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Abstract
I discuss three common practices that obfuscate or invalidate the statistical analysis
of randomized controlled interventions in applied linguistics. These are (a) checking
whether randomization produced groups that are balanced on a number of possibly
relevant covariates, (b) using repeated measures ANOVA to analyze pretest-posttest
designs, and (c) using traditional significance tests to analyze interventions in which
whole groups were assigned to the conditions (cluster randomization). The first
practice is labeled superfluous, and taking full advantage of important covariates re-
gardless of balance is recommended. The second is needlessly complicated, and
analysis of covariance is recommended as a more powerful alternative. The third
produces dramatic inferential errors, which are largely, though not entirely, avoided
when mixed-effects modeling is used. This discussion is geared towards applied lin-
guists who need to design, analyze, or assess intervention studies or other random-
ized controlled trials. Statistical formalism is kept to a minimum throughout.

Keywords: randomized experiments, cluster randomization, pretest-posttest de-
signs, covariates, mixed-effects modeling

1. Introduction

Intervention studies in which participants are randomly assigned to the treat-
ment or control group are the gold standard for establishing the effectiveness
of language learning methods. It is therefore essential that the data that they
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produce be analyzed optimally and the analyses reported as cogently as possi-
ble. In this contribution, I discuss three common practices in the statistic analy-
sis of randomized controlled interventions that obfuscate or even invalidate the
insights gained from such studies. Specifically, I focus on superfluous “balance
tests” on covariates, overcomplicated analyses of pretest-posttest data, and the
inappropriateness of ignoring the effects of assigning whole groups of partici-
pants to the experimental conditions.

The issues I discuss are not new nor are they unique to applied linguistics.
But applied linguists that take an interest in them need to foray into different
fields where they are often explained using dauntingly looking statistical for-
malism. My goal is to bring these issues to the attention of applied linguists who
need to design, analyze, or assess intervention studies or other randomized
controlled experiments, and to provide them with practical recommendations.
Throughout the article, formalism is deliberately kept to a minimum.

2. Superfluous balance tests

As I do not wish to single out specific studies, let us consider a hypothetical in-
tervention that investigates the effectiveness of a new method for learning to
read closely related foreign languages through self-study. Fifty participants are
recruited and randomly given either the new learning method (treatment) or its
predecessor (control) for self-study. After six weeks, all participants are admin-
istered a reading test in the related languages they have been studying (post-
test-only randomized controlled experiment). In addition, the researchers ex-
tract several background variables at the onset of the study, for example, the
learners’ age, sex, socioeconomic status, and other foreign language skills. (Pre-
test scores are discussed below.)

2.1. What are balance tests?

In addition to analyzing the post-test scores, conscientious researchers will of-
ten run statistical tests (e.g., t tests or ANOVAs, or χ²-tests) on the background
variables in order to ensure that the treatment and control groups are compa-
rable in all relevant respects save for the self-study method used. The two
groups are then typically deemed comparable if these balance tests yield a p
value higher than a specified threshold (often p > .05). If the p value lies below
this cut-off, additional analyses are often carried out to investigate the impact
of the potential confound variable. For instance, say we observe a significant
difference in the reading scores between the control and treatment group (e.g.,
t(48) = 2.4, p = .02), but also a significant age difference in the same direction
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(e.g., t(48) = 2.7, p = .01). We then might be tempted to include the learners’
age as a “control variable” in an analysis of covariance (or might be spurred to
do so by a reviewer). Conversely, had we observed a nonsignificant treatment
effect, we might also be inclined to include age as a covariate in an ANCOVA if
the control and treatment groups differed in age.

2.2. Problems with balance tests

As Mutz and Pemantle (2013) argue, such balance tests are (almost always) su-
perfluous in randomized experiments and may lead to suboptimal analyses down
the road. Here, I summarize their main points. First, to understand their superflu-
ity, consider the null hypothesis that is being tested when the researcher con-
ducts a balance test on (for instance) the age variable: The null hypothesis is that
the participants in both the control and the treatment groups were randomly
drawn from the same population and that any age differences between them are
consequently due to sampling error. Since the researcher randomly assigned the
participants to the control or treatment groups, she already knows that this is the
case. Thus, rejecting this null hypothesis always constitutes a false positive (Type-
I error: finding a significant result even though there is no effect). (Note that the
topic is randomized experiments; the point does not hold if the allocation of par-
ticipants to control or treatment groups was not done at random.) Consequently,
the p value produced by a “silly” (Abelson, 1995, p. 76) balance test cannot tell us
anything that we do not already know. In this respect, researchers run the risk of
burying their main findings under a layer of superfluous analyses (see Lazaraton,
2005, pp. 218-219, for a related sentiment).

Second, the use of balance tests suggests that researchers think that ran-
domization is a mechanism for creating samples that are balanced with respect
to potential confound variables. Balance tests would then be a method for es-
tablishing whether our sample is indeed balanced with respect to the back-
ground variables measured or whether we were “unlucky” to have drawn an
arguably random but nevertheless unbalanced sample (e.g., an older treatment
group). However, randomization is not meant to ensure background variable
balance in any specific sample. Rather, randomization balances out the effect
of both measured (e.g., age) and unmeasured confounds (e.g., motivation, intel-
ligence, chronotype, etc.) on average: If we were to run the same intervention
study a large number of times and randomized the assignment of the participants
to the control or treatment groups each time, randomization guarantees that the
average observed treatment effect corresponds to the true treatment effect. In
any given sample, we may observe smaller or larger treatment effects, but the dis-
tribution of these observed effects is unbiased and follows the laws of probability.
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Thus, statistical tests already account for fluke findings due to randomization (see
also Oehlert, 2010, Chapter 2). In other words, the hypothetical p value of .02
cited above has its precise meaning: Assuming that the treatment is equally as
effective as the control method (= the null hypothesis), the probability of observ-
ing a difference as large as or even larger than the one observed is 2%.

Third, since p values already take chance findings due to randomization
into account, it follows that acting on balance tests invalidates them. As illus-
trated above, p values are conditional probability statements: They reflect the
probability of observing a particular or more extreme results if the null hypoth-
esis were true. By using balance tests, we introduce an additional set of condi-
tions (if the null hypothesis were true and background variables A, B, and C dif-
fered by no more than a specific margin between the two groups) that is not
taken into account by the reported p value. What is more, not only do p values
lose their precise meaning after a significant balance test: The mere intention
to act on significant balance tests invalidates the reported p value even if the
balance test comes out nonsignificant. The reason is that statistical inference is
affected not only by what we do when observing a particular data pattern (e.g.,
a positive balance test) but also by what we would have done had the data come
out differently (see Gelman & Loken, 2013; see also Simmons, Nelson, & Simon-
sohn, 2011, for related issues). Unfortunately, for practical purposes, it is im-
possible to recalibrate p values to take such conditionalities into account.

2.3. Proper uses of background variables

Does all of this mean that collecting background variables is a waste of time?
No. One valid and indeed highly recommendable procedure is to block on vari-
ables that are deemed important (see Oehlert, 2010, Chapter 13). For instance,
if we have reasons to believe that women and men would differ substantially in
their reading test scores, we may want to consider blocking on the sex variable:
Half of the men would be randomly assigned to the treatment group and half
to the control group, and similarly for the women. The decision to block on a
given (or several) variables must be made before the randomization, and block-
ing is difficult if the participant sample is not completely defined at the onset of
the data collection (e.g., when participants trickle to the lab over the course of
several weeks; but see Moore & Moore, 2013, who discuss methods for block-
ing on covariates in such cases). When feasible, however, blocking on back-
ground variables that are actually related to the outcome increases statistical
precision by accounting for a source of residual variance: Less residual variance
means narrower standard errors, which in turn translates into a greater proba-
bility of finding true treatment effects (“power”). Note that this requires that
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the blocking variable be included in the analysis. Interestingly, even blocking on
poorly chosen or measured background variables does not decrease precision
in any but the smallest of samples (see Imai, King, & Stuart, 2008).1

A second way to make fruitful use of background variables is to use them
as covariates in the analysis regardless of whether the two groups are balanced
with respect to them or not (Mutz & Pemantle, 2013). Entering covariates that
are really related to the outcome into the analysis again increases statistical
precision by accounting for a source of residual variance, even if the means of
the variable are similar in the two groups. However, covariates that are not ac-
tually related to the outcome decrease statistical precision since they fit noise
in the data at the cost of degrees of freedom. Hence, it pays to be discriminate
and to select a small number of background variables that are known to be sub-
stantially related to the outcome (e.g., from the literature); then, when analyz-
ing the study’s results, one can forgo conducting balance tests and use the se-
lected variables in a multivariate analysis.

3. Using pretest scores

The fictitious intervention study described above can substantially be improved
upon by the inclusion of a pretest, giving rise to a pretest-posttest randomized
controlled experiment. When pretest scores are available, it is always advanta-
geous to use them in the analysis—even if the control and treatment groups are
comparable with respect to them. Pretreatment ability is perhaps the single
most important predictor of posttreatment ability, and taking interindividual
differences in pretreatment ability into account greatly improves the precision
of the study with respect to the treatment effect. However, the analyses of pre-
test–posttest studies reported in the literature are often needlessly compli-
cated and can be simplified for greater readability without loss of technical ac-
curacy. This point is not new (see Huck & McLean, 1975) but bears repeating.

3.1. Repeated measures ANOVA: Too much information

In our fictitious pretest-posttest example, researchers might be tempted to conduct
a repeated measures ANOVA (RM ANOVA) with Condition (control, treatment) as a

1 Blocking on a continuous variable is possible, too, but it is somewhat more involved. One
approach, recommended by Dalton and Overall (1977), Maxwell, Delaney, and Hill (1984) and
McAweeny and Klockars (1998), is to rank the participants by their covariate score and assign
them to the conditions according to an ABBAABB. . . pattern. Whether A refers to the treat-
ment or the control group is determined at random. The data can then be analyzed in an AN-
COVA with the covariate score as a continuous predictor. A discussion on blocking on several
covariates simultaneously lies far outside the scope of this article, but see Moore (2012).
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between-subject factor and Time (pretest, posttest) as well as the interaction
between Condition and Time as within-subject terms. The report may then read
something like this:

A repeated-measures ANOVA yielded a nonsignificant main effect of Condition (F(1,
48) < 1) but a significant main effect of Time (F(1, 48) = 154.6, p < 0.001):  In both
groups, the posttest scores were higher than the pretest scores. In addition, the Con-
dition × Time interaction was significant (F(1, 48) = 6.2, p = 0.016): The increase in
reading scores relative to baseline was higher in the treatment than in the control
group. (Fictitious example)

In technical terms, this analysis is defensible (but see below), but its main
problem  is  one  of  communicative  efficiency.  As  Huck  and  McLean  (1975)
showed, the main effect of Condition substantially underestimates the treat-
ment effect: Logically, the treatment effect can only be observed in the posttest
data, but the main effect of Condition is computed on the basis of both the pre-
and the posttest data. This yields a diluted estimate of the actual treatment ef-
fect. Additionally, finding a main effect of Time is trivial: We already know that
test scores change with time. Of the three reported results, only the interaction
result is actually germane to the research question—we were interested in
knowing whether the increase relative to baseline differed between the two
groups. This interaction term provides the true treatment effect.

3.2. t tests: As correct but much simpler

Inundating one’s readership with irrelevant or trivial results derived from a ra-
ther complicated analysis strikes me as counterproductive. What may not be
fully appreciated is that a much simpler analysis provides the same information:
A two-sample t test  on  the  gain  scores,  that  is,  the  differences  between the
posttest and pretest scores, always yields the same result  as the Condition ×
Time interaction in a RM ANOVA. In our example, the report would reduce to:
“A two-sample t test  on  the  gain  scores  revealed  that  the  treatment  group
showed a higher increase in reading scores than the control group (t(48) = 2.49,
p = 0.016).” (Note that for a given analysis, F = t².)

3.3. A more flexible and (slightly) more powerful alternative

Both RM ANOVAs and t tests on gain scores assume that the pretest and posttest
scores are linearly related with a slope of 1 (Hendrix, Carter, & Hintze, 1978; Huck
& McLean, 1975). This assumption is clearly violated when the pretest and posttest
scores are on different scales, but it can also be violated by mere measurement
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error. Performance on imperfect tests is a combination of ability and extrane-
ous factors such as form on the day, topic of a reading test, and so on. Partici-
pants who over- or underperformed due to extraneous factors on the pretest
are relatively unlikely to over- or underperform by the same margin on the post-
test (“regression to the mean”).  As a result,  the slope of the relationship be-
tween the pretest and posttest scores will often be less than 1 even if both tests
are scored on the same scale.

Using analysis of covariance (ANCOVA), the slope parameter can be esti-
mated from the data rather than be assumed to be 1. Doing so costs a degree of
freedom and hence some loss of statistical power if the slope actually is equal to
1, but it can lead to more power if the slope is not equal to 1 (e.g., Van Breukelen,
2006). However, as Maris (1998) showed, estimates of the treatment effect that
are derived from gain score analyses are not biased in the presence of measure-
ment error. Put differently, gain score analyses and analyses using the pretest
data as a covariate yield the same, correct estimation of the treatment effect on
average, but ANCOVA has more power. Note, however, that this applies only to
studies in which the assignment was done at random (see Van Breukelen, 2006).

In addition to having greater statistical power, ANCOVA comes with in-
creased flexibility compared to gain score analyses. First, the pretest and post-
test data need not be expressed on the same scale: If the pretest data have
been collected on a 10-point scale and the posttest data on a 25-point scale,
there is no need to transform the data to fit on a common scale. Second, gain
score analyses (or RM ANOVA) and ANCOVA both assume that the relationship
between the pretest and the posttest data is linear. However, ANCOVA models
can be furnished with nonlinear terms (e.g., quadratic or cubic terms, or regres-
sion splines) to relax this assumption (see, e.g., Baayen, 2008, pp. 108-111).

In sum, using RM ANOVA to analyze pretest–posttest data is an unneces-
sary complication, as simpler analyses on gain scores always yield the same re-
sult. Using the pretest data as a covariate in an ANCOVA is usually (somewhat)
more powerful and is more flexible with respect to the linearity assumption.

4. Interventions with intact groups

In the example above, the learners were randomly assigned to the treatment or
control group on an individual basis. Oftentimes, however, randomization oc-
curs not at the individual level but at a higher level. For instance, whole classes or
schools are often assigned to the conditions of the intervention so that within
each class or school, all pupils belong to the same condition. Designs in which
intact groups are randomly assigned to conditions are known as group- or cluster-
randomized interventions and are a popular choice when practical considerations
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do not allow random assignment at the individual level, when interactions be-
tween participants in different group at the same school may contaminate the
results, or when doing so increases the study’s ecological validity (e.g., when
testing methods that will later only be used with intact groups). Crucially, how-
ever, ignoring the fact that randomization took place at the group level drasti-
cally affects the insights gained from the study.

To take another hypothetical example, consider a researcher who is in-
terested in comparing the efficacy of two class-based methods (control and in-
tervention) for teaching reading skills in related foreign languages. At her dis-
posal stand ten classes, each taught by a different teacher, of 20 students each.2

Five classes are randomly assigned to the control method and five to the inter-
vention method. At the end of the semester, all 200 students take a reading test
that provides the dependent variable for the analysis.

Unfortunately, a t test (or, equivalently, an ANOVA) on the 200 resultant
data points is too likely to yield a statistically significant result when there is, in
fact, no effect (see, e.g., Barcikowski, 1981; Walsh, 1947). In statistics parlance,
such a test has a higher-than-nominal (i.e., higher than 5%) Type-I error rate and
is thus anti-conservative. This anti-conservatism is the result of a violation of
the test’s assumption that the data points be independent of one another: Par-
ticipants’ scores tend to be more alike within a cluster than between clusters
since their performance is shaped by the same or similar contextual factors
(e.g., the students’ background, teachers). As a result, data points within a clus-
ter do not contribute entirely independent information, and analyzing the data
as though they did overstates our confidence in the results. The degree to which
our confidence would be overstated depends on the intraclass correlation.

4.1. Intraclass correlation and its effects

The degree  to  which  participants’  scores  within  a  cluster  tend to  be  alike  is  ex-
pressed by the intraclass correlation coefficient (ICC). It is computed by dividing the
between-cluster variance by the sum of the between- and within-cluster variances.
The ICC takes on values between 0 and 1, with 0 indicating the complete absence
of clustering and 1 indicating that all scores within each cluster are identical.

Importantly, ignoring even small degrees of interrelatedness within clus-
ters can invalidate the analysis. Figure 1 shows how the actual Type-I error rate
increases as a function of (a) the ICC and (b) the number of participants per

2 The classes can also all be taught by the same teacher. What is important for this example is
that the ten classes are not taught by, say, five teachers, each of whom teaches two classes. Such
a design would further invalidate the assumption of independence (see below in main text).
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cluster if the data of a cluster-randomized experiment are analyzed by means
of t tests on the actual observations. As is clear from this plot, even ICCs as small
as .01 give rise to appreciably higher Type-I error rates, especially when the
number of participants per cluster is high. For the reader’s reference, Hedges
and Hedberg (2007) provide ICC estimates that range from .17 to .27 for scores
on reading achievement tests when randomization occurs at the school level, and
Schochet (2008) provides an ICC estimate of about .15 for evaluations of educa-
tional programs when randomization occurs at the school or classroom level.

Figure 1 Type-I error rates for cluster-randomized experiments when analyzed
by means of a t test on the participants’ scores as a function of the intraclass
correlation coefficient (ICC) and the number of participants per cluster (m). For
this graph, the number of clusters was fixed at 10, but the Type-I error rate dif-
fers only slightly for different numbers of clusters.

Such reference values are useful for planning cluster-randomized experi-
ments (see Hedges & Hedberg, 2007; Killip, Mahfoud, & Pearce, 2004; Schochet,
2008; Spybrook et al., 2011). For a given number of participants, clusters, ICC
coefficient and expected effect size, the probability of finding a significant in-
tervention effect can be computed. This is referred to as the study’s power. Fig-
ure 2 illustrates the effects of cluster size and ICC on the power of a study with
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128 participants to observe a medium-size effect (d = 0.5, see Cohen, 1992).3 As
this graph illustrates, a (correctly analyzed; see below) cluster-randomized ex-
periment always has less power than a completely randomized experiment (i.e.,
m = 1) with the same total number of observations.

Figure 2 Power to detect a medium-size effect (d = 0.5) for a correctly analyzed
cluster-randomized experiment with 128 participants in function of the intra-
class correlation coefficient (ICC) and the number of participants per cluster (m).

Including strongly predictive covariates (e.g., pretest scores) in the analy-
sis reduces the effect of clustering, that is, it increases statistical power and re-
duces Type-I error rates of flawed analyses, but cannot be counted on to make
it disappear entirely (Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg,
2007; Moerbeek, 2006; Murray & Blitstein, 2003; Schochet, 2008).

4.2. Taking clustering into account

When the ICC value is known, it can be used to recalibrate statistical analyses
(see Blair & Higgins, 1986, for when the raw data are available, and Hedges,

3 These power computations assume that the analyst knows the ICC value and uses it in the
analysis; if the ICC value is unknown, the power levels will be lower (see Blair & Higgins, 1986).
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2007, for when they are not). However, these recalibration methods require
that the ICC parameter of the population to which we want to generalize is
known, or has at least been estimated with great precision; using sample esti-
mates of the ICC to recalibrate one’s results does not work as these estimates
are too imprecise (Blair & Higgins, 1986; Hedges, 2007). In most cases, an accu-
rate estimate will not be available, which is why I focus on two analytical tacks
that do not require one: analyses on cluster means and mixed-effects modeling.

4.2.1. (Weighted) t tests on cluster means

A conceptually straightforward approach is to calculate the mean (or another
summary measure) of each cluster and run a t test on them rather than on the
original observations. When the number of observations differs from cluster to
cluster, a t test in which the cluster means are weighted for cluster size is rec-
ommended (see, e.g., Campbell, Donner, & Klar, 2007).4 This analysis is easy to
compute and report, and it perfectly accounts for violations of the independ-
ence assumption: The Type-I error rate is at its nominal level (i.e., 5%).

A drawback of this approach is that individual-level covariates (e.g., the
participants’ age) cannot directly be accounted for. Cluster-level variables (e.g.,
the teacher’s sex) and cluster-level summary measures of individual-level co-
variates (e.g., the average age of pupils in a class), however, can be entered in
a multiple regression model or ANCOVA ran on the cluster means. This comes
at the cost of a residual degree of freedom for each covariate, however, which
can be prohibitively expensive power-wise in studies with a small number of
clusters if the covariate is only weakly related to the dependent variable.

Additionally, researchers may find it psychologically difficult to reduce a
dataset to a fraction of its original size—if the analysis is carried out on ten clus-
ter means, why bother recruiting several participants per cluster? However,
larger clusters reduce the variance of the cluster means within each treatment
group, which in turn makes the intervention effect stand out more clearly (Bar-
cikowski, 1981). Put differently, cluster-level analyses are more powerful when
the clusters are large compared to when they are small. That said, when given
the choice between running an experiment on ten clusters with 50 observations
each or on 50 clusters with ten observations each, the latter is vastly preferred
due to its higher power (see Figure 2).

4 In statistical packages that do not offer the facility to weight cluster means by cluster size,
the same can be accomplished by computing a linear regression on the cluster means with
the experimental condition as a (nominal) predictor and cluster sizes as weights.
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4.2.2. Mixed-effects modeling

Mixed-effects modeling has gained popularity among language researchers in
recent years and represents an attractive alternative to researchers who have
carried out a cluster-randomized experiment. Mixed-effects models are fitted
on the original observations and can explicitly account for the effect of cluster-
ing by fitting the clusters using a random-effect term. This is also known as mul-
tilevel or hierarchical modeling. Multilevel modeling is not yet part and parcel
of the statistical education of applied linguists. Given its increasing popularity in
related disciplines (e.g., psycholinguistics), I think it is nonetheless useful to out-
line its advantages for analyzing group-randomized experiments. Additionally, I
want to highlight that even multilevel models do not necessarily produce en-
tirely accurate p values.

The following discussion is unavoidably more technical in nature and as-
sumes some familiarity with the lmer (“linear mixed-effect regression”) function
in the lme4 package (Bates, Maechler, Bolker, & Walker, 2014) for R. In addition
to being free, lme4 combines state-of-the-art modeling with relative user-
friendliness and has become the software package of choice in psycholinguistics
(for an introduction to lme4 geared towards language researchers, see Baayen,
2008).  Readers  who  are  primarily  interested  in  the  bottom  line  of  this  more
technical discussion can skip to the recommendations section.

4.2.2.1. Advantages

One advantage of lmer, and multilevel modeling more generally, is that it can
cope with several dependency levels simultaneously. Suppose that ten schools
with a total of 80 classes and 1,360 students participate in an experiment. As-
signment to the experimental conditions occurs at the class level, and each stu-
dent contributes five observations (e.g., test scores). In addition to modeling
classes (the level of randomization) as random effects, schools and students
can—and indeed should—be modeled as random effects, too. Second, lmer fits
can include covariates pertaining to different levels (e.g., age of the student, sex
of the teacher, and school type). Third, mixed-effects models can be fitted on
non-Gaussian data as well (e.g., dichotomous or Poisson data) using the glmer
function in the lme4 package. However, lmer outputs do not, by default, feature
p values.  As  Bates  (2006)  explained,  the  reason is  that  it  is  not  clear  how to
compute degrees of freedom for terms in mixed-effects models. However, sev-
eral strategies exist for “squeezing” p values out of lmer fits.
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4.2.2.2. Assessing statistical significance in multilevel models

The first strategy is to take the t value for the model term and interpret it as a z
value (see, e.g., Baayen, 2008, pp. 247-248). The null hypothesis is then rejected
when |t| > 1.96. As Baayen (2008) points out, however, this approach is anti-con-
servative (i.e., yields spurious significance) for small samples. What counts as a large
enough sample  for  this  approach  to  be  reasonable  depends  on  the  design  of  the
study, specifically the number of clusters, as well as on the intraclass correlation.

A different kind of p value can be computed by comparing nested models
by means of a likelihood-ratio test (LRT, see, e.g., Faraway, 2006, pp. 156-157).
This test, too, is anti-conservative for small samples: It assumes that the distri-
bution of the LRT statistic approximates a χ² distribution with one degree of
freedom (in the present context) under the null hypothesis, but this approxima-
tion is poor for small samples and sometimes even for large samples (Faraway,
2006). Again, what constitutes “small” and “large” samples depends on the
number of clusters and the intraclass correlation.

A third strategy is to compute approximate p values using a simulation-
based approach called parametric bootstrapping (see Faraway, 2006, pp. 157-
158). In a parametric bootstrap, a large number (say, 1,000) of alternative da-
tasets are produced under the null hypothesis. This is accomplished by fitting a
mixed-effects null model to the data that does not contain a term for the inter-
vention effect but is otherwise fully specified (intercept, random effects and co-
variates). New datasets are then simulated on the basis of this null model: new
“observations” for the dependent variable are created by taking predictions on
the basis of the intercept and covariates and adding residuals drawn from the
distributions of the random effects and the residual standard error. Then, a LRT
statistic is computed for each dataset by comparing the model with the inter-
vention effect fitted to the simulated data to the corresponding model without
the intervention effect. Since the datasets were simulated in the absence of a
treatment effect, any variability in the (1,000) LRT statistics is due to random-
ness alone. Thus, to an approximation, the distribution of bootstrapped LRT val-
ues serves as a reference distribution for the LRT statistic computed on the basis
of the actually observed data (i.e., as per the second strategy): The bootstrapped
p value is equal to the proportion of LRT values under the null hypothesis that are
larger than the actual one. A user-friendly implementation of this procedure is
available in the pbkrtest package (Halekoh & Højsgaard, 2014) for R.

Parametric bootstrapping yields more conservative p values than likeli-
hood-ratio tests, and is therefore to be preferred over the other two strategies,
which give anti-conservative results. The Achilles’ heel of this approach is that the
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null model needs to be specified correctly. For technical reasons,5 the null model
on the basis of which the simulated data sets are generated tends to underesti-
mate the between-cluster variance (see Faraway, 2006, pp. 154) and hence the
ICC. This underestimation may yield anti-conservative p values from parametric
bootstrapping, too. Parametric bootstrapping is computationally expensive, how-
ever, and it is therefore difficult to verify whether the p values that it yields are at
nominal levels. To my knowledge, no Monte Carlo study has yet been run to in-
vestigate the properties of p values computed by means of parametric bootstrap-
ping. In any event, the bootstrapped p values will be more accurate than those
resulting from the other two strategies, but not necessarily entirely accurate.

4.3. Recommendations for analyzing clustered-randomized interventions

When randomization at the level of the participants is not feasible or desirable,
cluster-level randomization presents an alternative. The effects of clustering
need to be duly accounted for so that the statistical significance of the interven-
tion not be overstated. This need brings with it an appreciable but unavoidable
loss of statistical power. In order to salvage as much power as possible, carefully
considered covariates (both at the individual and at higher hierarchical levels)
can be included in a mixed-effects analysis. If p values need to be extracted from
such an analysis, parametric bootstrapping is the least unduly optimistic of the
three methods discussed, but even so, borderline significant results are best
enjoyed with a grain of salt.

A second important corollary of what I have discussed is that, unless the
ICC is known (and it rarely is), interventions with one cluster per condition do
not allow for meaningful statistical inferences (see also Murray, Varnell, &
Blitstein, 2004). For instance, a t test on two cluster means would have a t dis-
tribution with zero degrees of freedom as a reference—which does not exist.
Conceptually, this translates to the realization that we have no way of teasing
apart the intervention effect from the cluster effect when the conditions and
the clusters are completely conflated, that is, we have zero power. Such designs
are therefore strongly discouraged.

Lastly, clustering can also occur even when randomization occurs at the
level of the individual. For instance, if researchers randomly assign individuals
to conditions, but then proceed to apply the treatments to groups of several
participants, they could also induce clustering effects (see Lee & Thompson,
2005). Such forms of clustering need to be taken into account as well.

5 To compute a LRT statistic, the models being compared need to be fitted using maximum
likelihood. Maximum likelihood estimates of variances tend to be too low, however, and
more so in small samples.
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5. Summary

The three notes discussed in this paper can be summarized as follows:

1. Testing for background variable balance is superfluous in randomized
experiments. To take full advantage of important covariates, it is best to
include them in the analysis regardless of whether the control and
treatment groups are balanced with respect to them or not.

2. Analyzing pretest-posttest using RM ANOVAs is needlessly complicated since
t tests on gain scores accomplish the same thing; using the pretest scores as
a covariate in an ANCOVA is a more flexible and more powerful alternative.

3. Traditional t tests or ANOVAs are inappropriate for analyzing interventions
with intact groups (e.g., classes). Mixed-effects modeling coupled with
parametric bootstrapping represents an attractive alternative, but the p
values that this procedure yields should still be interpreted with caution.

6. Closing thought

I have discussed three relatively common practices in the analysis of random-
ized intervention experiments and labeled them as superfluous, overcompli-
cated, and inappropriate, respectively. I have done so in part by citing the ef-
fects of these practices on p values, and specifically with their yielding too many
or too few statistically significant results. This may give the impression that the
categorization of findings into “significant” and “nonsignificant” results is the
goal of experimental studies (“categoritis,” Abelson, 1995, p. 111). However,
uncertainty is inherent in statistical analyses, and even randomized experi-
ments—whether they yield p values below or above an arbitrary threshold—do
not necessarily produce definite answers. In simple (but not oversimplified)
terms, a significant result does not prove the existence of an effect, and a non-
significant  result  much less  proves  that  an  effect  does  not  exist  (see,  among
many others, Cohen, 1994; Schmidt, 1996). Thus, while this article has offered
recommendations for conducting more accurate or more transparent signifi-
cance tests, it has done so with the understanding that their results are not the
be-all and end-all of experimental research.

Acknowledgments

I thank Peter Lenz, Winfried Kronig, Raphael Berthele, and the SSLLT reviewers
for their useful comments.



Jan Vanhove

150

References

Abelson, R. P. (1995). Statistics as principled argument. Hillsdale, NJ: Lawrence
Erlbaum.

Baayen, R. H. (2008). Analyzing linguistic data. A practical introduction to statis-
tics using R. Cambridge: Cambridge University Press.

Barcikowski, R. S. (1981). Statistical power with group mean as the unit of anal-
ysis. Journal of Educational and Behavioral Statistics, 6(3), 267-285.

Bates, D. (2006, May 19). lmer, p-values and all that [Electronic mailing list message].
Retrieved from https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html

Bates, D., Martin, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects
models using Eigen and S4. R package (version 1.1-7) [Computer soft-
ware]. Retrieved from http://cran.r-project.org/package=lme4

Blair, R. C., & Higgins, J. J. (1986). Comment on “Statistical power with group mean
as the unit of analysis.” Journal of Educational and Behavioral Statistics,
11(2), 161-169.

Bloom, H. S., Richburg-Hayes, L., & Black, A. R. (2007). Using covariates to improve
precision for studies that randomize schools to evaluate educational inter-
ventions. Educational Evaluation and Policy Analysis, 29(1), 30-59.

Campbell, M. J., Donner, A., & Klar, N. (2007). Developments in cluster random-
ized trials and Statistics in Medicine. Statistics in Medicine, 26, 2-19.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
Cohen, J. (1994). The Earth is round (p < .05). American Psychologist, 49, 997-1003.
Dalton, S., & Overall, J. E. (1977). Nonrandom assignment in ANCOVA: The al-

ternate ranks design. Journal of Experimental Education, 46(1), 58-62.
Faraway, J. J. (2006). Extending the linear model with R: Generalized linear,

mixed effect and nonparametric regression models. Boca Raton, FL: Chap-
man & Hall/CRC.

Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple compari-
sons can be a problem, even when there is no “fishing expedition” or “p-hack-
ing” and the research hypothesis was posited ahead of time. Unpublished man-
uscript. Retrieved on 31 August 2014 from http://www.stat.columbia.edu/
~gelman/research/unpublished/p_hacking.pdf

Halekoh, U., & Højsgaard, S. (2014). pbkrtest: Parametric bootstrap and Kenward
Roger based methods for mixed model comparison. R package (version 0.4-
0) [Computer software]. Retrieved from http://cran.r-project.org/package
=pbkrtest

Hedges, L. V. (2007). Correcting a significance test for clustering. Journal of Ed-
ucational and Behavioral Statistics, 32(2), 151-179.



 Analyzing randomized controlled interventions: Three notes for applied linguists

151

Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning
group-randomized trials in education. Educational Evaluation and Policy
Analysis, 29(1), 60-87.

Hendrix, L. J., Carter, M. W., & Hintze, J. L. (1978). A comparison of five statistical
methods for analyzing pretest-posttest designs. Journal of Experimental
Education, 47(2), 96-102.

Huck, S. W., & McLean, R. A. (1975). Using a repeated measures ANOVA to an-
alyze the data from a pretest-posttest design: A potentially confusing
task. Psychological Bulletin, 82(4), 511.

Imai, K., King, G., & Stuart, E. A. (2008). Misunderstandings between experimen-
talists and observationalists about causal inference. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 171(2), 481-502.

Killip, S., Mahfoud, Z., & Pearce, K. (2004). What is an intracluster correlation
coefficient? Crucial concepts for primary care researchers. The Annals of
Family Medicine, 2(3), 204-208.

Lazaraton, A. (2005). Quantitative research methods. In E. Hinkel (Ed.), Hand-
book of research in second language learning (pp. 209-224). Mahwah, NJ:
Lawrence Erlbaum.

Lee, K. J., & Thompson, S. G. (2005). Clustering by health professional in individ-
ually randomised trials. BMJ, 330, 142-144.

Maris, E. (1998). Covariance adjustment versus gain scores—revisited. Psycho-
logical Methods, 3(3), 309-327.

Maxwell, S. E., Delaney, H. D., & Dill, C. A. (1984). Another look at ANCOVA ver-
sus blocking. Psychological Bulletin, 95(1), 136-147.

McAweeney, M. J., & Klockars, A. J. (1998). Maximizing power in skewed distri-
butions: Analysis and assignment. Psychological Methods, 3(1), 117.

Moerbeek, M. (2006). Power and money in cluster randomized trials: When is
it worth measuring a covariate? Statistics in Medicine, 25(15), 2607-2617.

Moore, R. T. (2012). Multivariate continuous blocking to improve political sci-
ence experiments. Political Analysis, 20(4), 460-479.

Moore, R. T., & Moore, S. A. (2013). Blocking for sequential political experi-
ments. Political Analysis, 21(4), 507-523.

Murray, D. M., & Blitstein, J. L. (2003). Methods to reduce the impact of intraclass
correlation in group-randomized trials. Evaluation Review, 27(1), 79-103.

Murray, D. M., Varnell, S. P., & Blitstein, J. L. (2004). Design and analysis of
group-randomized trials: A review of recent methodological develop-
ments. American Journal of Public Health, 94(3), 423-432.

Mutz, D., & Pemantle, R. (2013). The perils of randomization checks in the analysis
of experiments. Unpublished manuscript. Retrieved on 31 August 2014
from http://www.math.upenn.edu/~pemantle/papers/Preprints/perils.pdf



Jan Vanhove

152

Oehlert, G. W. (2010). A first course in the design and analysis of experiments.
Retrieved from http://users.stat.umn.edu/~gary/Book.html

Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in
psychology: Implications for training of researchers. Psychological Meth-
ods, 1, 115-129.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology
undisclosed flexibility in data collection and analysis allows presenting an-
ything as significant. Psychological Science, 22(11), 1359-1366.

Schochet, P. Z. (2008). Statistical power for random assignment evaluations of edu-
cation programs. Journal of Educational and Behavioral Statistics, 33(1), 62-87.

Spybrook, J., Bloom, H., Congdon, R., Hill, C., Martinez, A., & Raudenbush, S.
(2011). Optimal design for longitudinal and multilevel research: Docu-
mentation for the Optimal Design (version 3.0) [Computer software]. Re-
trieved from http://hlmsoft.net/od/od-manual-20111016-v300.pdf

Van Breukelen, G. J. (2006). ANCOVA versus change from baseline had more
power in randomized studies and more bias in nonrandomized studies.
Journal of Clinical Epidemiology, 59(9), 920-925.

Walsh, J. E. (1947). Concerning the effect of intraclass correlation on certain sig-
nificance tests. The Annals of Mathematical Statistics, 18(1), 88-96.


