Faculté des sciences

Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

Affolderbach, Christoph ; Moreno, William ; Ivanov, A.E ; Debogovic,T ; Pellaton, Matthieu ; Skrivervik, A. K ; de Rijk, E ; Mileti, Gaetano

In: Applied Physics Letters, 2018/112//113502/1-5

Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we pre-sent an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave... Plus

Ajouter à la liste personnelle
    Summary
    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we pre-sent an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are com-parable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of com-pact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.