(P_s + P_T) \geq \text{ht}(P_s + (x_v, y_w, y_v, y_u)) = \text{ht}(P_s) + 4 - 2 = \text{ht}(P_s) + 2 \). Hence, \(\{P_s, P_T\} \) is not an edge of \(\mathcal{D}(G) \).

(b) Let \(T \setminus S = \{t\} \) and let \(E_t \) be the connected component of \(G_T \) containing \(t \). Then

\[
P_s + P_T = \left(\bigcup_{i \in S} [x_v, y_i], (x_v, y_i), J_{E_i}\right)_{i=1}^{m}, \ldots, J_{E_{(S)}}\right)\,.
\]

Thus, \(\text{ht}(P_s + P_T) = \text{ht}(P_s) + 2 - 1 = \text{ht}(P_s) + 1 \). Hence, \(\{P_s, P_T\} \) is an edge of \(\mathcal{D}(G) \).

(c) Let \(G_1, G_2, \ldots, G_r \) be the connected components of \(G_{G_T} \). Let also \(S \setminus T = \{s\}, T \setminus S = \{t\} \) and assume that \(s \in G_j \) and \(t \in G_k \). Since \(S, T \in \mathcal{A}(G) \), it follows that \(s \) and \(t \) are cut vertices of \(G_j \) and \(G_k \), respectively.

If \(j \neq k \), then \(t \) is a cut vertex of \(G_T \). Moreover, if \(V(G_j) = V(E_1 \cup \cdots \cup E_h \cup \{s\}) \), where \(h \geq 2 \) and \(G_k = E_{h+1} \), then

\[
P_s + P_T = \left(\bigcup_{i \in S \setminus \{t\}} [x_v, y_i], J_{E_{G_j}} \right)_{i=1}^{m}, J_{E_{(S)}}\right)_{i=1}^{m}, \ldots, J_{E_{(S)}}\right)\,.
\]

It follows that \(\text{ht}(P_s + P_T) = \text{ht}(P_s) + 2 + |V(G_j)| - 2 - \sum_{i=1}^{h}(|V(E_i)| - 1) - 1 = \text{ht}(P_s) + 2 + 2 - h - 1 = \text{ht}(P_s) + h > \text{ht}(P_s) + 1 \). Thus, \(\{P_s, P_T\} \) is not an edge of \(\mathcal{D}(G) \).

Assume now that \(j = k \) and let \(j = 1 \) for simplicity. Denote by \(H_1, \ldots, H_i \), the connected components of \(\{G_1\}_{G_T} \) and by \(K_1, \ldots, K_i \), the connected components of \(\{G_1\}_{G_T} \) (note that the number of components is the same because \(S, T \in \mathcal{A}(G) \) and \(J_k \) is unmixed). Suppose also that \(t \in H_1 \) and \(s \in K_i \).

If there exists \(v \in H_p \cap K_q \) with \(p, q \neq 1 \), then, since \(v \in H_p \), there exists a path from \(v \) to \(s \) that does not involve \(t \). This is a contradiction because \(v \in K_q \) and \(s \in K_i \). Hence, \(K_q \subseteq H_1 \) and \(H_p \subseteq K_i \) for all \(p, q = 2, \ldots, i \). In particular, the connected components of \(\{G_2\}_{G_T} \) are \(H_2, \ldots, H_i, K_2, \ldots, K_i, G_2, \ldots, G_r \) and the connected components of \(H_1 \cap K_i \), if it is not empty.

Suppose first that \(H_1 \cap K_i = \emptyset \). Hence, \(V(H_1) = V(K_2 \cup \cdots \cup K_i \cup \{t\}) \) and \(V(K_i) = V(H_2 \cup \cdots \cup H_i \cup \{s\}) \).

If \(i \geq 3 \), then \(t \) is a cut vertex of \(H_1 \), hence a cut vertex of \(G_T \). It follows that

\[
P_s = \left(\bigcup_{h \in S} [x_v, y_h], J_{H_1}, J_{H_2}, \ldots, J_{H_i}, J_{G_2}, \ldots, J_{G_r}\right) \text{ and}
\]

\[
P_s + P_T = \left(\bigcup_{h \in S \setminus \{t\}} [x_v, y_h], J_{[H_1]} \right)_{i=1}^{m}, J_{[G_2]} \right)_{i=1}^{m}, \ldots, J_{[G_r]}\right)\,.
\]
Therefore, \(\text{ht}(P_3 + P_7) = \text{ht}(P_3) + 2 - 1 - \sum_{h=2}^i |V(H_h)| - 1 - |V(K_1)| - 2 = \text{ht}(P_3) + 1 - \sum_{h=2}^i |V(H_h)| + (i - 1) + \sum_{h=2}^i |V(H_h)| + 1 - 2 = \text{ht}(P_3) + i - 1 > \text{ht}(P_3) + 1, \) since \(i \geq 3. \) Thus, \(\{P_3, P_7\} \) is not an edge of \(\mathcal{D}(G). \)

On the other hand, if \(i = 2, \) then \(t \) is not a cut vertex of \(H_1, \) since \(K_2 \) is connected. Therefore, \(t \) is not a cut vertex of \(G_T. \) Moreover,

\[
P_5 + P_T = \left(\bigcup_{h \in S(T)} \{x_h, y_h\}, J_{\overline{H_1}} \overline{J}_{\overline{H_2}}, \ldots, J_{\overline{H_i}} \right).
\]

In fact, \(J_{\overline{H_h}} \subseteq J_{\overline{H_1}} \overline{J}_{\overline{H_2}} \) for all \(h = 2, \ldots, i. \) We now compute the height of \(J = J_{\overline{H_1}} \overline{J}_{\overline{H_2}} \ldots \overline{J}_{\overline{H_i}}. \) Setting \(W_1 = H_2 \cup \cdots \cup H_i \) and \(W_2 = K_2 \cup \cdots \cup K_i, \) the ideal \(J \) is the binomial edge ideal of the graph \(F \) obtained from \(\overline{W_1} \cup \overline{W_2} \cup (\overline{H_1} \cap \overline{K_1}) \) by adding the edges \(\{v, w : v \in \overline{H_1} \cap \overline{K_1}, w \in \overline{W_1} \cup \overline{W_2}\}. \) It is easy to check that the only cut sets of \(F \) are \(\emptyset \) and \(\overline{H_1} \cap \overline{K_1}. \) Moreover,

\[
\text{ht}(P_{\overline{H_1} \cap \overline{K_1}}(F)) = |V(F)| + |V(\overline{H_1} \cap \overline{K_1})| - 2 \geq |V(F)| - 1 = \text{ht}(P_0(F))
\]

\[
= |V(\overline{W_1})| + |V(\overline{W_2})| + |\overline{H_1} \cap \overline{K_1}| - 1.
\]

Thus \(\text{ht}(J) = |V(F)| - 1 = \sum_{h=1}^i |V(H_h)| - 2. \) Since \(i \geq 2, \) we get

\[
\text{ht}(P_5 + P_T) = \text{ht}(P_5) + 2 - \sum_{h=1}^i (|V(H_h)| - 1) + \sum_{h=1}^i |V(H_h)| - 2 = \text{ht}(P_5) + i > \text{ht}(P_5) + 1.
\]

Hence, \(\{P_5, P_T\} \) is not an edge of \(\mathcal{D}(G). \) \(\square \)

Remark 5.3. Let \(G \) be a connected graph such that \(\mathcal{D}(G) \) is connected. If \(G \) is not a complete graph, then \(G \) has at least one cut vertex. In fact, if \(G \) does not have cut vertices, by Theorem 5.2(a), it follows that \(P_0 \) is an isolated vertex of the dual graph \(\mathcal{D}(G), \) a contradiction. Notice that, if \(G \) is bipartite, by Proposition 2.3, it is enough to require \(J_G \) unmixed. Nevertheless, in the non-bipartite case we need to assume that \(\mathcal{D}(G) \) is connected. In fact, the graph \(G \) in Fig. 13 does not have cut vertices, \(J_G \) is unmixed and \(\mathcal{D}(G) \) consists of two isolated vertices.

We also observe that the above statement generalizes \([1, Proposition 3.10], \) since having a connected dual graph is weaker than the Serre’s condition \(S_2, \) see \([8, Corollary 2.4]. \) In particular, if \(J_G \) is Cohen–Macaulay, then \(G \) has at least one cut vertex.

Example 5.4. For every \(k \geq 4, \) let \(M_{k \times k} \) and \(M_{k-1 \times k} \) be the graphs defined in Example 2.2. With the same notation used there and by Theorem 5.2, their dual graphs are represented in Fig. 14.

Thus, \(J_{M_{k \times k}} \) and \(J_{M_{k-1 \times k}} \) are not Cohen–Macaulay by Hartshorne’s Theorem \([8]. \) Notice that, \(M_{3 \times 4} \) is the bipartite graph with the smallest number of vertices whose binominal edge ideal is unmixed and not Cohen–Macaulay.

The following technical result has several crucial consequences, see Theorems 5.7 and 5.8. We show that, under some assumption on the graph, the intersection of two cut sets, which differ by one element and have the same cardinality, is again a cut set.

Lemma 5.5. Let \(G \) be a graph such that \(J_G \) is unmixed. Let \(S, T \in \mathcal{M}(G) \) with \(|S| = |T| \) and \(|S \setminus T| = 1. \)
The dual graph of $\mathcal{D}(G)$ by definition of $\mathcal{D}(G)$.

Proof. Let $t \in V(G)$ adding $s \in V(G)$. We show that $S \in T$ of G. This implies that it does not join any components in G, a contradiction, since $T \in \mathcal{M}(G)$.

Assume now that $s, t \in G$ and suppose first that $r = |S \cap T| + 1$. We claim that $S \cap T \in \mathcal{M}(G)$. In this case, G has $r + 1$ connected components, say $H_1, H_2, G_2, \ldots, G_r$. Consider the set

$$Z = \{z \in S \cap T : \text{ adding } z \text{ to } G \text{ it connects only } H_1 \text{ and } H_2\}.$$

We show that $X = (S \cap T) \setminus Z \in \mathcal{M}(G)$. For every $x \in X$, we know that $c_G(S \setminus \{x\}) < c_G(S)$. In particular, adding x to G, it joins some connected components and at least one of them is G_i with $i \geq 2$. Hence, $c_G(X \setminus \{x\}) < c_G(X)$. Moreover, $c_G(X) = |S \cap T| - |Z| + 1$, by the unmixedness of J_G. On the other hand, by definition of Z and since $S \in \mathcal{M}(G)$, it follows that $c_G(X) = r = |S| = |S \cap T| + 1$. Thus, $Z = \emptyset$ and $S \cap T = X \in \mathcal{M}(G)$.

Suppose now that $H_1, H_2, G_2, \ldots, G_r$ are the connected components of G, with $i \geq 3$, and that $r \in H_1$. In the same way let $K_1, K_2, G_2, \ldots, G_r$ be the connected components of G and let $s \in K_1$. We show that this case cannot occur.

Following the same argument of the proof of Theorem 5.2(c), we conclude that the connected components of $\mathcal{D}(G)$ are $H_2, \ldots, H_i, K_2, \ldots, K_i, G_2, \ldots, G_r$, and the connected components of $H \cap K_i$, if it is not empty.

(i) If $H_1 \cap K_1 \neq \emptyset$, it follows that $V(H_1) = H_2 \cup \cdots \cup K_i \cup \{H_1 \cap K_1 \cup \{t\}\}$ and $V(K_1) = H_2 \cup \cdots \cup H_i \cup \{H_1 \cap K_1 \cup \{s\}\}$.

(ii) If $H_1 \cap K_1 = \emptyset$, then $V(H_1) = V(K_2 \cup \cdots \cup K_i \cup \{t\})$ and $V(K_1) = V(H_2 \cup \cdots \cup H_i \cup \{s\})$.

Let now $H_1 \cap K_1 = \emptyset$, then $V(H_1) = V(K_2 \cup \cdots \cup K_i \cup \{t\})$ and $V(K_1) = V(H_2 \cup \cdots \cup H_i \cup \{s\})$. Since $i \geq 3$, t is a cut vertex of H_i, hence $\{P_i, P_t\}$ is not an edge of $\mathcal{D}(G)$ by Theorem 5.2(c), a contradiction.

Therefore, the connected components of $\mathcal{D}(G)$ are $H_2, H_1, K_2, K_1, G_2, \ldots, G_r.$

![Fig. 13. A graph G without cut vertices, with J_G unmixed and $\mathcal{D}(G)$ disconnected.](image)

![Fig. 14. The dual graphs of J_{M_k}.](image)
We know that \(s \) is adjacent to \(x \in H_1 \) and that \(s \in K_1 \). Hence, \(s \) is not adjacent to any vertices of \(K_2 \) or \(K_3 \). Thus, \(x = t \), since \(V(H_1) = V(K_2 \cup K_3 \cup \{t\}) \). This means that \(\{s, t\} \in E(G) \). Let

\[
Z = \{z \in S \cap T : \text{adding } z \text{ to } G_{S \cap T} \text{ it connects only } H_t \text{ with some } K_j\}.
\]

Notice that, there are no vertices in \(S \cap T \) that only connects \(H_2 \) to \(H_3 \) or \(K_2 \) to \(K_3 \) in \(G_{S \cap T} \). In fact, if \(z \in S \cap T \) only connects \(H_2 \) to \(H_3 \) in \(G_{S \cap T} \), then \(c_G(T \setminus \{z\}) = c_G(T) \), a contradiction, since \(T \in \mathcal{M}(G) \).

As above, since \(S \cup T \in \mathcal{M}(G) \), it follows that \((S \cap T) \setminus Z \in \mathcal{M}(G) \) and, by the unmixedness of \(J_G \), \(|Z| = 1 \), say \(Z = \{z\} \). Without loss of generality, we may assume that \(z \) connects at least \(H_2 \) and \(K_3 \). Since \(s \) and \(t \) are adjacent in \(G \), one of them is in the same bipartition set of \(z \). Without loss of generality, assume that this vertex is \(t \), thus \(N_{H_t}(s) \cap N_{H_t}(z) = \emptyset \). Let

\[
A = \{x \in S \cap T : \text{if } (x, v) \in E(G) \text{ for some } v \in G_t, \text{ then } v \in N_{H_t}(s)\}.
\]

Notice that, \(A \) contains also all vertices of \(S \cap T \) that connect only some \(G_j \)'s in \(G_{S \cap T} \), with \(j \geq 2 \). We claim that

\[
W = ((S \cap T) \setminus A) \cup N_{H_t}(s) \in \mathcal{M}(G).
\]

In Fig. 15 the set \(W \) is coloured in grey and the circles represent the connected components of \(G_{S \cap T} \), where only some vertices are drawn.

Notice that \(z \in W \). Let \(w \in W \). Adding \(w = z \) to \(G_{S \cap T} \), we connect a vertex of \(H_2 \setminus N_{H_t}(s) \) with \(K_3 \) whereas, adding \(w \in N_{H_t}(s) \) to \(G_{S \cap T} \), we connect \(s \) to \(H_2 \setminus N_{H_t}(s) \). Moreover, if \(w \in (S \cap T) \setminus (A \cup \{z\}) \), we know that, in \(G_{S \cap T} \), \(w \) connects \(G_j \) for some \(j \geq 2 \) to a vertex \(v \) of \(G_t \setminus N_{H_t}(s) \). By construction, in \(G_{S \cap T} \) the connected components containing \(v \) and \(G_j \) are different and \(w \) still connects them. This proves that \(W \in \mathcal{M}(G) \).

Since \(J_G \) is unmixed, we have that \(c_G(W) = |W| + 1 \) and a connected component of \(G_{S \cap T} \) is the subgraph induced on \(H_3 \cup K_2 \cup K_3 \cup \{s, t\} \). Thus, removing \(t \) from \(G_{S \cap T} \), this component splits in three components, \(H_3 \cup \{s\}, K_2, K_3 \). Therefore, if \(W \cup \{t\} \) is a cut set of \(G \), we get \(c_G(W \cup \{t\}) = c_G(W) + 2 = \) \(|W| + 3 \), which contradicts the unmixedness of \(J_G \).

Hence, we may assume that \(W \cup \{t\} \notin \mathcal{M}(G) \). Thus there exists \(y \in N_G(t) \) that joins \(t \) with only one connected component of \(G_{S \cap T} \) (i.e., \(c_G((W \cup \{t\}) \setminus \{y\}) = c_G(W \cup \{t\}) \)). In this case, we define

\[
B = \{y \in S \cap T : (y, t) \in E(G) \text{ and } \{y\} \in \mathcal{M}(G) \}.
\]

where \(|B| \geq 1 \), since \(W \cup \{t\} \notin \mathcal{M}(G) \). We claim that

\[
W' = (W \setminus B) \cup \{t\} \in \mathcal{M}(G).
\]
Notice that \(z \in W \). The proof is similar to the case of \(W \). We only notice that, adding \(t \) to \(G \), we connect at least \(K_2, K_3 \) and the connected component containing \(s \). Moreover, each element in \(B \) does not connect different connected components of \(G \) and any two elements of \(B \) are not adjacent (since they are adjacent to \(t \) and \(G \) is bipartite). Thus, \(|W| < |W \cup \{t\}| \) and

\[
c_c(W) = c_c(W \cup \{t\}) = c_c(W) + 2 = |W| + 3 = |W \cup \{t\}| + 2 > |W| + 1,
\]

which contradicts the unmixedness of \(J_c \). \(\square \)

Remark 5.6. It could be true that, if \(G \) is bipartite and \(J_c \) is unmixed, then \(S \cap T \in \mathcal{M}(G) \) for every \(S, T \in \mathcal{M}(G) \). Both assumptions are needed: in fact, if \(G \) is the graph in Fig. 16, one can check that \(J_c \) is Cohen–Macaulay and thus \(\mathcal{D}(G) \) is connected. Nevertheless, \(\{2, 4\}, \{4, 5\} \in \mathcal{M}(G) \) and \(\{2, 4\} \cap \{4, 5\} = \{4\} \notin \mathcal{M}(G) \).

On the other hand, if \(G \) is the cycle of length 6 with consecutive labelled vertices, then \(J_c \) is not unmixed, \(\{1, 3\}, \{1, 5\} \in \mathcal{M}(G) \) and \(\{1, 3\} \cap \{1, 5\} = \{1\} \notin \mathcal{M}(G) \).

The next result is important for Theorem 6.1, since at the same time provides the equivalence (b) \(\iff \) (d) and has important consequences for the proof of (b) \(\implies \) (c).

Theorem 5.7. Let \(G \) be a bipartite graph. If \(\mathcal{D}(G) \) is connected, then for every non-empty \(S \in \mathcal{M}(G) \), there exists \(s \in S \) such that \(S \setminus \{s\} \in \mathcal{M}(G) \).

Proof. By contradiction, let \(T \in \mathcal{M}(G) \) such that \(T \setminus \{s\} \notin \mathcal{M}(G) \) for every \(T \in \mathcal{M}(G) \). Notice that \(|T| \geq 2\), otherwise \(T \setminus \{s\} = \emptyset \in \mathcal{M}(G) \).

Let \(W \in \mathcal{M}(G), W \neq T \), such that there exists a path \(P : P_t = P_{s_0}, P_{s_1}, \ldots, P_{s_k}, P_{s_{k+1}} = P_w \) in \(\mathcal{D}(G) \). Assume \(P \) is a shortest path from \(P_t \) to \(P_w \).

Claim: For \(1 \leq i \leq k \), \(|S_i| > \{s_i\} \). In particular, \(|W| > |T| \).

We proceed by induction on \(k \geq 0 \).

Let \(k = 0 \). Notice that \(|W| \geq |T| \), otherwise by Theorem 5.2(a), \(W = T \setminus \{t\} \in \mathcal{M}(G) \) for some \(t \in T \), a contradiction. If \(|W| = |T| \), there is an edge of \(\mathcal{D}(G) \), by Theorem 5.2(a), we have that \(W = (T \setminus \{t\})\cup \{w\} \), for some \(t \in T \) and \(w \notin T \). By Lemma 5.5, we have that \(W \cap T = T \setminus \{t\} \in \mathcal{M}(G) \), a contradiction. Then \(|W| > |T| \).

Let \(k \geq 1 \). By induction, \(|S_i| > \{s_i\} \), for every \(1 \leq i \leq k \). In particular, by Theorem 5.2(b), \(S_i = T \cup \{s_1, \ldots, s_i\} \) for \(i = 1, \ldots, k \) and \(s_i \notin T \), for \(j = 1, \ldots, k \). Set \(S = S_k \).

If \(|W| < |S| \), then \(|W| = |S| - 1 \) by Theorem 5.2(a). Hence \(W = S \setminus \{s\} \) for some \(s \in S \).

First suppose that \(s \in T \). Thus, \(W = (T \setminus \{s\}) \cup \{s_1, \ldots, s_k\} \). Since \(|W| = |S_{k-1}| \), \(|W \setminus S_{k-1}| = 1 \) and \(W \cup S_{k-1} = S \in \mathcal{M}(G) \), by Lemma 5.5(ii) it follows that \(S_{k-1} \cap W = (T \setminus \{s\}) \cup \{s_1, \ldots, s_k\} \in \mathcal{M}(G) \).

For every \(i = 1, \ldots, k-2 \), let \(T_i = S_{i+1} \cap \cdots \cap S_{k-1} \cap W \). By induction on \(i \leq k-2 \), assume that \(T_i \in \mathcal{M}(G) \), then \(T_{i-1} = S_i \cap T_{i-1} = (T \setminus \{s\}) \cup \{s_1, \ldots, s_i\} \in \mathcal{M}(G) \), by Lemma 5.5(ii), since \(|S_i| = |T_i|, |T_i \setminus S_i| = 1 \) and \(S_i \cup T_i = S_{i+1} \in \mathcal{M}(G) \). In particular, \(T_0 = S_1 \cap \cdots \cap S_{k-1} \cap W = (T \setminus \{s\}) \cup \{s_1\} \in \mathcal{M}(G) \).
\[|T_0| = |T|, \quad |T_0 \setminus T| = 1 \] and \(T_0 \cup T = S_1 \in \mathcal{M}(G) \). Again, by Lemma 5.5 (ii), \(T \cap T_0 = T \setminus \{s\} \in \mathcal{M}(G) \), a contradiction.

Now assume that \(s \in S \setminus T \), where \(s = s_j \) for some \(j \in \{1, \ldots, k\} \). Since \(|W| = |S_{k-1}| \) and \(|W \setminus S_{k-1}| = 1 \), by Lemma 5.5 (ii), \(S_{k-1} \cap W = S_{k-2} \setminus \{s_j\} \in \mathcal{M}(G) \). For every \(i = j, \ldots, k-2 \), let \(T_i = S_{k-1} \cap \cdots \cap S_{k-2} \setminus \{s_j\} \). By induction on \(i \leq k - 2 \), assume that \(T_i \in \mathcal{M}(G) \), then \(T_{i+1} = S_{i+1} \cap T_i = S_{i+1} \setminus \{s_j\} \in \mathcal{M}(G) \) by Lemma 5.5 (ii), since \(|S_i| = |T_i|, \quad |T_i \setminus S_i| = 1 \) and \(S_i \cup T_i = S_{i+1} \in \mathcal{M}(G) \). In particular, \(T_{j-1} = S_j \cap \cdots \cap S_{k-1} \cap W = S_j \setminus \{s_j\} = S_{j-1} \in \mathcal{M}(G) \). Therefore, \(P' : P_{S_0} = P_{T_0}, P_{S_1}, \ldots, P_{S_{k-1}} = P_{T_{j-1}}, P_j, \ldots, P_{T_{k-2}}, P_W \) is a path from \(P_T \) to \(P_W \), shorter than \(P \), a contradiction.

If \(|W| = |S| \), then \(W = (S \setminus \{x\}) \cup \{y\} \) for some \(x, y \). If \(x \in T \), then \(W = (T \setminus \{x\}) \cup \{s_1, \ldots, s_k, y\} \). By Lemma 5.5 (i), \(W \cap S = (T \setminus \{x\}) \cup \{s_1, \ldots, s_k\} \in \mathcal{M}(G) \). We may proceed in a similar way to the case \(|W| < |S| \), setting \(T_i = S_{k-1} \cap \cdots \cap S_i \cap W \) for \(i = 1, \ldots, k-1 \).

Now assume \(x \in S \setminus T \), where \(x = s_j \) for some \(j \in \{1, \ldots, k\} \). Since \(|W| = |S| \), by Lemma 5.5 (i), \(S \cap W = S \setminus \{x\} \in \mathcal{M}(G) \). Again, we may proceed as in the case \(|W| < |S| \), setting \(T_i = S_{k-1} \cap \cdots \cap S_i \cap W \) for \(i = j, \ldots, k-1 \).

In both cases we find a contradiction. In conclusion, we proved that, if \(P_T \) is a path from \(P_T \) to \(P_W \) in \(D(G) \), then \(|W| > |T| \geq 2 \). Thus, there is no path from \(P_T \) to \(P_W \) in \(D(G) \), hence \(D(G) \) is disconnected. □

Using the following result, we may reduce to consider bipartite graphs \(G \) with exactly two cut vertices and \(D(G) \) connected.

Theorem 5.8. Let \(G \) be a bipartite graph with at least three cut vertices and such that \(J_C \) is unmixed.

(a) There exist \(G_1 \) and \(G_2 \) such that \(G = G_1 \circ G_2 \) or \(G = G_1 \oplus G_2 \).

(b) If \(D(G) \) is connected, then \(D(G_1) \) and \(D(G_2) \) are connected.

Proof. (a) By Proposition 2.3, \(G \) has exactly two leaves. Let \(v \) be a cut vertex that is not a neighbour of a leaf and let \(H_1 \) and \(H_2 \) be the connected components of \(\overline{G_v} \). If \(v \) is a leaf of both \(G_{V(H_1) \cup \{v\}} \) and \(G_{V(H_2) \cup \{v\}} \), then \(G = G_{V(H_1) \cup \{v\}} \circ G_{V(H_2) \cup \{v\}} \).

Assume that \(v \) is not a leaf of \(G_{V(H_1) \cup \{v\}} \) and of \(G_{V(H_2) \cup \{v\}} \). Then, given two new vertices \(w_1 \) and \(w_2 \), for \(i = 1, 2 \) we set \(G_i \) to be the graph \(G_{V(H_i) \cup \{v, w_i\}} \). It follows that \(G = G_1 \circ G_2 \).

Now assume by contradiction that \(v \) is a leaf of \(G_{V(H_1) \cup \{v\}} \), but not of \(G_{V(H_2) \cup \{v\}} \), and let \(w \) be the only neighbour of \(v \) in \(G_{V(H_2) \cup \{v\}} \). Hence, \(w \) is a cut vertex of \(G \) and we may assume that it is not a leaf of \(G_{V(H_2) \cup \{v\}} \), otherwise \(G = G_{V(H_1) \cup \{v, w\}} \circ G_{V(H_2) \cup \{v\}} \).

The graphs \(G_{V(H_1) \cup \{v\}} \) and \(G_{V(H_2) \cup \{v\}} \) are bipartite with bipartitions \(V_1 \uplus V_2 \) and \(W_1 \uplus W_2 \), respectively. Without loss of generality, assume that \(v \in V_1 \) and \(w \in W_1 \) and let \(S = V_1 \setminus \{v, \ell\} \) is a leaf of \(G \). This is a cut set of \(G \); indeed in \(G \), all vertices of \(V_2 \) are either isolated or connected with only one leaf of \(G \), hence every element of \(S \) connects at least one vertex of \(V_2 \) with some other connected component.

Therefore, since \(J_C \) is unmixed, \(G \) has \(|S| + 1 \) connected components, \(G_{V(H_1) \cup \{v\}} \), one of them and the vertices of \(G_{V(H_2) \cup \{v\}} \) not in \(S \) form the remaining \(|S| \) connected components. In the same way, the set \(T = W_1 \setminus \{\ell\} \) is a leaf of \(G \in \mathcal{M}(G) \) and \(G \) consists of the connected component \(G_{V(H_1) \cup \{v\}} \) and of \(|T| \) connected components on the vertices of \(G_{V(H_2) \cup \{v\}} \) that are not in \(S \). Notice that \(S \cup T \) is a cut set of \(G \); in fact, adding either \(v \) or \(w \) to \(\overline{G_{V(H_1) \cup \{v\}}} \), we join at least two connected components, since \(v \) is not a leaf of \(G_{V(H_1) \cup \{v\}} \) and \(w \) is not a leaf of \(G_{V(H_2) \cup \{v\}} \). Then \(G_{V(H_1) \cup \{v\}} \) has \(|S| \) connected components on the vertices of \(G_{V(H_1) \cup \{v\}} \) and \(|T| \) on the vertices of \(G_{V(H_2) \cup \{v\}} \). Hence, \(G \in \mathcal{M}(G) \), a contradiction.

(b) We prove the statement for \(G_1 \), the argument for \(G_2 \) is the same. Let \(P_k \) be the primary components of \(J_C, S_0 \in \mathcal{M}(G_1) \) and \(k = |S_0| \). Thus, \(S_0 \in \mathcal{M}(G) \) by Theorems 4.2 and 4.5. Moreover, by Theorem 5.7, there exists \(S_1 \in S_0 \) such that \(S_1 = S_0 \setminus \{s_1\} \in \mathcal{M}(G) \). Applying repeatedly Theorem 5.7, we find a finite sequence of cut sets \(S_2 = S_0 \setminus \{s_1, s_2\}, S_3 = S_0 \setminus \{s_1, s_2, s_3\}, \ldots, S_k = S_0 \setminus \{s_1, s_2, \ldots, s_k\} \), \(k \in \mathcal{M}(G) \). Notice that \(S_k \in \mathcal{M}(G) \) for \(i = 1, \ldots, k \) and, by Theorem 5.2, \(P_{S_k}, P_{S_{k+1}} \) is an edge of \(\mathcal{M}(G) \) for \(i = 1, \ldots, k-1 \). Hence,

\[P : P_{S_0}, P_{S_1}, P_{S_2}, \ldots, P_k = P_0, \]

is a path from \(P_0 \) to \(P_k \) in \(D(G_1) \). Therefore, \(D(G_1) \) is connected. □
If the graph \(G \) is not bipartite, Theorem 5.8(a) does not hold. For instance, the ideal \(J_G \) of the graph in Fig. 17 is unmixed, indeed Cohen–Macaulay, and \(G \) has four cut vertices, but it is not possible to split it using the operations \(\ast \) and \(\circ \).

The remaining part of the section is useful to prove that a bipartite graph \(G \) with exactly two cut vertices and \(D(G) \) connected is of the form \(F_m \).

Corollary 5.10. Let \(G \) be a bipartite graph such that \(D(G) \) is connected. Then every non-empty cut set \(S \subseteq M(G) \) contains a cut vertex.

Proof. Let \(S \subseteq M(G) \) and \(k = |S| \). We may assume \(k \geq 2 \). By Theorem 5.7, there exists \(s \in S \) such that \(T = S \setminus \{s\} \subseteq M(G) \). By induction, \(T \) contains a cut vertex and the claim follows. \(\square \)

Remark 5.11. All assumptions in Theorem 5.8 and Corollary 5.10 are needed. In fact, both claims do not hold if we only assume \(G \) bipartite but \(D(G) \) is not connected. For instance, let \(G = M_3.4 \). Then \((3, 5) \) is a cut set that does not contain any cut vertex (see Example 2.2).

On the other hand, both results do not hold if \(D(G) \) is connected but \(G \) is not bipartite. For example, if \(G \) is the graph in Fig. 12(a), then \(\{3, 4\} \subseteq M(G) \), but 3 and 4 are not cut vertices of \(G \).

Corollary 5.12. Let \(G \) be a bipartite graph with bipartition \(V_1 \sqcup V_2 \) and with exactly two cut vertices \(v_1 \) and \(v_2 \). If \(D(G) \) is connected, then \(\{v_1, v_2\} \subseteq E(G) \). In particular \(|V_1| = |V_2| \).

Proof. Let \(f \) be the leaf adjacent to \(v_i \) for \(i = 1, 2 \). Assume that \(\{v_1, v_2\} \not\subseteq E(G) \). Then \(S_i = N_G(v_i) \setminus \{f\} \) is a cut set of \(G \) for \(i = 1, 2 \). Moreover, \(S_1 \) and \(S_2 \) do not contain cut vertices. By Corollary 5.10 it follows that \(D(G) \) is disconnected, a contradiction. The last part of the claim follows from Remark 2.4. \(\square \)

Lemma 5.13. Let \(G \) be a bipartite graph with bipartition \(V_1 \sqcup V_2 \), \(|V_1| = |V_2| \) and with exactly two cut vertices. If \(D(G) \) is connected, then there exists a vertex of \(G \) with degree 2.

Proof. Suppose by contradiction that all the vertices of \(G \), except the two leaves, have degree greater than 2. Let \(f \) be the only leaf of \(G \) in \(V_1 \) and consider \(T = V_1 \setminus \{f\} \). Clearly \(G_T \) is the disjoint union of \(|V_2| - 1 \) isolated vertices and the edge \(\{v_2, f\} \), where \(v_2 \in V_2 \) is a cut vertex. Therefore, \(T \) is a cut set and we claim that it is an isolated vertex in \(D(G) \).

Notice that \(T \) is not contained in any other cut set. Moreover, suppose that \(S \) is a cut set of \(G \) such that \(S \subseteq T \) and \(T \setminus S = \{v\} \). Since \(S \subseteq V_1 \), it follows that \(\deg_G(v) > 2 \). Then \(c_G(S) = c_G(T \setminus \{v\}) \leq c_G(T) - 2 = |V_1| - 2 \), since \(G_T \) consists of isolated vertices and one edge. This contradicts the unmixedness of \(J_G \).

Finally, let \(T' \) be a cut set such that \(T \setminus T' = \{v\} \) and \(T' \setminus T = \{v'\} \). If we set \(S = T \setminus \{v\} = T' \setminus \{v'\} \), it follows that \(v' \) has to be a cut vertex of \(G_{T'} \). As consequence, \(v' = v_2 \) is the cut vertex in \(V_2 \), and \(|v, v'| \in E(G) \). On the other hand, as before, \(G_{T'} \) has at most \(|V_2| - 2 \) connected components, then \(c_{G(T')} = c_G(S) + 1 \leq |V_2| - 1 \). This contradicts the unmixedness of \(J_G \), because \(|T' = |V_2| - 1 \). Therefore, Theorem 5.2 implies that \(T \) is an isolated vertex in \(D(G) \) against our assumption. \(\square \)

Proposition 5.14. Let \(H \) be a bipartite graph with bipartition \(V_1 \sqcup V_2 \) and \(|V_1| = |V_2| \). Let \(v \) and \(f \) be two new vertices and let \(G \) be the bipartite graph with \(V(G) = V(H) \cup \{v, f\} \) and \(E(G) = E(H) \cup \{|v, x| : x \in V_1 \cup \{f\}\} \). If \(D(G) \) is connected, then \(D(H) \) is connected.
Proof. Let f_2 be the leaf of G in V_2 and w its only neighbour, which is a cut vertex. Lemma 2.6(b) and 5.13 imply that there is a vertex with degree 2 in G. Thus, by Proposition 2.8,
\[A(G) = \{ \emptyset, V_1 \} \cup \{ S \cup \{ v \} : S \in A(H) \cup \{ T \subset V_1 : T \in A(H) \} \} \]
Let us denote by P_1 the primary components of J_2, and by Q_2 those of J_H. Using Theorem 5.2, we can give a complete description of the edges of $D(G)$:

(i) $(P_1, P_1) \in E(D(G))$ if and only if either $T = \{ v \}$ or $T = \{ w \}$.
(ii) $(P_1, P_1) \in E(D(G))$ if and only if either $T = V_1 \setminus \{ f_1 \}$ or $T = V_1 \setminus \{ v \}$.
(iii) if $S_1, S_2 \in A(H)$, then $(P_{S_1 \cup \{ v \}}, P_{S_2 \cup \{ v \}}) \in E(D(G))$ if and only if $[Q_{S_1}, Q_{S_2}] \in E(D(H))$.
(iv) if $T_1, T_2 \in A(G)$ are strictly contained in V_1, then we have $(P_{T_1}, P_{T_2}) \in E(D(G))$ if and only if $(Q_{T_1}, Q_{T_2}) \in E(D(H))$.
(v) if $S, T \in A(H)$ and $T \subset V_1$, then $(P_{S \cup \{ v \}}, P_1) \in E(D(G))$ if and only if $S = T$.

If $S \in A(H)$, it is enough to prove that Q_2 is in the same connected component as Q_S in $D(H)$.

By (iii), this is equivalent to prove that in $D(G)$ there exists a path $P_S = P_{Q_1}, P_{Q_2}, \ldots, P_{Q_s} = P_{Q_{S \cup \{ v \}}}$ such that U_i contains v for all i. Since $D(G)$ is connected, we know that there exists a path P from P_{Q_1} to $P_{Q_{S \cup \{ v \}}}$. We first note that, if P contains P_0 or P_1, we may avoid them: in fact, by (i) and (ii), they only have two neighbours: for P_0, they are adjacent by (v), whereas we may replace P_0 with $P_{(v,w)}$ by (iii) and (v). Let i be the smallest index for which U_i does not contain v. This means that $U_i \subset V_1$ and $U_{i-1} = U_i \cup \{ v \}$ by (v). Moreover, U_{i-1} does not contain v, otherwise it would be equal to U_{i-1} again by (v). Therefore, $U_{i-1} \subset V_1$ and $(Q_{U_{i-1}}, Q_{U_i}) \in E(D(H))$. Thus, replacing U_i with $U_{i-1} \cup \{ v \}$ in P, we eventually find a path from P_{Q_1} to $P_{Q_{S \cup \{ v \}}}$ by (iii) and (iv). Repeating the same argument finitely many times, we eventually find a path from P_{Q_1} to $P_{Q_{S \cup \{ v \}}}$ that involves only cut sets containing v. Thus $D(H)$ is connected by (iii). \hfill \Box

6. The main theorem

In this section we prove the main theorem of the paper and give some applications.

Theorem 6.1. Let G be a connected bipartite graph. The following properties are equivalent:

(a) J_2 is Cohen–Macaulay;
(b) the dual graph $D(G)$ is connected;
(c) $G = A_1 \star A_2 \star \cdots \star A_n$, where $A_i = F_{m_i}$ or $A_i = F_{m_i} \circ \cdots \circ F_{m_i}$, for some $m_i \geq 3$; and
(d) J_2 is unmixed and for every non-empty $S \in A(G)$, there exists $s \in S$ such that $S \setminus \{ s \} \in A(H)$.

Proof. The implication (a) \Rightarrow (b) follows by Hartshorne’s Connectedness Theorem [8, Proposition 1.1, Corollary 2.4, Remark 2.4.1].

(b) \Rightarrow (c): We may assume that G has more than two vertices. Recall that, since $D(G)$ is connected, then J_2 is unmixed. By Proposition 2.3, G has exactly two leaves, hence at least two cut vertices v_1, v_2, which are their neighbours. We proceed by induction on the number $h \geq 2$ of cut vertices of G.

Let $h = 2$. We claim that $G = F_{m_i}$, for some $m_i \geq 2$. Let $V(G) = V_1 \cup V_2$ be the bipartition of the vertex set of G. By Corollary 5.12, we have that $v_1, v_2 \in E(G)$ and $|V_1| = |V_2|$, with $v_i \in V_i$ for $i = 1, 2$. We proceed by induction on $m = |V_1| = |V_2|$. If $m = 2$, then $G = F_2$. Let $m > 2$ and consider the graph H obtained removing v_2 and the leaf adjacent to it. Lemma 2.6(b) implies that v has degree m and H has exactly two cut vertices, whereas by Proposition 5.14, $D(H)$ is connected. Hence, by induction, it follows that $H = F_{m-1}$ and $G = F_m$ by construction.

Assume now $h > 2$. Let v be a cut vertex of G such that $v \neq v_1, v_2$. By Theorem 5.8, there exist two graphs G_1 and G_2 such that $G = G_1 \star G_2$ or $G = G_1 \circ G_2$ and $D(G_1), D(G_2)$ are connected. If $G = G_1 \star G_2$, by induction they are of the form $A_1 \star A_2 \star \cdots \star A_k$, for some $k \geq 1$, where $A_i = F_{m_i}$, with $m_i \geq 1$, or $A_i = F_{m_i} \circ \cdots \circ F_{m_i}$, with $m_i \geq 3$ for $j = 1, \ldots, r$.

On the other hand, if $G = G_1 \circ G_2$, it follows that $G_1 = A_1 \star A_2 \star \cdots \star A_k$ and $G_2 = B_1 \star B_2 \star \cdots \star B_k$, where each A_i and B_i are equal to F_{m_i}, for some $m_i \geq 1$, or to $F_{m_i} \circ \cdots \circ F_{m_i}$, with $m_i \geq 3$ for $j = 1, \ldots, r$. By Theorem 4.5, it follows that if $A_i = F_{m_i}$ or $B_i = F_{m_i}$, then $m_i \geq 3$.

http://doc.rero.ch
more than two cut vertices, then the form

\[G \]

Notice that the first transformation is more general than the one described in [11, Remark 1.5].

Corollary 6.2. Let \(G \) be a bipartite connected graph. Then

\[
\text{Theorem 6.1 classifies which of these ideals are Cohen–Macaulay.}
\]

\[\text{Let } G \text{ be a bipartite connected graph. If it has exactly two cut vertices, then } G = F_m \text{ for some } m \geq 1. \text{ If } k \leq 1, \text{ then } G = F_m \circ F_n. \text{ If } G = F_m \circ \cdots \circ F_n, \text{ with } m_j \geq 3 \text{ for } j = 1, \ldots, r. \text{ In the first case the claim follows from Proposition 3.3, in the latter from Theorem 4.9.} \]

Let \(k > 1 \) and consider the graphs \(G_1 = A_1 \ast A_2 \ast \cdots \ast A_{k-1} \) and \(G_2 = A_k \). By induction, \(J_{G_1} \) is Cohen–Macaulay and, by the previous argument, also \(J_{G_2} \) is Cohen–Macaulay. Then, the claim follows from Theorem 4.2.

(a) \(\Rightarrow \) (b): The first implication follows from Theorem 5.7. Conversely, let \(S \in \mathcal{M}(G), S \neq \emptyset, \) and \(P_3 \) be the primary components of \(J_G \). It suffices to show that there exists a path from \(P_3 \) to \(P_3 \). If \(|S| = 1 \), the claim follows by Theorem 5.2(b). If \(|S| > 1 \), by assumption, there exists \(s \in S \) such that \(S \setminus \{s\} \in \mathcal{M}(G) \) and, by induction, there exists a path from \(P_3 \) to \(P_3 \). Thus, Theorem 5.2(b) implies that \((P_3 \setminus \{s\}, P_3) \) is an edge of \(\mathcal{D}(G) \). \(\square \)

Since \(A_1 \ast I \) Cohen–Macaulay implies that \(A/I \) is Cohen–Macaulay and in this case \(\mathcal{D}(I) \) is connected [8, Corollary 2.4], for a bipartite graph \(G, R/J_G \) is Cohen–Macaulay if and only if \(R/J_G \) is Cohen–Macaulay by Theorem 6.1.

Theorem 6.1 can be restated in the following way. Let \(G \) be a connected bipartite graph. If it has exactly two cut vertices, then \(J_G \) is Cohen–Macaulay if and only if \(G = F_m \) for some \(m \geq 1 \). If it has more than two cut vertices, then \(J_G \) is Cohen–Macaulay if and only if there exist two bipartite graphs \(G_1, G_2 \) such that \(J_{G_1}, J_{G_2} \) are Cohen–Macaulay and \(G = G_1 \ast G_2 \) or \(G = G_1 \circ G_2 \).

Fig. 18 shows a graph \(G \) obtained by a sequence of operations \(* \) and \(\circ \) on a finite set of graphs of the form \(F_m \). More precisely, \(G = F_1 \ast F_2 \circ F_2 \ast F_1 \ast F_2 \circ F_3 \) and \(v_1 \) denotes the only common vertex between two consecutive blocks. By Theorem 6.1, \(J_G \) is Cohen–Macaulay.

It is interesting to notice that Theorem 6.1 gives, at the same time, a classification of other known classes of Cohen–Macaulay binomial ideals associated with graphs. We recall that, given a graph \(G \), the Lovász–Saks–Schrijver ideal \(L_G \) (see [11]), the permanental edge ideal \(P_G \) (see [11, Section 3]) and the parity binomial edge ideal \(I_G \) (see [12]) are defined respectively as

\[
L_G = \langle xi \cdot yj : (i, j) \in E(G) \rangle,
\]

\[
P_G = \langle xi \cdot yj + xj \cdot yi : (i, j) \in E(G) \rangle,
\]

\[
I_G = \langle xi \cdot yj : (i, j) \in E(G) \rangle.
\]

Corollary 6.2. Let \(G \) be a bipartite connected graph. Then **Theorem 6.1 holds for** \(L_G, P_G \) and \(I_G \).

Proof. Let \(G \) be a bipartite graph with bipartition \(V(G) = V_1 \sqcup V_2 \). Then the binomial edge ideal \(J_G \) can be identified respectively with \(L_G, P_G \) and \(I_G \) by means of the isomorphisms induced by:

\[
(x_i, y_j) \xrightarrow{L_G} \begin{cases} (x_i, y_j) & \text{if } i \in V_1 \\ (y_j, -x_i) & \text{if } i \in V_2 \end{cases},
\]

\[
(x_i, y_j) \xrightarrow{P_G} \begin{cases} (x_i, y_j) & \text{if } i \in V_1 \\ (-x_i, y_j) & \text{if } i \in V_2 \end{cases},
\]

\[
(x_i, y_j) \xrightarrow{I_G} \begin{cases} (x_i, y_j) & \text{if } i \in V_1 \\ (y_j, x_i) & \text{if } i \in V_2. \end{cases}
\]

Notice that the first transformation is more general than the one described in [11, Remark 1.5].

Thus, for bipartite graphs, these four classes of binomial ideals are essentially the same and **Theorem 6.1 classifies which of these ideals are Cohen–Macaulay. \(\square \)**

As a final application, using condition (d) in **Theorem 6.1** we show that [2, Conjecture 1.6] holds for Cohen–Macaulay binomial edge ideals of bipartite graphs. Recall that the diameter, \(\text{diam}(G) \), of a graph
G is the maximal distance between two of its vertices. A homogeneous ideal \(I \) in \(A = K[x_1, \ldots, x_n] \) is called Hirsch if \(\text{diam}(D(I)) \leq \text{ht}(I) \). In [2], the authors conjecture that every Cohen–Macaulay homogeneous ideal generated in degree two is Hirsch.

Corollary 6.3. Let \(G \) be a bipartite connected graph such that \(J_G \) is Cohen–Macaulay. Then \(J_G \) is Hirsch.

Proof. Let \(S \in \mathcal{M}(G) \) be a cut set of \(G \) and let \(n = |V(G)| \). We may assume \(n \geq 3 \), otherwise \(D(J_G) \) is a single vertex. Since \(J_G \) is unmixed, \(G_S \) has exactly \(|S| + 1\) connected components and we claim that \(|S| \leq \left\lfloor \frac{n}{2} \right\rfloor - 1\). In fact, if \(|S| \geq \left\lfloor \frac{n}{2} \right\rfloor \), we would have
\[
|V(G)| \geq |S| + |S| + 1 \geq \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor + 1 \geq \frac{n}{2} + \frac{n}{2} + 1 = n + 1,
\]
a contradiction. Consider now another cut set \(T \) of \(G \). By Theorem 6.1(d), it follows that there is a path connecting \(P_S \) and \(P_T \), containing \(P_{\emptyset} \) and with length \(|S| + |T| \leq 2\left\lfloor \frac{n}{2} \right\rfloor - 1 \leq n - 1 \). Thus, \(\text{diam}(D(J_G)) \leq n - 1 = \text{ht}(J_G) \). \(\square \)

Acknowledgements

The authors acknowledge the extensive use of the software Macaulay2 [7] and Nauty [16]. They also thank Giancarlo Rinaldo for pointing out an error in Remark 3.1 in a previous version of the manuscript. The first and the second author were supported by INdAM. The third author was partially supported by MTM2016-75027-P, MTM2013-46231-P (Ministerio de Economía y Competitividad) and FEDER.

References

